

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-11: PIC16(L)F18875 MEMORY MAP, BANK 30

FOCh — F40h CCDNA F64h F00h — F44h CCDPA F65h F00h — F42h — F66h F00h RA0PPS F44h WPUB F66h F10h RA0PPS F44h WPUB F66h F11h RA1PPS F44h ODCONB F66h F12h RA2PPS F44h ODCONB F66h F13h RA3PPS F44h ODCON F66h F14h RA4PPS F44h IOCEP F6ch F15h RASPPS F44h IOCEN F66h F16h RA8PPS F44h IOCEN F66h F16h RA8PPS F44h IOCEN F66h F16h R84PPS F46h IOCEN F66h F16h R83PPS F46h IOCCN F16h F16h R83PPS F56h IOCCN F16h F16h R63PPS F56h		Bank 30		Bank 30	
F0Dh	F0Ch	_	F40h	CCDNA	F64h
F0Eh	F0Dh	—	F41h	CCDPA	F65h
F0Fh	F0Eh	—	F42h	_	F66h
F10h RA0PPS F44h WPUB F68h F11h RA1PPS F46h SLRCONB F68h F12h RA2PPS F46h SLRCONB F68h F13h RA3PPS F47h INLVLB F68h F14h RA4PPS F48h IOCBP F66h F16h RASPPS F48h IOCBF F68h F16h RASPPS F44h IOCBF F68h F17h RA7PPS F48h IOCBF F68h F16h RASPPS F44h IOCBF F68h F17h RA7PPS F44h IOCBF F68h F18h R80PPS F44h IOCBF F68h F18h R80PPS F44h WPUC F64h F18h R80PPS F54h WPUC IOCCN F16h R8PPS F54h WPUC IOCCP F16h R8PPS F55h IOCCP INLVLC F16h R8PPS F56h IOCCN ISCONC F22h RC3PPS F56h <	F0Fh	_	F43h	ANSELB	F67h
F11h RA1PPS F45h ODCONB F69h F12h RA2PPS F46h SLRCONB F6Ah F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA5PPS F48h IOCBF F6Dh F16h RA6PPS F44h IOCBF F6Dh F17h RA7PPS F48h CCDB F6Dh F18h R80PPS F44h IOCBF F6Eh F18h R80PPS F44h IOCBF F6Eh F18h R80PPS F44h MSELC F6Fh F18h R83PPS F44h WPUC F6Fh F18h R83PPS F44h WPUC F6Fh F16h R83PPS F55h OCCONC F57h F18h R83PPS F55h IOCCP F16h R83PPS F55h IOCCP F20h RC3PPS F55h IOCCP F22h RC3PPS F56h CDNC F22h	F10h	RA0PPS	F44h	WPUB	F68h
F12h RA2PPS F46h SLRCONB F6Ah F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA6PPS F44h IOCBF F6Eh F17h RA7PPS F48h IOCBF F6Eh F17h RA7PPS F48h IOCBF F6Eh F18h RB0PPS F4Ch CCDPB F6Fh F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4th MUUC F10h RB3PPS F5th SLRCONC F10h RB3PPS F5th SLRCONC F12h RC3PPS F5th SLRCONC F12h RC3PPS F5th IOCCP F20h RC3PPS F5th IOCCP F22h RC3PPS F5th IOCCP F22h RC3PPS F5th - F22h RC3PPS F5th - F22h RC3PPS F5th - F22h RC3PPS	F11h	RA1PPS	F45h	ODCONB	F69h
F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA5PPS F48h IOCBN F6Dh F16h RA6PPS F48h IOCBF F6Eh F17h RA7PPS F48h CCDNB F6Eh F18h RB0PPS F4Ch CCDPB F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB3PPS F4Fh WPUC F10h RB3PPS F51h SLRCONC F18h RB7PS F53h IOCCP F10h RB3PPS F54h IOCCN F11h RB7PS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F58h IOCCP F22h RC2PPS F58h IOCCP F22h RC3PPS F58h IOCCP F22h RC3PPS F58h IOCCN F23h RC3PPS F58h IOCCN </td <td>F12h</td> <td>RA2PPS</td> <td>F46h</td> <td>SLRCONB</td> <td>F6Ah</td>	F12h	RA2PPS	F46h	SLRCONB	F6Ah
F14h RA4PPS F48h IOCBP F6Ch F15h RA5PPS F49h IOCBN F6Dh F16h RA6PPS F4Ah IOCBF F6Eh F17h RA7PPS F4Bh CCDNB F6Eh F18h R80PPS F4Ch CCDPB F6Eh F18h R80PPS F4Ch CCDPB F6Eh F18h R80PPS F4Eh ANSELC F6Eh F18h R80PPS F4Eh ANSELC F6Eh F18h R80PPS F61h SLRCONC F6Eh F16h R80PPS F52h INLVLC F1Eh F16h R80PPS F53h IOCCP F12h RC0PPS F53h IOCCP F20h RC0PPS F56h IOCCP F22h RC2PPS F56h IOCCP F22h RC3PPS F57h CCDPC F22h RC6PPS F58h F22h RC6PPS F58h ODCOND F22h RC6PPS F58h ODCOND	F13h	RA3PPS	F47h	INLVLB	F6Bh
F15h RASPPS F49h IOCEN F6Dh F18h RA6PPS F4Ah IOCEF F6Eh F17h RA7PPS F4Bh CCDNB F6Eh F18h RB0PPS F4Ch CCDPB F18h RB0PPS F4Ch CCDPB F18h RB1PPS F4Dh — F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB3PPS F51h SLRCONC F10h RB3PPS F51h IOCCP F20h RC0PPS F54h IOCCN F22h RC2PPS F56h CDPC F22h RC3PPS F58h — F22h RC3PPS F56h SLRCOND F28h	F14h	RA4PPS	F48h	IOCBP	F6Ch
F16h RA6PPS F4Ah IOCBF F6Eh F17h RA7PPS F4Bh CCDNB F6Fh F18h RB0PPS F4Ch CCDPB F18h RB1PPS F4Dh F14h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB4PS F50h ODCONC F10h RB4PS F50h ODCONC F10h RB5PS F51h SLRCONC F10h RB5PS F52h INLVLC F16h RB6PPS F52h IOCCP F10h RB5PS F53h IOCCP F10h RB5PS F53h IOCCP F12h RC0PPS F53h IOCCF F22h RC3PPS F58h F23h RC3PPS F58h F24h RC4PPS F58h F25h RC5PPS F58h ODCOND F28h RC5PPS F58h F38h ANSELA F56h </td <td>F15h</td> <td>RA5PPS</td> <td>F49h</td> <td>IOCBN</td> <td>F6Dh</td>	F15h	RA5PPS	F49h	IOCBN	F6Dh
F17h RA7PPS F4Bh CCDNB F6Fh F18h R80PPS F4Ch CCDPB F19h RB1PPS F4Ch	F16h	RA6PPS	F4Ah	IOCBF	F6Eh
F18h R80PPS F4Ch CCDPB F19h R81PPS F4Dh	F17h	RA7PPS	F4Bh	CCDNB	F6Fh
F19hRB1PPSF4Dh	F18h	RB0PPS	F4Ch	CCDPB	
F1AhRB2PPSF4EhANSELCF1BhRB3PPSF4FhWPUCF1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PSF53hIOCCPF20hRC0PPSF54hIOCCFF21hRC1PPSF55hIOCCFF22hRC3PPSF55hCCDNCF23hRC3PPSF56hCCDNCF24hRC4PPSF58h-F25hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h-F50hSLRCONDF38hANSELAF5Fh-F38hANSELAF60h-F38hSLRCONAF61hCCDNDF38hSLRCONAF61hCCDNDF38hSLRCONAF63h-F38hSLRCONAF63h-F38hINLVLAF63h-F38hIOCAF-	F19h	RB1PPS	F4Dh	_	
F1BhRB3PPSF4FhWPUCF1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF56hCCDNCF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF58hODCONDF27hRC7PPSF58hODCONDF28h	F1Ah	RB2PPS	F4Eh	ANSELC	
F1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF56hODCONDF27hRC7PPSF58hODCONDF28h	F1Bh	RB3PPS	F4Fh	WPUC	
F1Dh R85PPS F51h SLRCONC F1Eh R86PPS F52h INLVLC F1Fh R87PPS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F55h IOCCF F22h RC2PPS F56h CCDNC F23h RC3PPS F57h CCDPC F24h RC4PPS F58h — F25h RC5PPS F59h ANSELD F26h RC6PPS F56h ODCOND F28h	F1Ch	RB4PPS	F50h	ODCONC	
F1Eh RB6PPS F52h INLVLC F1Fh RB7PS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F55h IOCCF F22h RC2PPS F56h CCDNC F23h RC3PPS F57h CCDPC F24h RC4PPS F58h — F25h RC5PPS F59h ANSELD F26h RC6PPS F58h ODCOND F27h RC7PPS F58h ODCOND F28h	F1Dh	RB5PPS	F51h	SLRCONC	
F1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF66hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h	F1Eh	RB6PPS	F52h	INLVLC	
F20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h—F5ChSLRCONDF38hANSELAF5Fh—F38hANSELAF5Fh—F38hSLRCONAF61hCCDNDF38hSLRCONAF63h—F38hSLRCONAF63h—F38hINLVLAF63h—F38hINLVLAF63h—F38hINLVLAF63h—F38hIOCAPF38hIOCAF-F38hIOCAF-	F1Fh	RB7PPS	F53h	IOCCP	
F21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28hF50hINLVLDF37hF50hINLVLDF37hF56hF38hANSELAF5FhF39hWPUAF60hF38hSLRCONAF61hCCDPDF30hINLVLAF63hF30hIOCAPF36hIOCANF63hF37hIOCAF	F20h	RC0PPS	F54h	IOCCN	
F22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF37hF5DhINLVLDF37hF5DhF38hANSELAF5FhF38hSLRCONAF61hCCDNDF38hSLRCONAF63hF30hIOCAPF33hF32hIOCANF63hF32hIOCAF	F21h	RC1PPS	F55h	IOCCF	
F23hRC3PPSF57hCCDPCF24hRC4PPSF58h-F25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28h-F5ChSLRCONDF37h-F5ChINLVLDF37hANSELAF5Fh-F38hANSELAF5Fh-F38hODCONAF60h-F38hSLRCONAF61hCCDNDF38hSLRCONAF63h-F30hIOCAPF63h-F36hIOCANF63h-F36hIOCANF63h-F37hIOCAF	F22h	RC2PPS	F56h	CCDNC	
F24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28h—F5ChSLRCONDF37h—F5Eh—F37hF5Eh——F38hANSELAF5Fh—F38hODCONAF60h—F38hSLRCONAF62hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h—F32hIOCAPF34hIOCANF34hIOCAFF53h—	F23h	RC3PPS	F57h	CCDPC	
F25hRC5PPSF59hANSELDF26hRC6PPSF50hWPUDF27hRC7PPSF50hODCONDF28h-F50hSLRCONDF37h-F50hINLVLDF37hANSELAF56h-F39hWPUAF60h-F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF30hINLVLAF63h-F30hIOCAPF43hIOCAF	F24h	RC4PPS	F58h	_	
F26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF28h-F5ChF37hF5Ch-F38hANSELAF5Fh-F39hWPUAF60h-F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h-F32hIOCAPF41hCCDNDF32hIOCAFF41hCCDPD	F25h	RC5PPS	F59h	ANSELD	
F27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF28h-F5Ch-F5DhINLVLDF37hF5Eh-F38hANSELAF5FhF39hWPUAF60hF34hODCONAF61hF3BhSLRCONAF62hF3BhSLRCONAF63hF3BhINLVLAF63hF3ChINLVLAF32hIOCAPF3EhIOCAF	F26h	RC6PPS	F5Ah	WPUD	
F28hF5ChSLRCONDF37hF5DhINLVLDF37hF5Eh—F38hANSELAF5Fh—F39hWPUAF60h—F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3thIOCAF	F27h	RC7PPS	F5Bh	ODCOND	
-F5DhINLVLDF37h-F5Eh-F38hANSELAF5Fh-F39hWPUAF60h-F34hODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h-F3DhIOCAPF34hIOCAF	F28h		F5Ch	SLRCOND	
F37hF5EhF38hANSELAF5FhF39hWPUAF60hF3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAPF3FhIOCAF		—	F5Dh	INLVLD	
F38hANSELAF5FhF39hWPUAF60hF3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAP	F37h		F5Eh	_	
F39hWPUAF60h—F3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3EhIOCANF3FhIOCAFF	F38h	ANSELA	F5Fh	_	
F3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3EhIOCANF3FhIOCAF	F39h	WPUA	F60h	_	
F3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAPF3EhIOCANF3FhIOCAF	F3Ah	ODCONA	F61h	CCDND	
F3Ch INLVLA F63h	F3Bh	SLRCONA	F62h	CCDPD	
F3DhIOCAPF3EhIOCANF3FhIOCAF	F3Ch	INLVLA	F63h	_	
F3Eh IOCAN F3Fh IOCAF	F3Dh	IOCAP			
F3Fh IOCAF	F3Eh	IOCAN			
	F3Fh	IOCAF			

-64h	ANSELE
-65h	WPUE
-66h	ODCONE
-67h	SLRCONE
-68h	INLVLE
-69h	IOCEP
6Ah	IOCEN
6Bh	IOCEF
6Ch	CCDNE
6Dh	CCDPE
6Eh	_
-6Fh	—

Bank 30

Legend:

= Unimplemented data memory locations, read as '0'.

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

Rev. 10-000057A

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

3.5.3 DATA EEPROM MEMORY

The EEPROM memory can be read or written through NVMCONx/NVMADRx/NVMDATx the reaister interface (see section Section 10.2 "Data EEPROM Memory"). However, to make access to the EEPROM memory easier, read-only access to the EEPROM contents are also available through indirect addressing by an FSR. When the MSB of the FSR (ex: FSRxH) is set to 0x70, the lower 8-bit address value (in FSRxL) determines the EEPROM location that may be read from (through the INDF register). In other words, the EEPROM address range 0x00-0xFF is mapped into the FSR address space between 0x7000-0x70FF. Writing to the EEPROM cannot be accomplished via the FSR/INDF interface. Reads from the EEPROM through the FSR/INDF interface will require one additional instruction cycle to complete.

3.5.4 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as shown in Table 4-1.

TABLE 4-1:CONFIGURATION WORD
LOCATIONS

Configuration Word	Location
CONFIG1	8007h
CONFIG2	8008h
CONFIG3	8009h
CONFIG4	800Ah
CONFIG5	800Bh

Note:	The DEBUG bit in Configuration Words is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3: WINDOWED WATCHDOG

R = Readable bit P = Program		nable bit	x = Bit is unkr	iown	U = Unimpleme	ented bit, read	
Legend:							
bit 7							bit 0
	WD	TE<1:0>			WDTCPS<4	:0>	
U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		DIL 13					DILO
		hit 10	WDTCCS<2:()>		WDTCWS<2:0	>
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1

			as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Frase

bit 13-11 WDTCCS<2:0>: WDT Input Clock Selector bits

111 = Software Control 110 = Reserved

•

010 = Reserved

001 = WDT reference clock is the MFINTOSC/16 output (31.25 kHz)

000 = WDT reference clock is the 31.0 kHz LFINTOSC (default value)

bit 10-8 WDTCWS<2:0>: WDT Window Select bits

		WDTWS at POR	Softwara	Kovod		
WDTCWS Value		Window delay Percent of time	Window opening Percent of time	control of WDTWS?	access required?	
111	111	n/a	100	Yes	No	
110	111	n/a	100			
101	101	25	75			
100	100	37.5	62.5			
011	011	50	50	No	Yes	
010	010	62.5	37.5			
001	001	75	25			
000	000	87.5	12.5			

bit 7 Unimplemented: Read as '1'

bit 6-5 WDTE<1:0>: WDT Operating mode:

- 11 = WDT enabled regardless of Sleep; SWDTEN is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN ignored
- 01 = WDT enabled/disabled by SWDTEN bit in WDTCON0
- 00 = WDT disabled, SWDTEN is ignored

11.11 Register Definitions: CRC and Scanner Control

REGISTER 11-1: CRCCON0: CRC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R-0	R/W-0/0	U-0	U-0	R/W-0/0	R-0	
EN	CRCGO	BUSY	ACCM	—	—	SHIFTM	FULL	
bit 7				·			bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	EN: CRC Ena	able bit						
	$1 = CRC \mod 1$	lule is released	from Reset					
		sabled and cor	isumes no ope	erating current				
bit 6		C Start bit						
	1 = Start CRC 0 = CRC seria	serial shifter	l off					
bit 5	BUSY: CRC	Busy bit						
	1 = Shifting in	progress or p	ending					
	0 = All valid bits in shifter have been shifted into accumulator and EMPTY = 1							
bit 4	ACCM: Accumulator Mode bit							
	1 = Data is augmented with zeros							
	0 = Data is no	ot augmented v	with zeros					
bit 3-2	Unimplemen	ted: Read as	0′					
bit 1	SHIFTM: Shif	ft Mode bit						
	1 = Shift right	(LSD) MSb)						
hit 0	FILL Data F	Path Full Indica	tor bit					
bit 0	1 = CRCDAT	H/I registers a	re full					
	0 = CRCDAT	H/L registers h	ave shifted the	eir data into the	shifter			
		-						

REGISTER 11-2: CRCCON1: CRC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DLEN<3:0>				PLEN<3:0>			
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set		'0' = Bit is cleared			
bit 7-4	DLEN<3:0>	. Data Length bits			
Denotes the length of the data word -1 (See Example 11-1)					
bit 3-0	bit 3-0 PLEN<3:0>: Polynomial Length bits				
Denotes the length of the polynomial -1 (See Example 11-1)					

REGISTER 12-49: WPUE: WEAK PULL-UP PORTE REGISTER

Legend:							
bit 7							bit 0
_	—	—	—	WPUE3	WPUE2	WPUE1	WPUE0
U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3-0	WPUE<3:0> Weak Pull-up Register bit ⁽¹⁾
	1 = Pull-up enabled
	0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-50: ODCONE: PORTE OPEN-DRAIN CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
	—	—	—	—	ODCE2	ODCE1	ODCE0	
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented:	Read as '0'
------------------------	-------------

bit 2-0 ODCE<2:0>: PORTE Open-Drain Enable bits

- For RE<2:0> pins, respectively
 - 1 = Port pin operates as open-drain drive (sink current only)
 - 0 = Port pin operates as standard push-pull drive (source and sink current)

© 2015-2017 Microchip Technology Inc.

DS40001802D-page 377

PIC16(L)F18855/75

24.8 NCO Control Registers

REGISTER 24-1: NCO1CON: NCO CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
N1EN	—	N1OUT	N1POL	—	—	—	N1PFM	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'		
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	N1EN: NCO1	Enable bit						
	1 = NCO1 mc	dule is enable	d.					
	0 = NCO1 mc	odule is disable	d					
bit 6	Unimplemen	ted: Read as 'o)'					
bit 5	N1OUT: NCO	1 Output bit						
	Displays the c	current output v	alue of the NC	CO1 module.				
bit 4	N1POL: NCC	01 Polarity						
	1 = NCO1 out	tput signal is in	verted					
1.10.4		tput signal is no						
bit 3-1	Unimplemented: Read as '0'							
bit 0	0 N1PFM: NCO1 Pulse Frequency Mode bit							
	1 = NCO1 operates in Pulse Frequency mode							
	0 = NCOT OP	erates in Fixed	Duty Cycle m	oue, aivide by 2	2			

REGISTER 26-4: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTEI

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	_	_		MDCHS	S<3:0> ⁽¹⁾	
bit 7			•				bit 0
							,
Legend:							
R = Readable bit W = Writable bit U = Unimplemente						l as '0'	
u = Bit is ur	nchanged	x = Bit is unkı	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7-4	Unimplen	nented: Read as '	0'				
bit 3-0	MDCHS<	3:0> Modulator Da	ta High Carrie	er Selection bits	_s (1)		
	1111 = 1	C4 out			-		
	1110 = L	C3 out					
	1101 = L	C2 out					
	1100 = L	C1 out					
	1011 = N	ICO output					
	1010 = P	WM7 out					
	1001 = P	WM6_out					
	1000 = C	CP5 output (PWN	/ Output mod	e only)			
	0111 = C	CP4 output (PWN	/ Output mod	e only)			
	0110 = C	CP3 output (PWN	/ Output mod	e only)			
	0101 = C	CP2 output (PWN	/I Output mod	e only)			
	0100 = C	CP1 output (PWN	/ Output mod	e only)			
	0011 = F	eference clock m	odule signal (CLKR)			
	0010 = H	IFINTOSC					
	0001 = F	OSC					
	0000 = P	in selected by MD	CARHPPS				

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

29.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)

FIGURE 29-12:

• Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

PIC16(L)F18855/75

Rev. 10-000203A 4/7/2016 MODE 0b10001 TMRx_clk PRx 5 Instruction⁽¹⁾ BSF (BCF) BSF BSF BCF ON TMRx_ers ، 3 1 2 3 4 5 5 0 2 3 5 TMRx 0 1 2 4 0 1) 4 0 TMRx_postscaled PWM Duty 3 Cycle **PWM Output**

RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

REGISTER 30-1: CCPxCON: CCPx CONTROL REGISTER (CONTINUED)

- bit 3-0
- MODE<3:0>: CCPx Mode Select bits⁽¹⁾
 - 1111 = PWM mode 1110 = Reserved
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = Compare mode: output will pulse 0-1-0; Clears TMR1
 - 1010 = Compare mode: output will pulse 0-1-0
 - 1001 = Compare mode: clear output on compare match
 - 1000 = Compare mode: set output on compare match
 - 0111 = Capture mode: every 16th rising edge of CCPx input
 - 0110 = Capture mode: every 4th rising edge of CCPx input
 - 0101 = Capture mode: every rising edge of CCPx input
 - 0100 = Capture mode: every falling edge of CCPx input
 - 0011 = Capture mode: every edge of CCPx input
 - 0010 = Compare mode: toggle output on match
 - 0001 = Compare mode: toggle output on match; clear TMR1
 - 0000 = Capture/Compare/PWM off (resets CCPx module)
- **Note 1:** All modes will set the CCPxIF bit, and will trigger an ADC conversion if CCPx is selected as the ADC trigger source.

31.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<3:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRISx register) appropriately programmed as follows:

- SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding
 TRIS bit cleared
- SCK (Slave mode) must have corresponding
 TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. The MSSP consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

SPI Master SSPM<3:0> = 00xx SPI Slave SSPM<3:0> = 010x = 1010 SDO SDI Serial Input Buffer Serial Input Buffer (SSPxBUF) (SSPxBUF) SDI SDO Shift Register Shift Register (SSPxSR) (SSPxSR) LSb MSb MSb LSb Serial Clock SCK SCK Slave Select General I/O SS (optional) Processor 1 Processor 2

FIGURE 31-5: SPI MASTER/SLAVE CONNECTION

31.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 31-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

32.6.2 GATED TIMER MODE

Gated Timer mode uses the SMTSIGx input to control whether or not the SMTxTMR will increment. Upon a falling edge of the external signal, the SMTxCPW register will update to the current value of the SMTxTMR. Example waveforms for both repeated and single acquisitions are provided in Figure 32-4 and Figure 32-5.

32.6.5 WINDOWED MEASURE MODE

This mode measures the window duration of the SMTWINx input of the SMT. It begins incrementing the timer on a rising edge of the SMTWINx input and updates the SMTxCPR register with the value of the timer and resets the timer on a second rising edge. See Figure 32-10 and Figure 32-11.

FIGURE 37-3: POR AND POR REARM WITH SLOW RISING VDD

TABLE 37-11:RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	_	μS			
RST02*	Tioz	I/O high-impedance from Reset detection		_	2	μS			
RST03	TWDT	Watchdog Timer Time-out Period		16	_	ms	16 ms Nominal Reset Time		
RST04*	TPWRT	Power-up Timer Period		65	_	ms			
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)		1024	_	Tosc			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.60 2.10	V V V	BORV = 0 BORV = 1 (PIC16F18855/75) BORV = 1 (PIC16LF18855/75)		
RST07	VBORHYS	Brown-out Reset Hysteresis		40	_	mV			
RST08	TBORDC	Brown-out Reset Response Time	_	3	_	μS			
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	2.3	2.45	2.7	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Unit s	Conditions		
AD01	Nr	Resolution	—		10	bit			
AD02	EIL	Integral Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD04	EOFF	Offset Error	—	0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD05	Egn	Gain Error	_	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V			
AD07	VAIN	Full-Scale Range	ADREF-		ADREF+	V			
AD08	Zain	Recommended Impedance of Analog Voltage Source		10		kΩ			
AD09	RVREF	ADC Voltage Reference Ladder Impedance	_	50	_	kΩ	Note 3		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (07/2015)

Initial release of the document.

Revision B (10/2015)

Multiple register and bit name updates. Changed from an Advanced DS to a Preliminary DS.

Added Table 1 and 31-17.

Updated Register 6-7, 12-10, 12-11, 12-14, 12-15, 12-17 through 12-21, 12-25, 12-46, 12-51, 23-3, 23-5, 23-14, 23-22, and 26-3. Updated Section 10.0, 23.5.1, 33.0, 37.1. Updated Table 1-1, 8-1, 23-3, 23-4, 37-3, 37-5, 37-7, 37-8, 37-9, 37-11, 37-12, 37-14.

Revision C (01/2016)

Updated CCIO description of "Constant Current" to "Current Controlled" throughout document. Miscellaneous typos corrected.

Updated Cover page and Figure 27-1. Updated Register 32-6. Updated Table 37-17.

Revision D (4/2017)

Removed Preliminary Status - Added Char Graphs; Updated Figures 6-1, 23-2, 27-1, 28-1, 29-2, 29-3, 29-8, 29-9, 29-10, 29-11, 29-12, 29-13, 32-14, 32-15, 32-18, and 37-10; Registers 4-1, 4-3, 6-3, 8-2, 9-2, 12-2, 12-4, 12-6, 12-12, 12-14, 12-16, 12-32, 12-33, 12-34, 12-35, 12-36, 12-37, 12-43, 12-45, 12-49, 20-9, 23-1, 23-2, 23-3, 23-4, 27-2, 28-1, 28-3, 29-1, 31-4, 31-5, 31-6, 31-7, 34-1, and 34-2; Sections 9.1, 10.4.3, 21.5, 23.1.1, 23.1.4, 23.4.4, 23.5.2, 23.5.3, 29.1, 29.2, 31.6, 32.1.1, 32.6.9, 34.2, and 34.4; Tables 10-2, 20-2, 23-1, 31-3, 36-4, 37-3, 37.5, 37-11 and 37-13.

Added Figure 37-11. Added Section 6.2.2.4 MFINTOSC, 21.5.1 Correction by AC Coupling. Added Section 28.4: Timer1 16-Bit Read/Write Mode.

Updated Instruction Sets MOVWF and NOP.

Removed Figure 37-11.