

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

IABLE	3-13: 3PE	CIAL	FUNCTION	REGISTE	R SUIVIIVIA	KI DANNS (NUED)						
Address	Name	PIC16(L)F18855 PIC16(L)F18855	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets		
Banks 1	Banks 17													
					CPU	CORE REGISTER	S; see Table 3-2	for specifics						
88Ch	CPUDOZE		IDLEN	DOZEN	ROI	DOE	—	DOZE2	DOZE1	DOZE0	0000 -000	0000 -000		
88Dh	OSCCON1		—		NOSC<2:0>			NDIV<	<3:0>		-ddd 0000	-ddd 0000		
88Eh	OSCCON2		—		COSC<2:0>		CDIV<3:0>			-বর্বর বর্ববর	-বর্বর বর্ববর			
88Fh	OSCCON3		CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	-	—	00-0 0	00-0 0		
890h	OSCSTAT		EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	-	PLLR	d0-0 dd-0	d0-0 dd-0		
891h	OSCEN		EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	—	00-0 00	00-0 00		
892h	OSCTUNE		_	—			HF	TUN<5:0>			10 0000	10 0000		
893h	OSCFRQ		—	—	_	_	—		HFFRQ<2:0>		ववव	qqq		
894h	—	—				U	nimplemented	•			—	—		
895h	CLKRCON		CLKREN	—	—	CLKRD	C<1:0>		CLKRDIV<2:0>		01 0000	01 0000		
896h	CLKRCLK		—	—	_	—		CLKRCL	.K<3:0>		0000	0000		
897h	MDCON0		MDEN	—	MDOUT	MDOPOL	—	—	-	MDBIT	0-000	0-000		
898h	MDCON1		-	—	MDCHPOL	MDCHSYNC	—	—	MDCLPOL	MDCLSYNC	0000	0000		
899h	MDSRC		-	—	_			MDMS<4:0>		•	0 0000	0 0000		
89Ah	MDCARL		—	—	_	—		MDCLS	6<3:0>		0000	0000		
89Bh	MDCARH		-	—	—	—		MDCHS	6<3:0>		0000	0000		
89Ch	—					U	nimplemented				—	—		
89Dh	—					U	nimplemented				—	—		
89Eh	-	—				U	nimplemented				_	—		
89Fh	_	_				Unimplemented —						_		

SPECIAL EUNCTION DECISTED SUMMARY RANKS 0.24 (CONTINUED) TABLE 2 42.

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Note 1:

2: Unimplemented, read as '1'.

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 500 kHz)
- 2. ECM External Clock Medium Power mode (500 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these clock sources.

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0	
_	_	TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HS= Hardwa	re Set			
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5	TMROIF: TMF	R0 Overflow Int	errupt Flag bi	t				
	1 = TMR0 re	egister has ove	rflowed (must	be cleared in	software)			
	0 = TMR0 re	egister did not o	overflow					
bit 4	IOCIF: Interru	pt-on-Change	Interrupt Flag	bit (read-only)	(2)			
	1 = One or r	nore of the IOC	AF-IOCEF re	gister bits are o	currently set, ind	licating an ena	bled edge was	
		by the IOC m	odule.	ite ere eurrent	hu aat			
			JEF register t	ons are current	ly set			
bit 3-1	Unimplemen	ted: Read as '	0'					
bit 0	0 INTF: INT External Interrupt Flag bit ⁽¹⁾							
	1 = The INT	external interre	upt occurred (must be cleare	ed in software)			
	0 = The INT external interrupt did not occur							

REGISTER 7-11: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0

- Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 13-1).
 - 2: The IOCIF bits are the logical OR of all the IOCAF-IOCEF flags. Therefore, to clear the IOCIF flag, application firmware should clear all of the lower level IOCAF-IOCEF register bits.

Note:	Interrupt flag bits are set when an interrupt									
	condition occurs, regardless of the state of									
	its corresponding enable bit or the Global									
	Enable bit, GIE, of the INTCON register.									
	User software should ensure the									
	appropriate interrupt flag bits are clear									
	prior to enabling an interrupt.									

10.5 Register Definitions: Flash Program Memory Control

REGISTER 10-1: NVMDATL: NONVOLATILE MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			NVMD	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchar	iged	x = Bit is unknow	/n	-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 NVMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: NVMDATH: NONVOLATILE MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			NVMDA	AT<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 NVMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: NVMADRL: NONVOLATILE MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
	NVMADR<7:0>											
bit 7 bit 0												

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NVMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: NVMADRH: NONVOLATILE MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				NVMADR<14:8	}>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 NVMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1').

11.11 Register Definitions: CRC and Scanner Control

REGISTER 11-1: CRCCON0: CRC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R-0	R/W-0/0	U-0	U-0	R/W-0/0	R-0
EN	CRCGO	BUSY	ACCM	—	—	SHIFTM	FULL
bit 7			·			bit 0	
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EN: CRC Ena	able bit					
	$1 = CRC \mod 1$	lule is released	from Reset				
		sabled and cor	isumes no ope	erating current			
bit 6		C Start bit					
	1 = Start CRC 0 = CRC seria	serial shifter	l off				
bit 5	BUSY: CRC	Busy bit					
	1 = Shifting in	progress or p	ending				
	0 = All valid b	its in shifter ha	ve been shifte	d into accumul	ator and EMP1	Y = 1	
bit 4	ACCM: Accur	mulator Mode I	pit				
	1 = Data is au	ugmented with	zeros				
	0 = Data is no	ot augmented v	vith zeros				
bit 3-2	Unimplemen	ted: Read as	0′				
bit 1	SHIFTM: Shif	ft Mode bit					
	1 = Shift right 0 = Shift left ((LSD) MSb)					
hit 0	FILL Data F	Path Full Indica	tor bit				
bit 0	1 = CRCDAT	H/I registers a	re full				
	0 = CRCDAT	H/L registers h	ave shifted the	eir data into the	shifter		
		-					

REGISTER 11-2: CRCCON1: CRC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DLEN<3:0>				PLEN	<3:0>		
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		
bit 7-4	DLEN<3:0>	. Data Length bits		
Denotes the length of the data word -1 (See Example 11-1)				
bit 3-0 PLEN<3:0>: Polynomial Length bits				
Denotes the length of the polynomial -1 (See Example 11-1)				

REGISTER	14-3: PMD2	2: PMD CON	ROL REGIS	TER 2			
U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	- DACMD ADCMD -			CMP2MD	CMP1MD	ZCDMD	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	Unimplemen	ted: Read as '0)'				
bit 6	DACMD: Disa	able DAC bit					
	1 = DAC mo	dule disabled					
	0 = DAC modelse	dule enabled					
bit 5	ADCMD: Disa	able ADC bit					
	1 = ADC model =	dule disabled					
hit 4 2			۰ ۲				
DIL 4-3		achte Common)			
DIT 2	1 = CMP2 m	sable Compara	tor CMP2 Dit				
	0 = CMP2 module enabled						
bit 1 CMP1MD: Disable Comparator CMP1 bit							
	1 = CMP1 module disabled						
	0 = CMP1 m	odule enabled					
bit 0	0 ZCDMD: Disable ZCD						
	1 = ZCD mod	dule disabled					
	0 = ZCD mod	dule enabled					

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
ADPSIS		ADCRS<2:0>		ADACLR		ADMD<2:0>	
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	OR/Value at all c	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared	HC = Bit is cle	eared by hard	ware	
bit 7 ADPSIS: ADC Previous Sample Input Select bits 1 = ADFLTR is transferred to ADPREV at start-of-conversion 0 = ADRES is transferred to ADPREV at start of conversion							
bit 6-4	ADCRS<2:0	>: ADC Accumu	lated Calculat	tion Right Shift	Select bits		
	111 – Reserved 110 = Reserved 101 through 000: If ADMD = 100: Low-pass filter time constant is 2^{ADCRS} , filter gain is 1:1 If ADMD = 001, 010 or 011: The accumulated value is right-shifted by ADCRS (divided by 2^{ADCRS}) ⁽²⁾ Otherwise: Bits are ignored						
bit 3	ADACLR: A 1 = Initial cle 0 = Clearing	DC Accumulator ar of ADACC, A	Clear Comm DAOV, and th	and bit e sample count ted)	er. Bit is clear	ed by hardware	
hit 2-0		· ADC Operation	n Mode Select	tion hits(1)			
111 = Reserved 101 = Reserved 100 = Low-pass Filter mode 011 = Burst Average mode 010 = Average mode 001 = Accumulate mode 000 = Basic (Legacy) mode							
Note 1: 2:	See Table 23-3 for All results of divis	Table 23-3 for Full mode descriptions. esults of divisions using the ADCRS bits are truncated, not rounded.					

REGISTER 23-3: ADCON2: ADC CONTROL REGISTER 2

NOTES:

26.0 DATA SIGNAL MODULATOR (DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- · Carrier Source Pin Disable
- · Programmable Modulator Data
- · Modulator Source Pin Disable
- · Modulated Output Polarity Select
- Slew Rate Control

Figure 26-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

26.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCON1 register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCON1 register.

26.6 Programmable Modulator Data

The MDBIT of the MDCON0 register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

26.7 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON0 register.

26.8 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the SLR bit of the SLRCON register associated with that pin. For example, clearing the slew rate limitation for pin RA5 would require clearing the SLRA5 bit of the SLRCONA register.

26.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

26.10 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

REGISTER 26-5:	MDCARL: MODULATION LOW CARRIER CONTROL REGISTER
REGISTER 26-5:	MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	—	—		MDCLS	<3:0> ⁽¹⁾	
bit 7							bit 0
							J
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3-0	MDCI S<3:0> Modulator Data High Carri			er Selection bits	; (1)		
	1111 = LC4	out					
	1110 = LC3	out					
	1101 = LC2	out					
	1100 = LC1	out					
	1011 = NCC) output					
	1010 = PWN	Л7 out					
	1001 = PWN	/16 out					
	1000 = CCP	25 output (PWN	1 Output mode	e only)			
	0111 = CCP	4 output (PWN	1 Output mode	e only)			
	0110 = CCP	110 = CCP3 output (PWM Output mode only)					
	0101 = CCP	101 = CCP2 output (PWM Output mode only)					
	0100 = CCP	1 output (PWN	1 Output mode	e only)			
	0011 = Refe	rence clock m	odule signal (CLKR)			
	0010 = HFIN	NTOSC					
	0001 = Fost	C					
	0000 = Pin s	00 = Pin selected by MDCARLPPS					

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W-0/0	0 R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	inchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7 GCEN: General Call Enable bit (in I ² C Slave mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPxSR						SR	
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C eceived ved	mode only)			
bit 5	ACKDT: Ackn	owledge Data	bit (in I ² C mo	de only)			
	<u>In Receive mo</u> Value transmi 1 = Not Ackno 0 = Acknowle	ode: tted when the owledge dge	user initiates a	an Acknowledg	je sequence at i	the end of a red	ceive
bit 4	ACKEN: Ackr In Master Rec	nowledge Sequ <u>ceive mode:</u>	uence Enable	bit (in I ² C Mas	ter mode only)		
	1 = Initiate A Automatio 0 = Acknowle	Acknowledge cally cleared b edge sequence	sequence on y hardware. e idle	SDA and S	CL pins, and	transmit ACk	CDT data bit.
bit 3	RCEN: Receir 1 = Enables F 0 = Receive io	ve Enable bit (Receive mode dle	in I ² C Master for I ² C	mode only)			
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)		
	<u>SCKMSSP Re</u> 1 = Initiate Sto 0 = Stop cond	SCKMSSP Release Control: 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle					
bit 1	RSEN: Repeated 1 = Initiate Repeated 0 = Repeated	RSEN: Repeated Start Condition Enable bit (in I ² C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware 0 = Repeated Start condition Idle					ardware.
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit			
	<u>In Master moo</u> 1 = Initiate Sta 0 = Start conc	<u>de:</u> art condition or lition Idle	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
	<u>In Slave mode</u> 1 = Clock stre 0 = Clock stre	In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled					
Note 1	For hits ACKEN D			ha l ² C madula	is not in the IDI	E mada this h	it may not be

REGISTER 31-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

FIGURE 32-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

REGISTER 32-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 32-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxPF	R<15:8>			
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 32-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPR | <23:16> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0
AD21			1	2	6	μS	Using FRC as the ADC clock source ADOCS = 1
AD22	TCNV	Conversion Time		11+3Tcy	—	Tad	Set of GO/DONE bit to Clear of GO/DONE bit
AD23	TACQ	Acquisition Time	_	2	_	μS	
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_	_	_	μS	Fosc-based clock source FRC-based clock source

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

39.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

39.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker