

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 0 0 0 0	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 4x14b; D/A 4x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c27443-24sxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with PSoC[®] 1, PowerPSoC[®], and PLC – KBA88292". Following is an abbreviated list for PSoC 1:

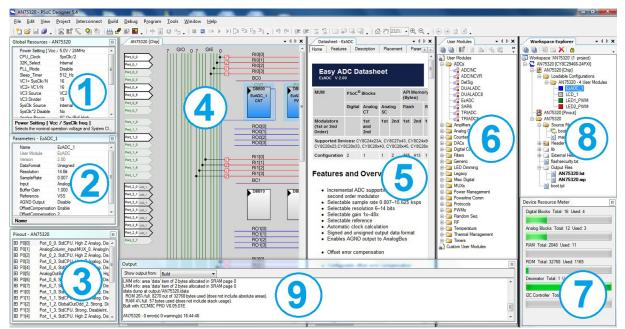
- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
- In addition, PSoC Designer includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are:
 - □ Getting Started with PSoC[®] 1 AN75320
 - □ PSoC[®] 1 Getting Started with GPIO AN2094
 - □ PSoC[®] 1 Analog Structure and Configuration AN74170
 - □ PSoC[®] 1 Switched Capacitor Analog Blocks AN2041
 - Selecting Analog Ground and Reference AN2219

Note: For CY8C27X43 devices related Application note please click here.

- Development Kits:
 - CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space.
 - CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support.

Note: For CY8C27X43 devices related Development Kits please click here.

The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug.


PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

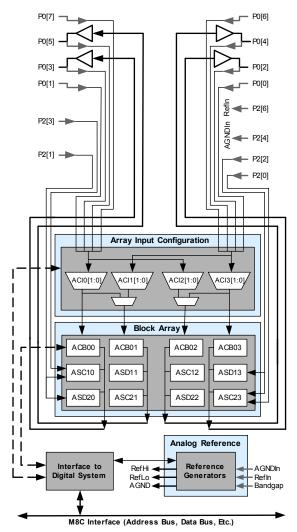
- 1. Global Resources all device hardware settings.
- 2. **Parameters –** the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. Chip-Level Editor a diagram of the resources available on the selected chip.
- 5. Datasheet the datasheet for the currently selected UM
- 6. User Modules all available User Modules for the selected device.
- 7. **Device Resource Meter –** device resource usage for the current project configuration.
- 8. Workspace a tree level diagram of files associated with the project.
- 9. Output output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC[®] Designer > Help > Documentation > Designer Specific Documents > IDE User Guide.

Figure 1. PSoC Designer Layout

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also enable signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This lets you the optimum choice of system resources for your application. Family resources are shown in the table titled PSoC Device Characteristics on page 6.


Analog System

The analog system is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are as follows:

- ADCs (up to 4, with 6- to 14-bit resolution, selectable as incremental, delta sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band pass, low pass, and notch)
- Amplifiers (up to four, with selectable gain to 48x)
- Instrumentation amplifiers (up to two, with selectable gain to 93x)
- Comparators (up to four, with 16 selectable thresholds)
- DACs (up to four, with 6- to 9-bit resolution)
- Multiplying DACs (up to four, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a core resource)
- 1.3-V reference (as a system resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks, as shown in the following figure.

Figure 3. Analog System Block Diagram

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

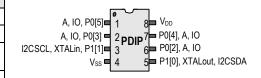
Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

Pinouts


The CY8C27x43 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, Vss, V_{DD} , SMP, and XRES are not capable of Digital I/O.

8-pin Part Pinout

Table 2. Pin Definitions – 8-pin PDIP

Pin	Ту	ре	Pin	Description				
No.	Digital	Analog	Name	Description				
1	I/O	I/O	P0[5]	Analog column mux input and column output				
2	I/O	I/O	P0[3]	Analog column mux input and column output				
3	I/O		P1[1]	Crystal Input (XTALin), I ² C serial clock (SCL), ISSP-SCLK ^[6]				
4	Power		Vss	Ground connection.				
5	I/O		P1[0]	Crystal output (XTALout), I ² C serial data (SDA), ISSP-SDATA ^[6]				
6	I/O	I/O	P0[2]	Analog column mux input and column output				
7	I/O	I/O	P0[4]	Analog column mux input and column output				
8	Po	wer	V _{DD}	Supply voltage				
I FGF		nalog I = I	nnut and	$\Omega = \Omega utput$				

Figure 4. CY8C27143 8-pin PSoC Device

END: A = Analog, I = Input, and O = Output.

20-pin Part Pinout

Table 3. Pin Definitions – 20-pin SSOP, SOIC

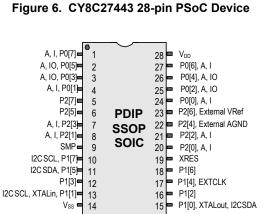
Pin	Ту	pe	Pin	Description				
No.	Digital	Analog	Name	•				
1	I/O	I	P0[7]	Analog column mux input				
2	I/O	I/O	P0[5]	Analog column mux input and column output				
3	I/O	I/O	P0[3]	Analog column mux input and column output				
4	I/O	I	P0[1]	Analog column mux input				
5	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required				
6	I/O		P1[7]	I ² C Serial Clock (SCL)				
7	I/O		P1[5]	I ² C Serial Data (SDA)				
8	I/O		P1[3]					
9	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[6]				
10	Po	wer	Vss	Ground connection.				
11	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[6]				
12	I/O		P1[2]					
13	I/O		P1[4]	Optional external clock input (EXTCLK)				
14	I/O		P1[6]					
15	Inj	put	XRES	Active high external reset with internal pull down				
16	I/O	I	P0[0]	Analog column mux input				
17	I/O	I/O	P0[2]	Analog column mux input and column output				
18	I/O	I/O	P0[4]	Analog column mux input and column output				
19	I/O	I	P0[6]	Analog column mux input				
20	Po	wer	V _{DD}	Supply voltage				

Figure 5. CY8C27243 20-pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Note

6. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.



CY8C27143/CY8C27243 CY8C27443/CY8C27543 CY8C27643

28-pin Part Pinout

Table 4. Pin Definitions – 28-pin PDIP, SSOP, SOIC

Pin No.	Ту	ре	Pin	Description	
PIN NO.	Digital	Analog	Name	Description	
1	I/O	I	P0[7]	Analog column mux input	
2	I/O	I/O	P0[5]	Analog column mux input and column output	
3	I/O	I/O	P0[3]	Analog column mux input and column output	
4	I/O	I	P0[1]	Analog column mux input	
5	I/O		P2[7]		
6	I/O		P2[5]		
7	I/O	I	P2[3]	Direct switched capacitor block input	
8	I/O	I	P2[1]	Direct switched capacitor block input	
9	Pov	wer	SMP	Switch mode pump (SMP) connection to external components required	
10	I/O		P1[7]	I ² C SCL	
11	I/O		P1[5]	I ² C SDA	
12	I/O		P1[3]		
13	I/O		P1[1]	Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[7]	
14	Pov	wer	Vss	Ground connection.	
15	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[7]	
16	I/O		P1[2]		
17	I/O		P1[4]	Optional external clock input (EXTCLK)	
18	I/O		P1[6]		
19	Inp	out	XRES	Active high external reset with internal pull down	
20	I/O	I	P2[0]	Direct switched capacitor block input	
21	I/O	I	P2[2]	Direct switched capacitor block input	
22	I/O		P2[4]	External analog ground (AGND)	
23	I/O		P2[6]	External voltage reference (V _{REF})	
24	I/O	I	P0[0]	Analog column mux input	
25	I/O	I/O	P0[2]	Analog column mux input and column output	
26	I/O	I/O	P0[4]	Analog column mux input and column output	
27	I/O	I	P0[6]	Analog column mux input	
28	Pov	wer	V_{DD}	Supply voltage	

Vss 🗖 14

LEGEND: A = Analog, I = Input, and O = Output.

Note

7. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.

48-pin Part Pinout

Table 6. Pin Definitions – 48-pin Part Pinout (SSOP)

	- -	no.		· · · · · · · · · · · · · · · · ·
Pin No.		pe	Pin Name	Description
	Digital	Analog		
1	1/0		P0[7]	Analog column mux input
2	1/0	I/O	P0[5]	Analog column mux input and column output
3	1/0	I/O	P0[3]	Analog column mux input and column output
4	1/0	I	P0[1]	Analog column mux input
5	1/0		P2[7]	
6	1/0		P2[5]	
7	1/0	1	P2[3]	Direct switched capacitor block input
8	1/0	I	P2[1]	Direct switched capacitor block input
9	1/0		P4[7]	
10	I/O		P4[5]	
11	1/0		P4[3]	
12	1/0		P4[1]	
13	Po	wer	SMP	SMP connection to external components required
14	I/O		P3[7]	
15	I/O		P3[5]	
16	I/O		P3[3]	
17	I/O		P3[1]	
18	I/O		P5[3]	
19	I/O		P5[1]	
20	I/O		P1[7]	I ² C SCL
21	I/O		P1[5]	I ² C SDA
22	I/O		P1[3]	
23	I/O		P1[1]	Crystal Input (XTALin), I ² C SCL, ISSP-SCLK ^[9]
24	Po	wer	Vss	Ground connection
25	I/O		P1[0]	Crystal output (XTALout), I ² C SDA, ISSP-SDATA. ^[9]
26	I/O		P1[2]	
27	I/O		P1[4]	Optional external clock input (EXTCLK)
28	I/O		P1[6]	
29	I/O		P5[0]	
30	I/O		P5[2]	
31	I/O		P3[0]	
32	I/O		P3[2]	
33	I/O		P3[4]	
34	I/O		P3[6]	
35	In	put	XRES	Active high external reset with internal pull down
36	I/O		P4[0]	
37	I/O		P4[2]	
38	I/O		P4[4]	
39	I/O		P4[6]	
40	I/O	1	P2[0]	Direct switched capacitor block input
41	I/O	Ι	P2[2]	Direct switched capacitor block input
42	I/O		P2[4]	External analog ground (AGND)
43	I/O		P2[6]	External voltage reference (VRef)
44	I/O	I	P0[0]	Analog column mux input
45	I/O	I/O	P0[2]	Analog column mux input and column output
46	I/O	I/O	P0[4]	Analog column mux input and column output
47	1/0		P0[6]	Analog column mux input
48		wer	V _{DD}	Supply voltage
+0			• 00	

Figure 8. CY8C27643 48-pin PSoC Device

	_			
A, I, P0[7]	1	\smile	48	V _{DD}
A, IO, P0[5]	2		47	P0[6], A, I
A, IO, P0[3]	3		46	P0[4], A, IO
A, I, P0[1] =	4		45	P0[2], A, IO
P2[7] 🗖	5		44	P0[0], A, I
P2[5] 🗖	6		43	P2[6], External VRef
A, I, P2[3] =	7		42	P2[4], External AGND
A, I, P2[1] =	8		41	P2[2], A, I
P4[7] 🗖	9		40	P2[0], A, I
P4[5] 🗖	10		39	P4[6]
P4[3] 🗖	11		38	P4[4]
P4[1] 🗖	12	SSOP	37	P4[2]
SMP	13	0001	36	P4[0]
P3[7] 🗖	14		35	XRES
P3[5] 🗖	15		34 🗖	P3[6]
P3[3] 🖛	16		33	P3[4]
P3[1] 🗖	17		32	P3[2]
P5[3] 🗖	18		31	P3[0]
P5[1] =			30	P5[2]
I2C SCL, P1[7]			29	P5[0]
I2C SDA, P1[5]	21		28	P1[6]
P1[3] 🗖			27	P1[4], EXTCLK
SCL, XTALin, P1[1]			26	P1[2]
V _{SS} 🗖	24		25	P1[0], XTALout, I2C SDA
L				

LEGEND: A = Analog, I = Input, and O = Output.

Note

9. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details.

I2C

Table 22. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Unit
	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.788	3.891	3.986	V
0b011	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.500	2.604	3.699	V
		V _{REFLO}	Ref Low	Bandgap	1.257	1.306	1.359	V
	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.792	3.893	3.982	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.518	2.602	2.692	V
		V _{REFLO}	Ref Low	Bandgap	1.256	1.302	1.354	V
	RefPower = medium	V _{REFHI}	Ref High	3 × Bandgap	3.795	3.894	3.993	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.516	2.603	2.698	V
		V _{REFLO}	Ref Low	Bandgap	1.256	1.303	1.353	V
	RefPower = medium	V _{REFHI}	Ref High	3 × Bandgap	3.792	3.895	3.986	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.522	2.602	2.685	V
		V _{REFLO}	Ref Low	Bandgap	1.255	1.301	1.350	V
	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.495 – P2[6]	2.586 – P2[6]	2.657 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.502	2.604	2.719	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.531 – P2[6]	2.611 – P2[6]	2.681 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.500 – P2[6]	2.591 – P2[6]	2.662 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.519	2.602	2.693	V
0b100		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.530 – P2[6]	2.605 – P2[6]	2.666 – P2[6]	V
00100	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.503 – P2[6]	2.592 – P2[6]	2.662 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.517	2.603	2.698	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.529 – P2[6]	2.606 – P2[6]	2.665 – P2[6]	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.505 – P2[6]	2.594 – P2[6]	2.665 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.525	2.602	2.685	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.528 – P2[6]	2.603 – P2[6]	2.661 – P2[6]	V

Table 23. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.225	V _{DD} /2 + 1.292	V _{DD} /2 + 1.361	V
	RefPower = high Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.067	V _{DD} /2 - 0.002	V _{DD} /2 + 0.063	V
	Jan Press G	V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.35	V _{DD} /2 – 1.293	V _{DD} /2 – 1.210	V
		V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.218	V _{DD} /2 + 1.294	V _{DD} /2 + 1.370	V
	RefPower = high Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.038	V _{DD} /2 – 0.001	V _{DD} /2 + 0.035	V
0b000		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 - 1.329	V _{DD} /2 – 1.296	V _{DD} /2 – 1.259	V
00000		V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.294	V _{DD} /2 + 1.366	V
	RefPower = medium Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.050	V _{DD} /2 - 0.002	V _{DD} /2 + 0.046	V
	Jan Press G	V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.331	V _{DD} /2 – 1.296	V _{DD} /2 – 1.260	V
		V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.295	V _{DD} /2 + 1.365	V
	RefPower = medium Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.028	V _{DD} /2 – 0.001	V _{DD} /2 + 0.025	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.329	V _{DD} /2 – 1.297	V _{DD} /2 – 1.262	V
	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.098	P2[4] + P2[6] - 0.018	P2[4] + P2[6] + 0.055	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.055	P2[4] – P2[6] + 0.013	P2[4] – P2[6] + 0.086	V
		V _{REFHI}	Ref High	P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.082	P2[4] + P2[6] - 0.011	P2[4] + P2[6] + 0.050	V
	RefPower = high Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
05001		V _{REFLO}	Ref Low	P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.037	P2[4] – P2[6] + 0.006	P2[4] – P2[6] + 0.054	V
0b001		V _{REFHI}	Ref High	P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.079	P2[4] + P2[6] - 0.012	P2[4] + P2[6] + 0.047	V
	RefPower = medium Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.038	P2[4] – P2[6] + 0.006	P2[4] – P2[6] + 0.057	V
		V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.080	P2[4] + P2[6] - 0.008	P2[4] + P2[6] + 0.055	V
	RefPower = medium Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.032	P2[4] – P2[6] + 0.003	P2[4] – P2[6] + 0.042	V

Table 23. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.06	V _{DD} – 0.010	V _{DD}	V
ARF_CR	RefPower = high Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.05	V _{DD} /2 - 0.002	V _{DD} /2 + 0.040	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.009	Vss + 0.056	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.060	V _{DD} – 0.006	V _{DD}	V
	RefPower = high Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.028	V _{DD} /2 - 0.001	V _{DD} /2 + 0.025	V
06010		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.034	V
0b010		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.058	V _{DD} - 0.008	V _{DD}	V
	RefPower = medium Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.037	V _{DD} /2 - 0.002	V _{DD} /2 + 0.033	V
	- p p	V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.046	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.057	V _{DD} – 0.006	V _{DD}	V
	RefPower = medium Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.025	V _{DD} /2 – 0.001	V _{DD} /2 + 0.022	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.004	Vss + 0.030	V
0b011	All power settings. Not allowed for 3.3 V	_	_	_	-	_	_	-
0b100	All power settings. Not allowed for 3.3 V	-	-	-	-	-	-	-
	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.213	P2[4] + 1.291	P2[4] + 1.367	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.333	P2[4] – 1.294	P2[4] – 1.208	V
		V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.368	V
	RefPower = high Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
0b101		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.320	P2[4] – 1.296	P2[4] – 1.261	V
00101		V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.369	V
	RefPower = medium Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
	J	V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.322	P2[4] – 1.297	P2[4] – 1.262	V
		V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.219	P2[4] + 1.295	P2[4] + 1.37	V
	RefPower = medium Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.324	P2[4] – 1.297	P2[4] – 1.262	V

DC Programming Specifications

Table 26 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply voltage for flash write operation	3		5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V_{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V_{IHP} to P1[0] or P1[1] during programming or verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	-	Vss + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[19]	-	-	Cycles	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[20]	1,800,000	-	-	Cycles	Erase/write cycles.
Flash _{DR}	Flash data retention	10	1	-	Years	

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 27. DC I²C Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{ILI2C} ^[21]	Input low level	-	-	0.3 × V _{DD}	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	0.25 × V _{DD}	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C} ^[21]	Input high level	$0.7 \times V_{DD}$	-	-	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Notes

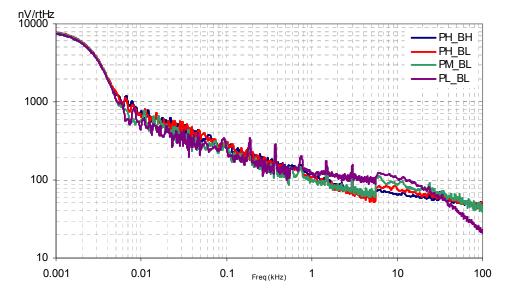
^{19.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V. 19: The 50,000 cycle hash endurance per block is only guaranteed in the hash is operating within one voltage range. Voltage ranges are 3.0 v to 3.6 v and 4.7 v to 5.25 v.
 20: A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36 x 2 blocks of 25,000 maximum cycles each, or 36 x 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 x 50,000 and that no single block ever sees more than 50,000 cycles).
 For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.
 21. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO specifications sections. The I²C GPIO pins also meet the above specs.

AC Electrical Characteristics

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 28. AC Chip-Level Specifications


Symbol	Description	Min	Тур	Мах	Unit	Notes
F _{IMO}	Internal main oscillator (IMO) frequency	23.4	24	24.6 ^[22]	MHz	Trimmed. Utilizing factory trim values.
F _{CPU1}	CPU frequency (5 V nominal)	0.0914	24	24.6 ^[22]	MHz	Trimmed. Utilizing factory trim values. SLIMO mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.0914	12	12.3 ^[23]	MHz	Trimmed. Utilizing factory trim values. SLIMO mode = 0.
F _{48M}	Digital PSoC block frequency	0	48	49.2 ^[22, 24]	MHz	Refer to AC Digital Block Specifications on page 40.
F _{24M}	Digital PSoC block frequency	0	24	24.6 ^[24]	MHz	
F _{32K1}	Internal low speed oscillator (ILO) frequency	15	32	64	kHz	
F _{32K2}	External crystal oscillator	-	32.768	_	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on timing this
F _{PLL}	PLL frequency	-	23.986	_	MHz	Multiple (x732) of crystal frequency.
t _{PLLSLEW}	PLL lock time	0.5	-	10	ms	
t _{PLLSLEWSLOW}	PLL lock time for low gain setting	0.5	-	50	ms	
t _{OS}	External crystal oscillator startup to 1%	-	1700	2620	ms	
tosacc	External crystal oscillator startup to 100 ppm	_	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T _{osacc} period. Correct operation assumes a properly loaded 1 μ W maximum drive level 32.768 kHz crystal. 3.0 V \leq V _{DD} \leq 5.5 V, -40 °C \leq T _A \leq 85 °C.
t _{XRST}	External reset pulse width	10	-	_	μs	
DC _{24M}	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step _{24M}	24 MHz trim step size	-	50	-	kHz	
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	wer-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
Fout _{48M}	48 MHz output frequency	46.8	48.0	49.2 ^[22, 23]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	_	-	250	V/ms	V _{DD} slew rate during power-up.

Notes

22.4.75 V < V_{DD} < 5.25 V. 23.3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V. 24. See the individual user module datasheets for information on maximum frequencies for user modules.

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 18. Typical Opamp Noise

AC Low-Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 32. AC Low-Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
t _{RLPC}	LPC response time	-	-	50	μS	\geq 50 mV overdrive comparator reference set within V _{REFLPC} .

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 36. 5-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Unit
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz
-	High period	20.6	-	5300	ns
-	Low period	20.6	-	-	ns
-	Power-up IMO to switch	150	-	-	μS

Table 37. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Unit
F _{OSCEXT}	Frequency with CPU clock divide by 1 ^[30]	0.093	-	12.3	MHz
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater ^[31]	0.186	-	24.6	MHz
-	High period with CPU clock divide by 1	41.7	-	5300	ns
-	Low period with CPU clock divide by 1	41.7	-	_	ns
-	Power-up IMO to switch	150	_	-	μS

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 38. AC Programming Specifications

Symbol	Description	Min	Тур	Мах	Unit	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (Block)	-	30	-	ms	
t _{WRITE}	Flash block write time	-	10	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	$V_{DD} > 3.6$
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{ERASEALL}	Flash erase time (Bulk)	-	95	_	ms	Erase all Blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	80 ^[32]	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
t _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	160 ^[32]	ms	-40 °C \leq Tj \leq 0 °C

Notes

- 30. Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
- 31. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
- 32. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

Thermal Impedances

Table 40. Thermal Impedances per Package

Package	Typical θ _{JA} ^[34]
8-pin PDIP	120 °C/W
20-pin SSOP	116 °C/W
20-pin SOIC	79 °C/W
28-pin PDIP	67 °C/W
28-pin SSOP	95 °C/W
28-pin SOIC	68 °C/W
44-pin TQFP	61 °C/W
48-pin SSOP	69 °C/W
48-pin QFN ^[35]	18 °C/W
56-pin SSOP	47 °C/W

Capacitance on Crystal Pins

Table 41. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
8-pin PDIP	2.8 pF
20-pin SSOP	2.6 pF
20-pin SOIC	2.5 pF
28-pin PDIP	3.5 pF
28-pin SSOP	2.8 pF
28-pin SOIC	2.7 pF
44-pin TQFP	2.6 pF
48-pin SSOP	3.3 pF
48-pin QFN	2.3 pF
56-pin SSOP	3.3 pF

Solder Reflow Specifications

The following table shows the solder reflow temperature limits that must not be exceeded. Thermap ramp rate should 3 °C or lower.

Table 42. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C) ^[36]	Maximum Time above T _C – 5 °C
8-pin PDIP	260 °C	30 seconds
20-pin SSOP	260 °C	30 seconds
20-pin SOIC	260 °C	30 seconds
28-pin PDIP	260 °C	30 seconds
28-pin SSOP	260 °C	30 seconds
28-pin SOIC	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin SSOP	260 °C	30 seconds
48-pin QFN	260 °C	30 seconds
56-pin SSOP	260 °C	30 seconds

Notes

34. T_J = T_A + POWER × θ_{JA}.
 35. To achieve the thermal impedance specified for the QFN package, refer to *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com.
 36. Refer to Table 44 on page 53.

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 43. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. **Note** CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part #	Pin Package	Flex-Pod Kit ^[37]	Foot Kit ^[38]	Adapter ^[39]
CY8C27143-24PXI	8-pin PDIP	CY3250-27XXX	CY3250-8PDIP-FK	Adapters can be found at
CY8C27243-24PVXI	20-pin SSOP	CY3250-27XXX	CY3250-20SSOP-FK	http://www.emulation.com
CY8C27243-24SXI	20-pin SOIC	CY3250-27XXX	CY3250-20SOIC-FK	
CY8C27443-24PXI	28-pin PDIP	CY3250-27XXX	CY3250-28PDIP-FK	
CY8C27443-24PVXI	28-pin SSOP	CY3250-27XXX	CY3250-28SSOP-FK	
CY8C27443-24SXI	28-pin SOIC	CY3250-27XXX	CY3250-28SOIC-FK	
CY8C27543-24AXI	44-pin TQFP	CY3250-27XXX	CY3250-44TQFP-FK	
CY8C27643-24PVXI	48-pin SSOP	CY3250-27XXX	CY3250-48SSOP-FK	
CY8C27643-24LTXI	48-pin QFN	CY3250-27XXXQFN	CY3250-48QFN-FK	

Notes

37. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

- 38. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 39. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Acronyms

Table 45 lists the acronyms that are used in this document.

Table 45.	Acronyms Used in this Datasheet	
-----------	---------------------------------	--

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	PLL	phase-locked loop
СТ	continuous time	POR	power on reset
DAC	digital-to-analog converter	PPOR	precision power on reset
DC	direct current	PRS	pseudo-random sequence
DTMF	dual-tone multi-frequency	PSoC	Programmable System-on-Chip
ECO	external crystal oscillator	PWM	pulse width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	RTC	real time clock
ICE	in-circuit emulator	SAR	successive approximation
IDE	integrated development environment	SC	switched capacitor
ILO	internal low speed oscillator	SMP	switch mode pump
IMO	internal main oscillator	SOIC	small-outline integrated circuit
I/O	input/output	SPI	serial peripheral interface
IrDA	infrared data association	SRAM	static random access memory
ISSP	in-system serial programming	SROM	supervisory read only memory
LCD	liquid crystal display	SSOP	shrink small-outline package
LED	light-emitting diode	TQFP	thin quad flat pack
LPC	low power comparator	UART	universal asynchronous reciever / transmitter
LVD	low voltage detect	USB	universal serial bus
MAC	multiply-accumulate	WDT	watchdog timer
MCU	microcontroller unit	XRES	external reset

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29X66,CY8C27X43, CY8C24X94, CY8C24X23, CY8C24X23A,CY8C22X13, CY8C21X34, CY8C21X34B, CY8C21X23,CY7C64215, CY7C603XX, CY8CNP1XX, and CYWUSB6953 PSoC(R) Programmable System-on-chip Technical Reference Manual (TRM) (001-14463)

PSoC[®] 1 - *Reading and Writing Flash* – *AN2015* (001-40459)

Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845 available at http://www.cypress.com.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
Flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .

Glossary (continued)

microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.				
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.				
modulator	A device that imposes a signal on a carrier.				
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data. 				
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.				
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all t digits of the binary data either always even (even parity) or always odd (odd parity).				
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.				
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.				
port	A group of pins, usually eight.				
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of hardware reset.				
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.				
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.				
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand				
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new da can be written in.				
register	A storage device with a specific capacity, such as a bit or byte.				
reset	A means of bringing a system back to a know state. See hardware reset and software reset.				
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cann be written in.				
serial	1. Pertaining to a process in which all events occur one after the other.				
	Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.				
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.				

Document History Page

Revision	ECN	Origin of Change	Submission Date	Description of Change
**	127087	New Silicon.	7/01/2003	New document (Revision **).
*A	128780	Engineering and NWJ	7/29/2003	New electrical spec additions, fix of Core Architecture links, corrections to some text, tables, drawings, and format.
*В	128992	NWJ	8/14/2003	Interrupt controller table fixed, refinements to Electrical Spec section and Register chapter.
*C	129283	NWJ	8/28/2003	Significant changes to the Electrical Specifications section.
*D	129442	NWJ	9/09/2003	Changes made to Electrical Spec section. Added 20/28-Lead SOIC packages and pinouts.
*E	130129	NWJ	10/13/2003	Revised document for Silicon Revision A.
*F	130651	NWJ	10/28/2003	Refinements to Electrical Specification section and I2C chapter.
*G	131298	NWJ	11/18/2003	Revisions to GDI, RDI, and Digital Block chapters. Revisions to AC Digital Block Spec and miscellaneous register changes.
*Н	229416	SFV	See ECN	New data sheet format and organization. Reference the PSoC Programmable System-on-Chip Technical Reference Manual for additional information. Title change.
*	247529	SFV	See ECN	Added Silicon B information to this data sheet.
*J	355555	HMT	See ECN	Add DS standards, update device table, swap 48-pin SSOP 45 and 46, add Reflow Peak Temp. table. Add new color and logo. Re-add pinout ISSP notation. Add URL to preferred dimensions for mounting MLF packages. Update Transmitter and Receiver AC Digital Block Electrical Specifications.
*K	523233	HMT	See ECN	Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add new Dev. Tool section. Add CY8C20x34 to PSoC Device Characteristics table. Add OCD pinout and package diagram. Add ISSP note to pinout tables. Update package diagram revisions. Update typical and recommended Storage Temperature per industrial specs. Update CY branding and QFN convention. Update copyright and trademarks.
*L	2545030	YARA	07/29/2008	Added note to DC Analog Reference Specification table and Ordering Information.
*M	2696188	DPT / PYRS	04/22/2009	Changed title from "CY8C27143, CY8C27243, CY8C27443, CY8C27543, and CY8C27643 PSoC Mixed Signal Array Final data sheet" to "CY8C27143, CY8C27243, CY8C27443, CY8C27543, CY8C27643 PSoC® Programmable System-on-Chip™". Updated data sheet template. Added 48-Pin QFN (Sawn) package outline diagram and Ordering information details for CY8C27643-24LTXI and CY8C27643-24LTXIT parts
*N	2762501	МАХК	09/11/2009	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified T _{WRITE} specification. Replaced T _{RAMP} (time) specification with SR _{POWER_UP} (slew rate) specification. Added note [9] to Flash Endurance specification. Added I _{OH} , I _{OL} , DCILO, F32K_U, T _{POWERUP} , T _{ERASEALL} , T _{PROGRAM_HOT} , and T _{PROGRAM_COLD} specifications.
*0	2811860	ECU	11/20/2009	Added Contents page. In the Ordering Information table, added 48 Sawn QFN (LTXI) to the Silicon B parts. Updated 28-Pin package drawing (51-85014)

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
cypress.com/go/memory
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2003-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12012 Rev. AB

Revised September 19, 2014

Page 69 of 69

PSoC Designer[™] and Programmable System-on-Chip[™] are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.