

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-VFBGA
Supplier Device Package	49-VFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega32d4-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. VFBGA Pinout

	1	2	3	4	5	6	7
Α	PA3	AVCC	GND	PR1	PR0	PDI	PE3
В	PA4	PA1	PA0	GND	RESET/PDI_CLK	PE2	VCC
С	PA5	PA2	PA6	PA7	GND	PE1	GND
D	PB1	PB2	PB3	PB0	GND	PD7	PE0
E	GND	GND	PC3	GND	PD4	PD5	PD6
F	VCC	PC0	PC4	PC6	PD0	PD1	PD3
G	PC1	PC2	PC5	PC7	GND	VCC	PD2

18. Hi-Res – High Resolution Extension

18.1 Features

- Increases waveform generator resolution up to 8x (three bits)
- Supports frequency, single-slope PWM, and dual-slope PWM generation
- Supports the AWeX when this is used for the same timer/counter

18.2 Overview

The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (Clk_{PER4}). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There is one hi-res extension that can be enabled for each timer/counter on PORTC. The notation of this is HIRESC.

32.1.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics

Table 32-25.	External 16MHz Cr	ystal Oscillator and	XOSC Characteristics
--------------	-------------------	----------------------	-----------------------------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			FRQRANGE=0		0		
	Cycle to cycle jitter	XUSCPWR=0	FRQRANGE=1, 2, or 3		0		
		XOSCPWR=1			0		20
			FRQRANGE=0		0		115
	Long term jitter	XUSCFWR-0	FRQRANGE=1, 2, or 3		0		
		XOSCPWR=1			0		
	Fraguaday array		FRQRANGE=0		0.03		
		XOSCPWR=0	FRQRANGE=1		0.03		
	Frequency end		FRQRANGE=2 or 3		0.03		
		XOSCPWR=1			0.003		0/_
			FRQRANGE=0		50		70
	Duty avela	XOSCPWR=0	FRQRANGE=1		50		
	Duty cycle		FRQRANGE=2 or 3		50		
		XOSCPWR=1			50		
		XOSCPWR=0, FRQRANGE=0	0.4MHz resonator, CL=100pF		44k		
			1MHz crystal, CL=20pF		67k		
			2MHz crystal, CL=20pF		67k		
		XOSCPWR=0	2MHz crystal		82k		
		FRQRANGE=1,	8MHz crystal		1500		
		CL=20pF	9MHz crystal		1500		
		XOSCPWR=0	8MHz crystal		2700		
R _Q	Negative impedance	FRQRANGE=2,	9MHz crystal		2700		Ω
		CL=20pF	12MHz crystal		1000		
		XOSCPWR=0	9MHz crystal		3600		
		FRQRANGE=3,	12MHz crystal		1300		
		CL=20pr	16MHz crystal		590		
		XOSCPWR=1	9MHz crystal		390		
		FRQRANGE=0,	12MHz crystal		50		
		CL=20pF	16MHz crystal		10		

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		XOSCPWR=1	9MHz crystal		1500		
		FRQRANGE=1,	12MHz crystal		650		
		CL=20pF	16MHz crystal		270		
R _Q	Negative impedance	XOSCPWR=1,	12MHz crystal		1000		Ω
		CL=20pF	16MHz crystal		440		
		XOSCPWR=1,	12MHz crystal		1300		
		CL=20pF	16MHz crystal		590		
	ESR	SF = safety factor				min(R _Q)/SF	kΩ
		XOSCPWR=0, FRQRANGE=0	0.4MHz resonator, CL=100pF		1.0		
		XOSCPWR=0, FRQRANGE=1	2MHz crystal, CL=20pF		2.6		
	Start-up time	XOSCPWR=0, FRQRANGE=2	8MHz crystal, CL=20pF		0.8		ms
		XOSCPWR=0, FRQRANGE=3	12MHz crystal, CL=20pF		1.0		
		XOSCPWR=1, FRQRANGE=3	16MHz crystal, CL=20pF		1.4		
C _{XTAL1}	Parasitic capacitance XTAL1 pin				5.9		
C _{XTAL2}	Parasitic capacitance XTAL2 pin				8.3		pF
C _{LOAD}	Parasitic capacitance load				3.5		

32.1.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ESR/R1		Crystal load capacitance 6.5pF			60	kO
	Recommended crystal equivalent series resistance (ESR)	Crystal load capacitance 9.0pF			35	N22
		Crystal load capacitance 12pF			28	
C _{TOSC1}	Parasitic capacitance TOSC1 pin			3.5		ъĘ
C _{TOSC2}	Parasitic capacitance TOSC2 pin			3.5		рг
	Recommended safety factor	capacitance load matched to crystal specification	3			

Note: See Figure 32-4 for definition.

Figure 32-4. TOSC Input Capacitance

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

32.1.14 SPI Characteristics

32.4.3 Current Consumption

Table 32-89	Current	Consumption	for	Active	Mode	and	Sleep	Modes
-------------	---------	-------------	-----	--------	------	-----	-------	-------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			V _{CC} = 1.8V		55		
		JZKHZ, EXI. UK	V _{CC} = 3.0V		135		
			V _{CC} = 1.8V		255		μA
	Active power consumption ⁽¹⁾	IMHZ, EXI. CIK	V _{CC} = 3.0V		535		
			V _{CC} = 1.8V		460	600	
			(-2.0)		1.0	1.4	m (
		32MHz, Ext. Clk	$v_{\rm CC} = 3.0v$		9.5	12	ШA
			V _{CC} = 1.8V		2.9		
			V _{CC} = 3.0V		3.9		
			V _{CC} = 1.8V		62		
	Idle power consumption ⁽¹⁾		V _{CC} = 3.0V		118		μΑ
			V _{CC} = 1.8V		125	225	
			1/-2.01/		240	350	
		32MHz, Ext. Clk	V _{CC} - 5.0V		3.8	5.5	mA
I _{CC}		T = 25°C			0.1	1.0	
		T = 85°C	V _{CC} = 3.0V		1.5	4.5	
		T = 105°C			0.1	8.6	
	Power-down power consumption	WDT and sampled BOD enabled, $T = 25^{\circ}C$			1.4	3.0	
		WDT and sampled BOD enabled, T = 85° C	V _{CC} = 3.0V		2.8	6.0	•
		WDT and sampled BOD enabled, T = $105^{\circ}C$	_		1.4	8.8	uΔ
		RTC from ULP clock, WDT and	V _{CC} = 1.8V		1.2		μ
		sampled BOD enabled, T = 25°C	V _{CC} = 3.0V		1.5		
	Power-save power	RTC from 1.024kHz low power	V _{CC} = 1.8V		0.6	2.0	
	consumption ⁽²⁾	32.768kHz TOSC, T = 25°C	V _{CC} = 3.0V		0.7	2.0	
		RTC from low power 32.768kHz	V _{CC} = 1.8V		0.8	3.0	
		TOSC, $T = 25^{\circ}C$	V _{CC} = 3.0V		1.0	3.0	
	Reset power consumption	Current through RESET pin substracted	V _{CC} = 3.0V		300		

Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

32.4.6 ADC Characteristics

Table 32-93.	Power	Supply,	Reference	and	Input	Range
--------------	-------	---------	-----------	-----	-------	-------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference voltage		1.0		AV _{CC} - 0.6	v
R _{in}	Input resistance	Switched		4.0		kΩ
C _{sample}	Input capacitance	Switched		4.4		pF
R _{AREF}	Reference input resistance	(leakage only)		>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7.0		pF
V _{IN}	Input range		-0.1		AV _{CC} +0.1	
	Conversion range	Differential mode, Vinp - Vinn	-V _{REF}		V _{REF}	V
	Conversion range	Single ended unsigned mode, Vinp	-ΔV		V_{REF} - ΔV	
ΔV	Fixed offset voltage			190		lsb

Table 32-94. Clock and Timing

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
Clk _{ADC}	ADC clock frequency	Maximum is 1/4 of Peripheral clock frequency	100		1400	kHz	
		Measuring internal signals	100		125		
		Current limitation (CURRLIMIT) off	14		200		
f	Sample rate	CURRLIMIT = LOW	14		150	kono	
TADC	Sample rate	CURRLIMIT = MEDIUM	14		100	къръ	
		CURRLIMIT = HIGH			50		
	Sampling time	1/2 Clk _{ADC} cycle	0.25		5	μs	
	Conversion time (latency)	(RES+2)/2+GAIN RES = 8 or 12, GAIN = 0, 1, 2 or 3	5	7	10	Clk _{ADC} cycles	
	Start-up time	ADC clock cycles		12	24		
	ADC pottling time	After changing reference or input mode		7	7	Clk _{ADC} cycles	
	ADC settling time	After ADC flush		1	1		

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
t _{delay}	Propagation delay	V _{CC} = 3.0V, T= 85°C	mode = HS		30	90	
			<u></u>		30		115
	64-Level voltage scaler	Integral non-linearity (INL)			0.3	0.5	lsb

32.4.8 Bandgap and Internal 1.0V Reference Characteristics

Table 32-98. Bandgap and Internal 1.0V Reference Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC	1 Clk _{PER} + 2.5µs		δµs	110
		As input voltage to ADC and AC		1.5		μο
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference	T= 85°C, after calibration	0.99	1.0	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.5		%

32.4.9 Brownout Detection Characteristics

Table 32-99. Brownout Detection Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{BOT}	BOD level 0 falling V _{CC}		1.60	1.62	1.72	V
	BOD level 1 falling V _{CC}			1.8		
	BOD level 2 falling V _{CC}			2.0		
	BOD level 3 falling V_{CC}			2.2		
	BOD level 4 falling V _{CC}			2.4		
	BOD level 5 falling V_{CC}			2.6		
	BOD level 6 falling V _{CC}			2.8		
	BOD level 7 falling V _{CC}			3.0		
t _{BOD}	Detection time	Continuous mode		0.4		
		Sampled mode		1000		μδ
V _{HYST}	Hysteresis			1.2		%

33.2 ATxmega32D4

33.2.1 Current Consumption

33.2.1.1 Active Mode Supply Current

Figure 33-81. Active Supply Current vs. Frequency $f_{SYS} = 1 - 32MHz$ external clock, $T = 25^{\circ}C$

XMEGA D4 [DATASHEET] 184 Atmel-8135S-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet-09/2016

Figure 33-104. I/O Pin Output Voltage vs. Source Current $V_{CC} = 3.0V$

T = 25 °C, V_{CC} = 3.6V, ADC sample rate = 200ksps

Figure 33-150. 32MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

Figure 33-189. I/O Pin Output Voltage vs. Sink Current

33.3.2.3 Thresholds and Hysteresis

Figure 33-289. Noise vs. V_{REF} T = 25 °C, V_{CC} = 3.6V, ADC sampling speed = 500ksps

33.4.6 Internal 1.0V Reference Characteristics

Figure 33-301. ADC/DAC Internal 1.0V Reference vs. Temperature

33.4.7 BOD Characteristics

Figure 33-309. Reset Pin Input Threshold Voltage vs. V_{CC} V_{IL} - Reset pin read as "0"

33.4.9 Power-on Reset Characteristics

34. Errata

34.1 ATxmega16D4 / ATxmega32D4

34.1.1 Rev. I

• Temperature sensor not calibrated

1. Temperature sensor not calibrated

Temperature sensor factory calibration not implemented.

Problem fix/Workaround

None.

34.1.2 Rev. F/G/H

Not sampled.

34.1.3 Rev. E

- ADC propagation delay is not correct when gain is used
- CRC fails for Range CRC when end address is the last word address of a flash section
- AWeX fault protection restore is not done correct in Pattern Generation Mode
- Erroneous interrupt when using Timer/Counter with QDEC
- AC system status flags are only valid if AC-system is enabled
- Temperature sensor not calibrated

1. ADC propagation delay is not correct when gain is used

The propagation delay will increase by only one ADC clock cycle for all gain setting.

Problem fix/Workaround

None.

2. CRC fails for Range CRC when end address is the last word address of a flash section

If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If application table read lock is enabled, the range CRC cannot end on the last address before the application table.

Problem fix/Workaround

Ensure that the end address used in Range CRC does not end at the last address before a section with read lock enabled. Instead, use the dedicated CRC commands for complete applications sections.

3. AWeX fault protection restore is not done correct in Pattern Generation Mode

When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode (CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation Mode (PGM), OUTOVEN should instead have been restored according to the DTILSBUF register.

35.9 8135K - 06/2012

1. ATxmega64D4-CU is added in "Ordering Information" on page 2

35.10 8135J - 12/10

- 1. Datasheet status changed to complete: Preliminary removed from the front page.
- 2. Updated all tables in the "Electrical Characteristics" on page 64.
- 3. Replaced Table 31-11 on page 64.
- 4. Replaced Table 31-17 on page 65 and added the figure "TOSC input capacitance" on page 66.
- 5. Updated ERRATA ADC (ADC has increased INL for some operating conditions).
- 6. Updated ERRATA "rev. A/B" on page 90 with TWIE (TWIE is not available).
- 7. Updated the last page with Atmel new Brand Style Guide.

35.11 81351 - 10/10

1. Updated Table 31-1 on page 58.

35.12 8135H - 09/10

1. Updated "Errata" on page 90.

35.13 8135G - 08/10

- 1. Updated the Footnote 3 of "Ordering Information" on page 2.
- 2. All references to CRC removed. Updated Figure 3-1 on page 7.
- 3. Updated "Features" on page 26. Event Channel 0 output on port pin 7.
- 4. Updated "DC Characteristics" on page 58 by adding Icc for Flash/EEPROM Programming.
- 5. Added AVCC in "ADC Characteristics" on page 62.
- 6. Updated Start up time in "ADC Characteristics" on page 62.
- 7. Updated and fixed typo in "Errata" section.

35.14 8135F - 02/10

1. Added "PDI Speed" on page 89.

Atmel Enabling Unlimited Possibilities

www.atmel.com

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200

© 2015 Atmel Corporation. / Rev.: Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet_09/2016.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make to specifications and products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.