

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128d4-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device. This oscillator can be selected as the clock source for the RTC.

9.3.2 32.768kHz Calibrated Internal Oscillator

This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz output.

9.3.3 32.768kHz Crystal Oscillator

A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.

9.3.4 0.4 - 16MHz Crystal Oscillator

This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.

9.3.5 2MHz Run-time Calibrated Internal Oscillator

The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.

9.3.6 32MHz Run-time Calibrated Internal Oscillator

The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz.

9.3.7 External Clock Sources

The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator. XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a 32.768kHz crystal oscillator.

9.3.8 PLL with 1x-31x Multiplication Factor

The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a userselectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output frequencies from all clock sources.

22. USART

22.1 Features

- Two identical USART peripherals
- Full-duplex operation
- Asynchronous or synchronous operation
 - Synchronous clock rates up to 1/2 of the device clock frequency
 - Asynchronous clock rates up to 1/8 of the device clock frequency
- Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
 - Fractional baud rate generator
 - Can generate desired baud rate from any system clock frequency
 - No need for external oscillator with certain frequencies
- Built-in error detection and correction schemes
 - Odd or even parity generation and parity check
 - Data overrun and framing error detection
 - Noise filtering includes false start bit detection and digital low-pass filter
- Separate interrupts for
 - Transmit complete
 - Transmit data register empty
 - Receive complete
- Multiprocessor communication mode
 - Addressing scheme to address a specific devices on a multidevice bus
 - Enable unaddressed devices to automatically ignore all frames
- Master SPI mode
 - Double buffered operation
 - Operation up to 1/2 of the peripheral clock frequency
- IRCOM module for IrDA compliant pulse modulation/demodulation

22.2 Overview

The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial communication module. The USART supports full-duplex communication and asynchronous and synchronous operation. The USART can be configured to operate in SPI master mode and used for SPI communication.

Communication is frame based, and the frame format can be customized to support a wide range of standards. The USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can also be enabled.

The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency to achieve a required baud rate. It also supports external clock input in synchronous slave operation.

When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes. The registers are used in both modes, but their functionality differs for some control settings.

An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and demodulation for baud rates up to 115.2kbps.

PORTC and PORTD each has one USART. Notation of these peripherals are USARTC0 and USARTD0 respectively.

28.2 Alternate Pin Functions

The tables below show the primary/default function for each pin on a port in the first column, the pin number in the second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that enable and use the alternate pin functions.

For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the first table where this apply.

PORT A	PIN#	INTERRUPT	ADCA POS/GAINPOS	ADCA NEG	ADCA GAINNEG	ACAPOS	ACANEG	ACAOUT	REFA
GND	38								
AVCC	39								
PA0	40	SYNC	ADC0	ADC0		AC0	AC0		AREF
PA1	41	SYNC	ADC1	ADC1		AC1	AC1		
PA2	42	SYNC/ASYNC	ADC2	ADC2		AC2			
PA3	43	SYNC	ADC3	ADC3		AC3	AC3		
PA4	44	SYNC	ADC4		ADC4	AC4			
PA5	1	SYNC	ADC5		ADC5	AC5	AC5		
PA6	2	SYNC	ADC6		ADC6	AC6			
PA7	3	SYNC	ADC7		ADC7		AC7	AC0OUT	

Table 28-1. Port A - Alternate Functions

Table 28-2. Port B - Alternate Functions

PORT B	PIN#	INTERRUPT	ADCAPOS/GAINPOS	REFB
PB0	4	SYNC	ADC8	AREF
PB1	5	SYNC	ADC9	
PB2	6	SYNC/ASYNC	ADC10	
PB3	7	SYNC	ADC11	

PORT E	PIN #	INTERRUPT	TCE0	TWIE
vcc	31			
PE2	32	SYNC/ASYNC	0000	
PE3	33	SYNC	OC0D	

Table 28-6. Port F - Alternate Functions

PORT R	PIN #	INTERRUPT	PDI	XTAL	TOSC ⁽¹⁾
PDI	34		PDI_DATA		
RESET	35		PDI_CLOCK		
PRO	36	SYNC		XTAL2	TOSC2
PR1	37	SYNC		XTAL1	TOSC1

Note: 1. TOSC pins can optionally be moved to PE2/PE3

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks
SPM	Z+	Store Program Memory and Post-Increment by 2	(RAMPZ:Z) Z	← ←	R1:R0, Z + 2	None	-
IN	Rd, A	In From I/O Location	Rd	←	I/O(A)	None	1
OUT	A, Rr	Out To I/O Location	I/O(A)	←	Rr	None	1
PUSH	Rr	Push Register on Stack	STACK	←	Rr	None	1 ⁽¹⁾
POP	Rd	Pop Register from Stack	Rd	←	STACK	None	2 ⁽¹⁾
ХСН	Z, Rd	Exchange RAM location	Temp Rd (Z)	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	Rd, (Z), Temp	None	2
LAS	Z, Rd	Load and Set RAM location	Temp Rd (Z)	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	Rd, (Z), Temp v (Z)	None	2
LAC	Z, Rd	Load and Clear RAM location	Temp Rd (Z)	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	Rd, (Z), (\$FFh – Rd) ● (Z)	None	2
LAT	Z, Rd	Load and Toggle RAM location	Temp Rd (Z)	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	Rd, (Z), Temp ⊕ (Z)	None	2
	1	Bit and b	bit-test instructions			1	L
LSL	Rd	Logical Shift Left	Rd(n+1) Rd(0) C	← ← ←	Rd(n), 0, Rd(7)	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	Rd(n) Rd(7) C	← ← ←	Rd(n+1), 0, Rd(0)	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0) Rd(n+1) C	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	C, Rd(n), Rd(7)	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	Rd(7) Rd(n) C	$\begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \end{array}$	C, Rd(n+1), Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n)	←	Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)	\leftrightarrow	Rd(74)	None	1
BSET	s	Flag Set	SREG(s)	←	1	SREG(s)	1
BCLR	S	Flag Clear	SREG(s)	←	0	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	I/O(A, b)	~	1	None	1
СВІ	A, b	Clear Bit in I/O Register	I/O(A, b)	←	0	None	1
BST	Rr, b	Bit Store from Register to T	Т	~	Rr(b)	Т	1
BLD	Rd, b	Bit load from T to Register	Rd(b)	←	Т	None	1
SEC		Set Carry	С	←	1	С	1
CLC		Clear Carry	С	←	0	С	1
SEN		Set Negative Flag	N	←	1	Ν	1
CLN		Clear Negative Flag	Ν	←	0	Ν	1
SEZ		Set Zero Flag	Z	~	1	Z	1
CLZ		Clear Zero Flag	Z	~	0	Z	1
SEI		Global Interrupt Enable	I	←	1	I	1
CLI		Global Interrupt Disable	I	\leftarrow	0	1	1

32.2.4 Wake-up Time from Sleep Modes

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
		External 2MHz clock		2.0		
	Wake-up time from idle,	32.768kHz internal oscillator		120		
	mode	2MHz internal oscillator		2.0		
		32MHz internal oscillator		0.2		
^L wakeup	Wake-up time from power-save and power-down mode	External 2MHz clock		5.0		μο
		32.768kHz internal oscillator		320		
		2MHz internal oscillator		9.0		
		32MHz internal oscillator		5.0		

Table 32-34. Device Wake-u	p Time from Slee	p Modes with Various S	ystem Clock Sources

Note: 1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-9. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

Figure 32-9. Wake-up Time Definition

32.2.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification.

Table 32-35. I/O Pin Characteristics

Symbol	Parameter	Con	dition	Min.	Тур.	Max.	Units
I _{OH} ⁽¹⁾ / I _{OL} ⁽²⁾	I/O pin source/sink current			-20		20	mA
V	High level input voltage	V _{CC} = 2.4 - 3.6V		0.7*Vcc		V _{CC} +0.5	
VIH	nightever input voltage	V _{CC} = 1.6 - 2.4V		0.8*V _{CC}		V _{CC} +0.5	
V	High level input voltage Low level input voltage High level output voltage	V _{CC} = 2.4- 3.6V		-0.5		0.3*V _{CC}	
۷IL	Low level input voltage	V _{CC} = 1.6 - 2.4V		-0.5		0.2*V _{CC}	
		V _{CC} = 3.3V	I _{OH} = -4mA	2.6	2.9		V
V _{OH}	High level output voltage	V _{CC} = 3.0V	I _{OH} = -3mA	2.1	2.7		v
		V _{CC} = 1.8V	I _{OH} = -1mA	1.4	1.6		
		V _{CC} = 3.3V	I _{OL} = 8mA		0.4	0.76	
V _{OL}	Low level output voltage	V _{CC} = 3.0V	I _{OL} = 5mA		0.3	0.64	
		V _{CC} = 1.8V	I _{OL} = 3mA		0.2	0.46	
I _{IN}	Input leakage current I/O pin	T = 25°C			<0.01	1	μA
R _P	Pull/buss keeper resistor				25		kΩ

Notes:

1. The sum of all I_{OH} for PORTA and PORTB must not exceed 100mA. The sum of all I_{OH} for PORTC, PORTD, PORTE must for each port not exceed 200mA. The sum of all I_{OH} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.

The sum of all I_{OL} for PORTC, PORTD PORTF must not exceed 100mA. The sum of all I_{OL} for PORTC, PORTD, PORTE must for each port not exceed 200mA. The sum of all I_{OL} for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I_{OL} for pins PF[0-5] on PORTF, PORTR and PDI must not exceed 100mA. 2.

Table 32-66. Accuracy Characteristics

Symbol	Parameter		Condition ⁽²⁾	Min.	Тур.	Max.	Units
RES	Resolution	Programmab	le to 8 or 12 bit	8	12	12	Bits
		EOkono	$V_{\rm CC}$ -1.0V < $V_{\rm REF}$ < $V_{\rm CC}$ -0.6V		±1.2	±3	
INII (1)	Integral per linearity	50KSp5	All V _{REF}		±1.5	±4	
	Integral non-inteanty	200kana	$V_{\rm CC}$ -1.0V < $V_{\rm REF}$ < $V_{\rm CC}$ -0.6V		±1.0	±3	lsb
		2008505	All V _{REF}	Min. Typ. Max. U 8 12 12 12 E \prime_{CC} -0.6V ± 1.2 ± 3 ± 1.2 ± 3 μ \prime_{CC} -0.6V ± 1.5 ± 4 μ μ \prime_{CC} -0.6V -1 m m m ι_{CC} -1 m m m ι_{CC} 10 m m m ι_{CC} ι_{CC} ι_{CC} m m			
DNL ⁽¹⁾	Differential non-linearity	gu	aranteed monotonic		<±0.8	<±1	
	Offset error				-1		mV
		Temperature drift			<0.01		mV/K
		Operating vo	ltage drift		<0.6		mV/V
			External reference		-1		
		Differential	AV _{CC} /1.6		10		m\/
	Coin orror	mode	AV _{CC} /2.0		8		IIIV
	Gainenoi		Bandgap		±5		
		Temperature	drift		<0.02		mV/K
		Operating vo	ltage drift		<0.5		mV/V
	Noise	Differential m 200ksps, V _{CC}	ode, shorted input ₂ = 3.6V, Clk _{PER} = 16MHz		0.4		mV rms

Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external V_{REF} is used.

32.3.15 Two-Wire Interface Characteristics

Table 32-85 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 32-21.

Table 32-85. Two-wire Interface Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{IH}	Input high voltage		0.7*V _{CC}		V _{CC} +0.5	
V _{IL}	Input low voltage		-0.5		0.3*V _{CC}	V
V _{hys}	Hysteresis of Schmitt Trigger Inputs		0.05*V _{CC} ⁽¹⁾			V
V _{OL}	Output low voltage	3mA, sink current	0		0.4	
t _r	Rise time for both SDA and SCL		20+0.1C _b ⁽¹⁾⁽²⁾		300	
t _{of}	Output fall time from V_{IHmin} to V_{ILmax}	$10pF < C_b < 400pF^{(2)}$	20+0.1C _b ⁽¹⁾⁽²⁾		250	ns
t _{SP}	Spikes suppressed by input filter		0		50	
I _I	Input current for each I/O pin	0.1V _{CC} < V _I < 0.9V _{CC}	-10		10	μA
CI	Capacitance for each I/O pin				10	pF
f _{SCL}	SCL clock frequency	f _{PER} ⁽³⁾ >max(10f _{SCL} , 250kHz)	0		400	kHz
Р	Value of null up register	$f_{SCL} \leq 100 kHz$	$V_{CC} - 0.4V$		$\frac{100ns}{C_b}$	0
ГХр		f _{SCL} > 100kHz	3 <i>mA</i>		$\frac{300ns}{C_b}$	52

Table 32-95. Accuracy Characteristics

Symbol	Parameter		Condition ⁽²⁾	Min.	Тур.	Max.	Units
RES	Resolution	Programmab	le to 8 or 12 bit	8	12	12	Bits
		FOkana	$V_{\rm CC}$ -1.0V < $V_{\rm REF}$ < $V_{\rm CC}$ -0.6V		±1.2	±2	
INII (1)	Integral populingarity	JUKSPS	All V _{REF}		±1.5	±3	
	Integral non-intearity	$ \begin{array}{ c c } \hline \mbox{Vice} \m$	lsb				
		2008505	All V _{REF}	Min. Typ. Max. Max. 8 12 12 12 \pm \pm 1.2 \pm 2 \pm 1.5 \pm 3 \pm \pm 1.0 \pm 2 \pm 1.0 \pm 2 \pm \pm 1.5 \pm 3 \pm 1.0 \pm 2 \pm \pm 1.0 \pm 2 \pm 1.5 \pm 3 \pm \pm 1.5 \pm 3 \pm 1.5 \pm 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 -1			
DNL ⁽¹⁾	Differential non-linearity	gu	aranteed monotonic		<±0.8	<±1	
	Offset error Temper				-1		mV
		Temperature drift			<0.01		mV/K
		Operating vo	Itage drift		<0.6		mV/V
			External reference		-1		
		Differential	AV _{CC} /1.6		10		m\/
	Gain arrar	Temperature drift Operating voltag	AV _{CC} /2.0		8		IIIV
	Gainento		Bandgap		±5		
		Temperature	drift		<0.02		mV/K
		Operating vo	Itage drift		<0.5		mV/V
	Noise	Differential m 200ksps, V _{CC}	ode, shorted input ₂ = 3.6V, Clk _{PER} = 16MHz		0.4		mV rms

Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external V_{REF} is used.

Figure 33-59. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage $V_{CC} = 3.0V$

Figure 33-60. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage $V_{CC} = 3.3V$

33.3.1.5 Standby Mode Supply Current

Figure 33-177. Standby Supply Current vs. V_{CC}

Figure 33-197. DNL Error vs. External V_{REF} T = 25 °C, V_{CC} = 3.6V, external reference

Figure 33-198. DNL Error vs. Sample rate $T = 25 \, ^{\circ}C$, $V_{cc} = 2.7V$, $V_{REF} = 1.0V$ external

33.3.6 Internal 1.0V Reference Characteristics

33.3.7 BOD Characteristics

Figure 33-218. BOD Thresholds vs. Temperature

Figure 33-256. Idle Mode Current vs. V_{CC} f_{SYS} = 32MHz internal oscillator

Figure 33-255. Idle Mode Supply Current vs. V_{cc}

33.4.1.3 Power-down Mode Supply Current

Figure 33-258. Power-down Mode Supply Current vs. V_{CC} All functions disabled

Figure 33-265. I/O Pin Pull-up Resistor Current vs. Input Voltage $V_{cc} = 3.3V$

33.4.2.2 Output Voltage vs. Sink/Source Current

Figure 33-266. I/O Pin Output Voltage vs. Source Current

Figure 33-271. I/O Pin Output Voltage vs. Sink Current $V_{cc} = 3.0V$

Figure 33-272. I/O Pin Output Voltage vs. Sink Current $V_{cc} = 3.3V$

34.2 ATxmega64D4

34.2.1 Rev. D

• Temperature sensor not calibrated

1. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented.

Problem fix/Workaround

None.

34.2.2 Rev. B/C

Not sampled.

34.2.3 Rev. A

- ADC may have missing codes in SE unsigned mode at low temp and low $V_{\mbox{\scriptsize CC}}$
- Temperature sensor not calibrated

1. ADC may have missing codes in SE unsigned mode at low temp and low V_{cc}

The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.

Problem fix/Workaround

Use the ADC in SE signed mode.

2. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented. **Problem fix/Workaround** None.

34.3 ATxmega128D4

34.3.1 Rev. A

• Temperature sensor not calibrated

1. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented.

Problem fix/Workaround

None.