

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC0/ANC0/T1CKI ⁽¹⁾ /T3CKI ⁽¹⁾ /T3G ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN111/10CC0/SOSCO	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 external digital clock input.
	T3G ⁽¹⁾	TTL/ST	—	Timer3 gate input.
	SMTWIN1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
10001/50501	ANC1	AN	—	ADC Channel C1 input.
	SMTSIG1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) signal input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	—	Interrupt-on-change input.
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	—	ADC Channel C2 input.
	T5CKI ⁽¹⁾	TTL/ST	—	Timer5 external digital clock input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	ANC3	AN	—	ADC Channel C3 input.
	SCL1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C clock input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	—	Interrupt-on-change input.
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output Legend: AN = Analog input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels TTL = TTL compatible input ST l²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options

2: as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 3-4: PIC16(L)F18875 MEMORY MAP BANK 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	ADRESL	10Ch	ADCNT	18Ch	SSP1BUF	20Ch	TMR1L	28Ch	T2TMR	30Ch	CCPR1L	38Ch	PWM6DCL
00Dh	PORTB	08Dh	ADRESH	10Dh	ADRPT	18Dh	SSP1ADD	20Dh	TMR1H	28Dh	T2PR	30Dh	CCPR1H	38Dh	PWM6DCH
00Eh	PORTC	08Eh	ADPREVL	10Eh	ADLTHL	18Eh	SSP1MSK	20Eh	T1CON	28Eh	T2CON	30Eh	CCP1CON	38Eh	PWM6CON
00Fh	PORTD	08Fh	ADPREVH	10Fh	ADLTHH	18Fh	SSP1STAT	20Fh	T1GCON	28Fh	T2HLT	30Fh	CCP1CAP	38Fh	—
010h	PORTE	090h	ADACCL	110h	ADUTHL	190h	SSP1CON1	210h	T1GATE	290h	T2CLKCON	310h	CCPR2L	390h	PWM7DCL
011h	TRISA	091h	ADACCH	111h	ADUTHH	191h	SSP1CON2	211h	T1CLK	291h	T2RST	311h	CCPR2H	391h	PWM7DCH
012h	TRISB	092h	—	112h	ADSTPTL	192h	SSP1CON3	212h	TMR3L	292h	T4TMR	312h	CCP2CON	392h	PWM7CON
013h	TRISC	093h	ADCON0	113h	ADSTPTH	193h		213h	TMR3H	293h	T4PR	313h	CCP2CAP	393h	_
014h	TRISD	094h	ADCON1	114h	ADFLTRL	194h	—	214h	T3CON	294h	T4CON	314h	CCPR3L	394h	
015h	TRISE	095h	ADCON2	115h	ADFLTRH	195h	_	215h	T3GCON	295h	T4HLT	315h	CCPR3H	395h	_
016h	LATA	096h	ADCON3	116h	ADERRL	196h	SSP2BUF	216h	T3GATE	296h	T4CLKCON	316h	CCP3CON	396h	_
017h	LATB	097h	ADSTAT	117h	ADERRH	197h	SSP2ADD	217h	T3CLK	297h	T4RST	317h	CCP3CAP	397h	_
018h	LATC	098h	ADCLK	118h	—	198h	SSP2MSK	218h	TMR5L	298h	T6TMR	318h	CCPR4L	398h	
019h	LATD	099h	ADACT	119h	RC1REG	199h	SSP2STAT	219h	TMR5H	299h	T6PR	319h	CCPR4H	399h	—
01Ah	LATE	09Ah	ADREF	11Ah	TX1REG	19Ah	SSP2CON1	21Ah	T5CON	29Ah	T6CON	31Ah	CCP4CON	39Ah	—
01Bh	_	09Bh	ADCAP	11Bh	SP1BRGL	19Bh	SSP2CON2	21Bh	T5GCON	29Bh	T6HLT	31Bh	CCP4CAP	39Bh	—
01Ch	TMR0L	09Ch	ADPRE	11Ch	SP1BRGH	19Ch	SSP2CON3	21Ch	T5GATE	29Ch	T6CLKCON	31Ch	CCPR5L	39Ch	—
01Dh	TMR0H	09Dh	ADACQ	11Dh	RC1STA	19Dh	—	21Dh	T5CLK	29Dh	T6RST	31Dh	CCPR5H	39Dh	—
01Eh	T0CON0	09Eh	ADPCH	11Eh	TX1STA	19Eh	—	21Eh	CCPTMRS0	29Eh	—	31Eh	CCP5CON	39Eh	—
01Fh	T0CON1	09Fh	—	11Fh	BAUD1CON	19Fh	—	21Fh	CCPTMRS1	29Fh	—	31Fh	CCP5CAP	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
			General												
			Purpose												
	General		Register												
	Purpose		80 Bytes												
	Register 06 Bytos														
	50 Dyles	0EFh		16Fh		1FFh		26Fh		2FFh		36Fh		3EFh	
		0F0h	Common RAM	170h	Common RAM	1F0h	Common RAM	270h	Common RAM	2F0h	Common RAM	370h	Common RAM	3F0h	Common RAM
			(Accesses												
07Fh		0FFh	70h – 7Fh)	17Fh	70h – 7Fh)	1FFh	70h – 7Fh)	27Fh	70h – 7Fh)	2FFh	70h – 7Fh)	37Fh	70h – 7Fh)	3FFh	70h – 7Fh)

Legend:

= Unimplemented data memory locations, read as '0'.

IADLL	5-15. SI L			ILCI01011				NOLD)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 13												
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
68Ch	CWG3CLKCON		_	_	_	_	_	_	_	CS	0	0
68Dh	CWG3ISM		—	_	—	—		IS<3	:0>		0000	0000
68Eh	CWG3DBR		—	_		•	D	BR<5:0>			00 0000	00 0000
68Fh	CWG3DBF		—	_			D	BF<5:0>			00 0000	00 0000
690h	CWG3CON0		EN	LD	—	—	— MODE<2:0>					00000
691h	CWG3CON1		—	_	IN	-	POLD	POLC	POLB	POLA	x- 0000	u- 0000
692h	CWG3AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA		_	—	0001 01	0001 01
693h	CWG3AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
694h	CWG3STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
695h	—	—				U	nimplemented				—	—
696h	_	—				U	nimplemented				-	—
697h	_	—				U	nimplemented				-	—
698h	—	-				U	nimplemented				-	—
699h	_	—				U	nimplemented				-	—
69Ah	-	—				U	nimplemented				-	—
69Bh	-	—				U	nimplemented				-	—
69Ch	-	—		Unimplemented — —							—	
69Dh	-	—		Unimplemented — —								
69Eh	—	—				U	nimplemented				—	—
69Fh	_	_				U	nimplemented				_	_

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Note 1:

Unimplemented, read as '1'. 2:

Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 14												
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
70Ch	PIR0		—	—	TMR0IF	IOCIF	—	-	-	INTF	000	000
70Dh	PIR1		OSFIF	CSWIF	—	_	—	-	ADTIF	ADIF	0000	0000
70Eh	PIR2		—	ZCDIF	—	_	—	-	C2IF	C1IF	-000	-000
70Fh	PIR3		-	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	00 0000	00 0000
710h	PIR4		-	-	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	00 0000	00 0000
711h	PIR5		CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	TMR5GIF	TMR3GIF	TMR1GIF	0000 -000	0000 -000
712h	PIR6		_	_	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	0 0000	0 0000
713h	PIR7		SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	0000 -000	0000 -000
714h	PIR8		_	_	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	00 0000	00 0000
715h	_	—				U	nimplemented				_	—
716h	PIE0		_	—	TMR0IE	IOCIE	—	—	—	INTE	000	000
717h	PIE1		OSFIE	CSWIE	_	_	_	—	ADTIE	ADIE	0000	0000
718h	PIE2		_	ZCDIE	_	_	_	—	C2IE	C1IE	-000	-000
719h	PIE3		_	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	00 0000	00 0000
71Ah	PIE4		_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	00 0000	00 0000
71Bh	PIE5		CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	TMR5GIE	TMR3GIE	TMR1GIE	0000 -000	0000 -000
71Ch	PIE6		—	—	_	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	0 0000	0 0000
71Dh	PIE7		SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	0000 -000	0000 -000
71Eh	PIE8		—	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	00 0000	00 0000
71Fh	_	_				U	nimplemented	•			_	_

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

5.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
WDT Window Violation	0000h	0 uuuu	uu00 uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1	—	I	NOSC<2:0>			NDIV<3:0>				
OSCCON2	—	(COSC<2:0>			CDIV<3:0>				
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	123	
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	109	
STATUS	—	_	_	TO	PD	Z	DC	С	38	
WDTCON0	—	—			WDTPS<4:0)>		SEN	166	
WDTCON1	—	V	VDTCS<2:0>		—	•	166			
WDTPSL			PSCNT<7:0>					166		
WDTPSH		PSCNT<15:8>						166		
WDTTMR			WDTTM	R<4:0>		STATE	PSCNT	<17:16>	166	

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—		FCMEN		CSWEN	_	—	CLKOUTEN	00
CONFIGT	7:0	_	F	RSTOSC<2:0	>	_	F	EXTOSC<2:0	>	93

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

REGISTER 12-20: CCDPB: CURRENT CONTROLLED DRIVE POSITIVE PORTB REGISTER

	10/0/0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCDPB7 (CCDPB6	CCDPB5	CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDPB<7:0>: RB<7:0> Current Controlled Drive Positive Control bits

1 = Current-controlled source enabled⁽¹⁾

0 = Current-controlled source disabled

Note 1: If CCDPBy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-21: CCDNB: CURRENT CONTROLLED DRIVE NEGATIVE PORTB REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDNB7 | CCDNB6 | CCDNB5 | CCDNB4 | CCDNB3 | CCDNB2 | CCDNB1 | CCDNB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDNB<7:0>: RB<7:0> Current Controlled Drive Negative Control bits

1 = Current-controlled source enabled⁽¹⁾

0 = Current-controlled source disabled

Note 1: If CCDNBy is set when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

12.12 PORTE Registers (PIC16(L)F18855)

12.12.1 DATA REGISTER

PORTE is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISE (Register 12-42). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize PORTE.

Reading the PORTE register (Register 12-42) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

12.12.2 INPUT THRESHOLD CONTROL

The INLVLE register (Register 12-44) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

12.12.3 WEAK PULL-UP CONTROL

The WPUE register (Register 12-43) controls the individual weak pull-ups for each port pin.

12.12.4 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

12.12.5 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

19.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F18855/75 devices contain two PWM modules (PWM6 and PWM7). These modules are essentially the same as the CCP modules without the Capture or Compare functionality.

Note: The PWM6 and PWM7 modules are two instances of the same PWM module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the PWM module number (which should be substituted with 6 or 7 during code development). For example, the control register is generically described in this chapter as PWMxCON, but the actual device registers are PWM6CON and PWM7CON. Similarly, the PWMxEN bit represents the PWM6EN and PWM7EN bits.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the 'on' state (pulse width), and the low portion of the signal is considered the 'off' state. The term duty cycle describes the proportion of the 'on' time to the 'off' time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and, in turn, the power that is applied to the load.

Figure 19-1 shows a typical waveform of the PWM signal.

Note 1: Timer dependent on PWMTMRS register settings.

25.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DAC1OUT pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

EQUATION 25-1: DAC OUTPUT VOLTAGE

25.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 25-1:

 $V_{OUT} = \left((V_{SOURCE+}) - (V_{SOURCE-}) \times \frac{DAC1R\langle 4:0 \rangle}{2^5} \right) + (V_{SOURCE-})$ $V_{SOURCE+} = V_{DD} \quad or \quad V_{REF+} \quad or \; FVR$ $V_{SOURCE-} = V_{SS} \quad or \; V_{REF-}$

25.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 37-15.

25.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1/2 pins by setting the DAC1OE1/2 bits of the DAC1CON0 register, respectively. Selecting the DAC reference voltage for output on the DAC1OUT1/2 pins automatically overrides the digital output buffer and digital input threshold detector functions, disables the weak pull-up, and disables the current-controlled drive function of that pin. Reading the DAC1OUT1/2 pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to the DAC1OUT1/2 pins. Figure 25-2 shows an example buffering technique.

REGISTER 26-4: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTEI

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	_	_		MDCHS	S<3:0> ⁽¹⁾	
bit 7			•				bit 0
							,
Legend:							
R = Readat	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkı	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7-4	Unimplen	nented: Read as '	0'				
bit 3-0	MDCHS<	3:0> Modulator Da	ta High Carrie	er Selection bits	_s (1)		
	1111 = 1	C4 out			-		
	1110 = L	C3 out					
	1101 = L	C2 out					
	1100 = L	C1 out					
	1011 = N	ICO output					
	1010 = P	WM7 out					
	1001 = P	WM6_out					
	1000 = C	CP5 output (PWN	/ Output mod	e only)			
	0111 = C	CP4 output (PWN	/ Output mod	e only)			
	0110 = C	CP3 output (PWN	/ Output mod	e only)			
	0101 = C	CP2 output (PWN	/I Output mod	e only)			
	0100 = C	CP1 output (PWN	/ Output mod	e only)			
	0011 = F	eference clock m	odule signal (CLKR)			
	0010 = H	IFINTOSC					
	0001 = F	OSC					
	0000 = P	in selected by MD	CARHPPS				

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ON ⁽¹⁾	CKPS<2:0>			OUTPS<3:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are		
bit 7	ON: Timerx (1 = Timerx i 0 = Timerx i	Dn bit s on s off: all counte	rs and state m	nachines are res	set			
bit 6-4	CKPS<2:0>: 111 = 1:128 110 = 1:64 F 101 = 1:32 F 100 = 1:16 F 011 = 1:8 Pr 010 = 1:4 Pr 001 = 1:2 Pr 000 = 1:1 Pr	Timer2-type Cl Prescaler Prescaler Prescaler Prescaler escaler escaler escaler escaler escaler escaler	ock Prescale	Select bits				
bit 3-0	OUTPS<3:0> 1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 P 0111 = 1:8 P 0110 = 1:7 P 0101 = 1:6 P 0100 = 1:5 P 0011 = 1:4 P 0010 = 1:3 P 0001 = 1:2 P 0000 = 1:1 P	Timerx Outpu Postscaler	t Postscaler S	Select bits				

REGISTER 29-2: TxCON: TIMER2/4/6 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 29.5 "Operation Examples".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN		OUT	T FMT MODE<3:0>					
CCP2CON	EN	_	OUT	FMT		MODE	=<3:0>		452
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<1:0> C1TSEL<1:0>			455	
CCPTMRS1	—	—	P7TSE	L<1:0>	P6TSE	P6TSEL<1:0> C5TSEL<1:0>			455
INTCON	GIE	PEIE	—	—	_		—	INTEDG	134
PIE1	OSFIE	CSWIE	—	—	_	—	ADTIE	ADIE	136
PIR1	OSFIF	CSWIF	—	—	_	—	ADTIF	ADIF	145
PR2	Timer2 Module Period Register								
TMR2	Holding Register for the 8-bit TMR2 Register								425*
T2CON	ON		CKPS<2:0>	PS<2:0> OUTPS<3:0>					
T2CLKCON	—	_	_	— CS<3:0>					
T2RST	—		—	RSEL<4:0>					
T2HLT	PSYNC	CKPOL	CKSYNC	CKSYNC — MODE<3:0>					
PR4	Timer4 Mod	ule Period Re	gister						425*
TMR4	Holding Reg	ister for the 8	-bit TMR4 Re	gister					425*
T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		441
T4CLKCON	_	_	_	_	_		CS<3:0>		440
T4RST	—	_	—			RSEL<4:0>			443
T4HLT	PSYNC	CKPOL	CKSYNC	CKSYNC — MODE<3:0>					
PR6	Timer6 Module Period Register								425*
TMR6	Holding Reg	ister for the 8	-bit TMR6 Re	gister					425*
T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		441
T6CLKCON	—	—	—	—	—		CS<2:0>		440
T6RST	—	—	—			RSEL<4:0>			443
T6HLT	PSYNC	CKPOL	CKSYNC	—	442				

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

31.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 31-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

31.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

31.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

31.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overrightarrow{ACK} = 0$) and is set when the slave does not Acknowledge ($\overrightarrow{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

31.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPx-CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

33.1.1.5 TSR Status

The TRMT bit of the TX1STA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TX1STA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TX1STA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.

33.1.1.7 Asynchronous Transmission Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 33-3: ASYNCHRONOUS TRANSMISSION

33.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 33.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 33.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RC1STA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Pins	N	28					
Pitch	е		0.40 BSC				
Overall Height	A	0.45 0.50 0.55					
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.127 REF					
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	2.55 2.65 2.75					
Overall Length	D	4.00 BSC					
Exposed Pad Length	D2	2.55 2.65 2.75					
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30 0.40 0.50					
Contact-to-Exposed Pad	tact-to-Exposed Pad K 0.20 -			-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	er of Pins N 44					
Pitch	е		0.65 BSC			
Overall Height	А	0.80 0.90 1.00				
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2 6.25 6.45 6			6.60		
Overall Length D 8.00 BS			8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2