

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16F18855 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IUCAU	ANA0	AN	—	ADC Channel A0 input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	—	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ /	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCA1	ANA1	AN	—	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	—	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/VREF-/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC1OUT1/IOCA2	ANA2	AN	—	ADC Channel A2 input.
	C1IN0+	AN	—	Comparator positive input.
	C2IN0+	AN	—	Comparator positive input.
	VREF-	AN	—	External ADC and/or DAC negative reference input.
	DAC1OUT1	—	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	—	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/MDCARL ⁽¹⁾ /	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IUCAS	ANA3	AN	—	ADC Channel A3 input.
	C1IN1+	AN	—	Comparator positive input.
	VREF+	AN	—	External ADC and/or DAC positive reference input.
	MDCARL ⁽¹⁾	TTL/ST	—	Modular Carrier input 1.
	IOCA3	TTL/ST	—	Interrupt-on-change input.
RA4/ANA4/MDCARH ⁽¹⁾ /T0CKI ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
CCP5 MOCA4	ANA4	AN	—	ADC Channel A4 input.
	MDCARH ⁽¹⁾	TTL/ST	—	Modular Carrier input 2.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	CCP5 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM5 (default input location for capture function).
	IOCA4	TTL/ST	—	Interrupt-on-change input.
Legend: AN = Analog input or outp	ut CMOS =	CMOS co	mpatible input or	Output OD = Open-Drain CMOS levels l^2C = Schmitt Trigger input with l^2C

TTL = TTL compatible input ST

= Schmitt Trigger input with I²C

HV = High Voltage XTAL = Crystal levels

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps are as shown in Table 3-3 through Table 3-13.

IARLE	3-13: SPE		FUNCTION	REGISTE	RSUMMA	RY BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	6											
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
80Ch	WDTCON0		_	—			PS<4:0>			SEN	dd dddo	dd dddo
80Dh	WDTCON1		—		WDTCS<2:02	>	_		WINDOW<2:0>		-ঀ৾৾ঀ৾৾ঀ -ঀ৾ঀ৾ঀ	-ववव -ववव
80Eh	WDTPSL			•			PSCNT<7:0>	•			0000 0000	0000 0000
80Fh	WDTPSH			PSCNT<7:0>						0000 0000	0000 0000	
810h	WDTTMR		—		WDTTMR<3:0> STATE PSCNT<17:16>				-000 0000	-000 0000		
811h	BORCON		SBOREN	—	—	_	_	—	—	BORRDY	1 q	uu
812h	VREGCON ⁽¹⁾		_	_	—	-	_	—	VREGPM	Reserved	01	01
813h	PCON0		STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 11qq	qqqq qquu
814h	CCDCON		CCDEN	—	_	-	-	—	CCDS	6<1:0>	0xx	0uu
815h	—	_				U	Inimplemented	·			-	_
816h	—	-				U	Inimplemented				-	_
817h	—	-				U	Inimplemented				-	-
818h	-	-				U	Inimplemented				-	_
819h	—	-				U	Inimplemented				-	_
81Ah	NVMADRL					N	IVMADR<7:0>				0000 0000	0000 0000
81Bh	NVMADRH		(2)				NVMADR<1	4:8>			1000 0000	1000 0000
81Ch	NVMDATL					Ν	IVMDAT<7:0>				0000 0000	0000 0000
81Dh	NVMDATH		—	—			NVM	DAT<13:8>			00 0000	00 0000
81Eh	NVMCON1		—	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 g000
81Fh	NVMCON2					N	VMCON2<7:0>				0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as shown in Table 4-1.

TABLE 4-1:CONFIGURATION WORD
LOCATIONS

Configuration Word	Location
CONFIG1	8007h
CONFIG2	8008h
CONFIG3	8009h
CONFIG4	800Ah
CONFIG5	800Bh

Note:	The DEBUG bit in Configuration Words is							
	managed automatically by device							
	development tools including debugger							
	and programmers. For normal device							
	operation, this bit should be maintained as							
	a '1'.							

5.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
WDT Window Violation	0000h	0 uuuu	uu00 uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF
bit 7						·	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	SCANIF: Prog	gram Memory S	Scanner Interr	upt Flag bit			
	1 = The opera 0 = No operat	ation has comp tion is pending	leted (a SCAN or the operation	NGO 1 to 0 tran on is still in pro	nsition has occu paress	ırred)	
bit 6	CRCIF: CRC	Interrupt Flag	pit		9		
	1 = The operation	ation has comp	leted (a BUSY	1 to 0 transiti	on has occurred	d)	
	0 = No operat	tion is pending	or the operation	on is still in pro	ogress		
bit 5	NVMIF: Non-	Volatile Memor	y (NVM) Interi	upt Flag bit			
	1 = The reque 0 = NVM inter	ested NVM ope rrupt not assert	ration has cor ed	npleted			
bit 4	NCO1IF: Num	nerically Contro	lled Oscillator	· (NCO) Interru	upt Flag bit		
	1 = The NCO 0 = No CLC4	has rolled ove interrupt event	r has occurred				
bit 3	Unimplemen	ted: Read as ')'				
bit 2	CWG3IF: CW	/G3 Interrupt FI	ag bit				
	1 = CWG3 ha	s gone into shi	utdown				
	0 = CWG3 is	operating norm	ally, or interru	pt cleared			
bit 1	CWG2IF: CW	/G2 Interrupt Fl	ag bit				
	1 = CWG2 ha	s gone into shu	utdown	at closed			
h # 0	0 = CWG3 IS	operating norm	ally, or interru	pt cleared			
DIEU		G I Interrupt Fl	ag Dit Itdown				
	0 = CWG1 is	operating norm	allv. or interru	pt cleared			
			- ,,				
Note: Inte	rrupt flag bits a	re set when an	interrupt				

REGISTER 7-19: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of								
	its corresponding enable bit or the Global								
	Enable bit, GIE, of the INTCON register.								
	User software should ensure the								
	appropriate interrupt flag bits are clear								
	prior to enabling an interrupt.								

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRA7 | SLRA6 | SLRA5 | SLRA4 | SLRA3 | SLRA2 | SLRA1 | SLRA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

REGISTER 12-8: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRA<7:0>:** PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

0 = Port pin slews at maximum rate

REGISTER 12-9: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

		Remappable to Pins of PORTx									
Output Signal Name	RxyPPS Register	F	PIC16F1885	5		P	PIC16F1887	75			
	Value	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD			
ADGRDG	0x25	•		•	•		•				
ADGRDA	0x24	•		•	•		•				
CWG3D	0x23	•		•	•			•			
CWG3C	0x22	•		•	•			•			
CWG3B	0x21	•		•	•						
CWG3A	0x20		•	•		•	•				
CWG2D	0x1F		•	•		•		•			
CWG2C	0x1E		•	•		•		•			
CWG2B	0x1D		•	•		•		•			
CWG2A	0x1C		•	•		•	•				
DSM	0x1B	•		•	•			•			
CLKR	0x1A		•	•		•	•				
NCO	0x19	•		•	•			•			
TMR0	0x18		•	•		•	•				
SDO2/SDA2	0x17		•	•		•		•			
SCK2/SCL2	0x16		•	•		•		•			
SD01/SDA1	0x15		•	•		•	•				
SCK1/SCL1	0x14		•	•		•	•				
C2OUT	0x13	•		•	•						
C1OUT	0x12	•		•	•			•			
DT	0x11		•	•		•	•				
TX/CK	0x10		•	•		•	•				
PWM7OUT	0x0F	•		•	•		•				
PWM6OUT	0x0E	٠		•	•			•			
CCP5	0x0D	•		•	•						
CCP4	0x0C		•	•		•		•			
CCP3	0x0B		•	•		•		•			
CCP2	0x0A		•	•		•	•				
CCP1	0x09		•	•		•	•				
CWG1D	0x08		•	•		•		•			
CWG1C	0x07		•	•		•		•			

Т

Note: When RxyPPS = 0x00, port pin Rxy output value is controlled by the respective LATxy bit.

•

•

•

٠

•

•

•

٠

•

•

•

•

٠

•

•

•

•

•

٠

•

•

CWG1B

CWG1A

CLC4OUT

CLC3OUT

CLC2OUT

CLC10UT

0x06

0x05

0x04

0x03

0x02

0x01

•

•

•

PORTE

•

•

٠

15.0 INTERRUPT-ON-CHANGE

All pins on all ports (except PORTD on PIC16F18875 devices) can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 15-1 is a block diagram of the IOC module.

15.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

15.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

15.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIR0 register reflects the status of all IOCxF bits.

15.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 15-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

15.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

FIGURE 20-3: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

PIC16(L)F18855/75

20.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 20.9 "CWG Steering Mode"**.

20.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWGxCLKCON register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA3 ANSA2		ANSA0	205	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221	
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	207	
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	222	
MDCON0	MDEN	_	MDOUT	MDOPOL	_	—	_	MDBIT	397	
MDCON1	—	-	MDCHPOL	MDCHSYNC	CHSYNC —		MDCLPOL	MDCLSYNC	398	
MDSRC		_	—	MDMS<4:0>						
MDCARH	—	-	—	—		MDC	:HS<3:0>		400	
MDCARL	—	_	—	—		MDC	CLS<3:0>		401	
MDCARLPPS		_			ME	CARLPPS<	4:0>		249	
MDCARHPPS	—	-	—		MD	CARHPPS<	:4:0>		249	
MDSRCPPS	—	-	—		M	DSRCPPS<4	4:0>		249	
RxyPPS		_		RxyPPS<4:0>						
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	4 SLRA3 SLRA2 SLRA1 SLRA0					
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	222	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220	

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

31.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 31-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 31-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 31-2 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 31-1:

 $FCLOCK = \frac{FOSC}{(SSP1ADD + 1)(4)}$

FIGURE 31-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 31-2: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 37-4 to ensure the system is designed to support IOL requirements.

32.5.3 GO STATUS

Timer run status is determined by the TS bit of the SMTxSTAT register, and will be delayed in time by synchronizer delays in non-Counter modes.

32.6 Modes of Operation

The modes of operation are summarized in Table 32-1. The following sections provide detailed descriptions, examples of how the modes can be used. Note that all waveforms assume WPOL/SPOL/CPOL = 0. When WPOL/SPOL/CPOL = 1, all SMTSIGx, SMTWINx and SMT clock signals will have a polarity opposite to that indicated. For all modes, the REPEAT bit controls whether the acquisition is repeated or single. When REPEAT = 0 (Single Acquisition mode), the timer will stop incrementing and the SMTxGO bit will be reset upon the completion of an acquisition. Otherwise, the timer will continue and allow for continued acquisitions to overwrite the previous ones until the timer is stopped in software.

32.6.1 TIMER MODE

Timer mode is the simplest mode of operation where the SMTxTMR is used as a 16/24-bit timer. No data acquisition takes place in this mode. The timer increments as long as the SMTxGO bit has been set by software. No SMT window or SMT signal events affect the SMTxGO bit. Everything is synchronized to the SMT clock source. When the timer experiences a period match (SMTxTMR = SMTxPR), SMTxTMR is reset and the period match interrupt trips. See Figure 32-3.

MODE	Mode of Operation	Synchronous Operation	Reference
0000	Timer	Yes	Section 32.6.1 "Timer Mode"
0001	Gated Timer	Yes	Section 32.6.2 "Gated Timer Mode"
0010	Period and Duty Cycle Acquisition	Yes	Section 32.6.3 "Period and Duty-Cycle Mode"
0011	High and Low Time Measurement	Yes	Section 32.6.4 "High and Low Measure Mode"
0100	Windowed Measurement	Yes	Section 32.6.5 "Windowed Measure Mode"
0101	Gated Windowed Measurement	Yes	Section 32.6.6 "Gated Window Measure Mode"
0110	Time of Flight	Yes	Section 32.6.7 "Time of Flight Measure Mode"
0111	Capture	Yes	Section 32.6.8 "Capture Mode"
1000	Counter	No	Section 32.6.9 "Counter Mode"
1001	Gated Counter	No	Section 32.6.10 "Gated Counter Mode"
1010	Windowed Counter	No	Section 32.6.11 "Windowed Counter Mode"
1011-1111	Reserved	—	—

TABLE 32-1: MODES OF OPERATION

32.6.7 TIME OF FLIGHT MEASURE MODE

This mode measures the time interval between a rising edge on the SMTWINx input and a rising edge on the SMTx_signal input, beginning to increment the timer upon observing a rising edge on the SMTWINx input, while updating the SMTxCPR register and resetting the timer upon observing a rising edge on the SMTx_signal input. In the event of two SMTWINx rising edges without an SMTx_signal rising edge, it will update the SMTxCPW register with the current value of the timer and reset the timer value. See Figure 32-14 and Figure 32-15.

TABLE 37-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)												
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
	VIL	Input Low Voltage										
		I/O PORT:										
D300		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$					
D301			—	_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$					
D302		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$					
D303		with I ² C levels	—	—	0.3 VDD	V						
D304		with SMBus levels	—	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$					
D305		MCLR	—	—	0.2 Vdd	V						
	Vih	Input High Voltage										
		I/O PORT:										
D320		with TTL buffer	2.0	_	-	V	$4.5V \leq V\text{DD} \leq 5.5V$					
D321			0.25 VDD +	_	-	V	$1.8V \leq V\text{DD} \leq 4.5V$					
			0.8									
D322		with Schmitt Trigger buffer	0.8 Vdd	—	-	V	$2.0V \le VDD \le 5.5V$					
D323		with I ² C levels	0.7 VDD	—	—	V						
D324		with SMBus levels	2.1	—	-	V	$2.7V \le VDD \le 5.5V$					
D325		MCLR	0.7 Vdd	—	—	V						
	lı∟	Input Leakage Current ⁽¹⁾										
D340		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C					
D341			_	± 5	± 1000	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 125°C					
D342		MCLR ⁽²⁾	_	± 50	± 200	nA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance, } 85^{\circ}{\sf C} \end{split}$					
	IPUR	Weak Pull-up Current										
D350			25	120	200	μΑ	VDD = 3.0V, VPIN = VSS					
	Vol	Output Low Voltage				•	·					
D360		I/O ports	—	—	0.6	V	IOL = 10.0mA, VDD = 3.0V					
	Voн	Output High Voltage	•									
D370		I/O ports	Vdd - 0.7	—	_	V	ЮН = 6.0 mA, VDD = 3.0V					
D380	Сю	All I/O pins	—	5	50	pF						
		· · · · · · · · · · · · · · · · · · ·				•						

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined <u>as current</u> sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 37-8: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)

orandard Operating Conditions (Liness otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32		MHz	(Note 2)	
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency		1 2		MHz MHz		
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency		500		kHz		
OS53*	FLFOSC	Internal LFINTOSC Frequency	_	31	_	kHz	(Note 3)	
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μS μS	VREGPM = 0 VREGPM = 1	
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time	_	0.2	_	ms		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

 See Figure 37-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature, Figure 38-90 HFINTOSC Typical Frequency Error, PIC16LF18855/75 Only and Figure 38-91 HFINTOSC Typical Frequency Error, PIC16F18855/75 Only.

3: See Figure 38-19 LFINTOSC Frequency, PIC16LF18855/75 Only and Figure 38-20: LFINTOSC Frequency, PIC16F18855/75 only.

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0	
AD21			1	2	6	μS	Using FRC as the ADC clock source ADOCS = 1	
AD22	TCNV	Conversion Time		11+3Tcy	—	Tad	Set of GO/DONE bit to Clear of GO/DONE bit	
AD23	TACQ	Acquisition Time	_	2	_	μs		
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_	_	_	μS	Fosc-based clock source FRC-based clock source	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

