

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC0/ANC0/T1CKI ⁽¹⁾ /T3CKI ⁽¹⁾ /T3G ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN111/10CC0/SOSCO	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 external digital clock input.
	T3G ⁽¹⁾	TTL/ST	—	Timer3 gate input.
	SMTWIN1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
10001/50501	ANC1	AN	—	ADC Channel C1 input.
	SMTSIG1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) signal input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	—	Interrupt-on-change input.
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	—	ADC Channel C2 input.
	T5CKI ⁽¹⁾	TTL/ST	—	Timer5 external digital clock input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	ANC3	AN	—	ADC Channel C3 input.
	SCL1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C clock input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	—	Interrupt-on-change input.
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output Legend: AN = Analog input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels TTL = TTL compatible input ST l²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options

2: as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT<	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Rese	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit			nted hit read as 'O'		

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0									
			ACC	<7:0>					
bit 7									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

u = Bit is unchanged

'1' = Bit is set

bit 7-0

bit 7-0

R = Readable bit W = Writable bit				U = Unimplem	nented bit, read a	is '0'	
Legend:							
bit 7							bit 0
CCDPD7	CCDPD6	CCDPD5	CCDPD4	CCDPD3	CCDPD2	CCDPD1	CCDPD0
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-40: CCDPD: CURRENT CONTROLLED DRIVE POSITIVE PORTD REGISTER

CCDPD<7:0>: RD<7:0> Current Controlled Drive Positive Control bits⁽¹⁾

1 = Current controlled source enabled

x = Bit is unknown

'0' = Bit is cleared

0 = Current controlled source disabled

Note 1: If CCDPDy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-41: CCDND: CURRENT CONTROLLED DRIVE NEGATIVE PORTD REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDND7 | CCDND6 | CCDND5 | CCDND4 | CCDND3 | CCDND2 | CCDND1 | CCDND0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

CCDND<7:0>: RD<7:0> Current Controlled Drive Negative Control bits⁽¹⁾

- 1 = Current controlled source enabled
- 0 = Current controlled source disabled

Note 1: If CCDNDy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	227
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	227
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	228
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	228
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	229
ODCOND	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	229
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	230
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	230
CCDPD	CCDPD7	CCDPD6	CCDPD5	CCDPD4	CCDPD3	CCDPD2	CCDPD1	CCDPD0	231
CCDND	CCDND7	CCDND6	CCDND5	CCDND4	CCDND3	CCDND2	CCDND1	CCDND0	231
CCDCON	CCDEN	—	—	—	—	—	CCDS	S<1:0>	201

TABLE 12-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD⁽¹⁾

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by PORTD.

Note 1: PIC16(L)F18875 only.

20.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers, respectively.

20.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 20-9.

20.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWGxCON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWGxA and CWGxC signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWGxB or CWGxD, depending on the direction of the change) will experience a delay dictated by the dead-band counters. This is demonstrated in Figure 20-3.

20.6 Rising Edge and Reverse Dead Band

CWGxDBR controls the rising edge dead-band time at the leading edge of CWGxA (Half-Bridge mode) or the leading edge of CWGxB (Full-Bridge mode). The CWGxDBR value is double-buffered. When EN = 0, the CWGxDBR register is loaded immediately when CWGxDBR is written. When EN = 1, then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

20.7 Falling Edge and Forward Dead Band

CWGxDBF controls the dead-band time at the leading edge of CWGxB (Half-Bridge mode) or the leading edge of CWGxD (Full-Bridge mode). The CWGxDBF value is double-buffered. When EN = 0, the CWGxDBF register is loaded immediately when CWGxDBF is written. When EN = 1 then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output. Refer to Figure 20.6 and Figure 20-7 for examples.

22.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

The CLC modules available are shown in Table 22-1.

TABLE 22-1: AVAILABLE CLC MODULES

Device	CLC1	CLC2	CLC3	CLC4
PIC16(L)F18855/75	•	٠	٠	٠

Note: The CLC1, CLC2, CLC3 and CLC4 are four separate module instances of the same CLC module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the CLC number (which should be substituted with 1, 2, 3, or 4 during code development). For example, the control register is generically described in this chapter as CLCxCON, but the actual device registers are CLC1CON, CLC2CON, CLC3CON and CLC4CON. Similarly, the LCxEN bit represents the LC1EN, LC2EN, LC3EN and LC4EN bits. Refer to Figure 22-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

TABLE 23-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCCS<5:0>	32 MHz	20 MHz	16 MHz 8 MHz		4 MHz	1 MHz	
Fosc/2	000000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	000001	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/6	000010	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs	
Fosc/8	000011	250 μs ⁽²⁾	400 ns ⁽²⁾	500 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	000111	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽²⁾	
Fosc/128	111111	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾	
FRC	ADCS(ADCON0 <4>)=1	1.0-6.0 μs ⁽¹⁾						

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

- **2:** These values violate the required TAD time.
- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 23-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES (ADSC = 0)

23.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide signed register (15 bits + 1 sign bit), which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the ADGO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the value exceeds '1111111111111111111, then the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. In Average and Burst Average modes the ADCNT and ADACC registers are cleared automatically when a trigger causes the ADCNT value to exceed the ADRPT value to '1' and replace the ADACC contents with the conversion result.

The ADAOV (accumulator overflow) bit in the ADSTAT register, ADACC, and ADCNT registers will be cleared any time the ADACLR bit in the ADCON2 register is set.

Note: When ADC is operating from FRC, 5 FRC clock cycles are required to execute the ADACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in the accumulator (ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine number of samples for averaging. For the Lowpass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 23-4 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TABLE 23-4: LOWPASS FILTER -3 dB CUT-OFF FREQUENCY

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0

23.5.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs. Double sampling, Continuous mode, all CVD features, and threshold error detection are still available, but no features involving the digital filter/average features are used.

23.5.3 ACCUMULATE MODE:

In Accumulate mode (ADMD = 001), the ADC conversion result is added to the ADACC registers. The Formatting mode does not affect the right-justification of the ADACC value. Upon each sample, ADCNT is incremented, indicating the number of samples accumulated. After each sample and accumulation, the ADFLTR register is updated with the value of ADACC right shifted by the ADCRS value, a threshold comparison is performed (see Section 23.5.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

23.5.4 AVERAGE MODE

In Average Mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. However, in Average mode, the threshold comparison is performed upon ADCNT being greater than or equal to a user-defined ADRPT value. The ADCRS bits still right-shift the final result, but in this mode when ADCRS= log(ADRPT)/log(2) then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
				ADPCI	H<5:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, read as	s 'O'			
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set	0	'0' = Bit is cleared							
bit 7-6	Unimplement	ed: Read as '0'							
bit 5-0	ADPCH<5:0>:	: ADC Positive Inp	ut Channel Se	lection bits					
	111111 = Fixe	ed Voltage Refere	nce (FVR) ⁽²⁾						
	111110 = DA	C1 output ⁽¹⁾	、 ,						
	111101 = Ten	nperature Indicato	₍ 3)						
	111100 = AV s	ss (Analog Ground	l)						
	111011 = Res	served. No channe	l connected.						
	•								
	•								
	100010 = AN	E2 ⁽⁴⁾							
	100001 = ANI	E1 ⁽⁴⁾							
	100000 = ANI	E0 ⁽⁴⁾							
	011111 = ANI	D7 ⁽⁴⁾							
	011110 = ANI	D6 ⁽⁴⁾							
	011101 = AN	$D5^{(4)}$							
	011100 = ANI	D4 ⁽⁴⁾							
	011011 - ANI	D3(4)							
	011010 = ANI	D2(4)							
	011000 = AN	D0 ⁽⁴⁾							
	010111 = AN	C7							
	010110 = AN	C6							
	010101 = AN	C5							
	010100 = AN	C4							
	010011 = AN	C3							
	010010 = AN	C2							
	010001 = AN	C1							
	010000 = AN0								
	001111 - ANI	B6							
	001100 = ANI	B5							
	001100 = AN	B4							
	001011 = ANI	B3							
	001010 = ANI	B2							
	001001 = ANI	B1							
	001000 = ANI	B0							
	000111 = AN	A7							
	000110 = AN	A6							
	000101 = AN	A5							
	000100 = AN	A4 A2							
	000011 = AN	Δ2							
	000010 - AN	<u>π</u> ε Δ1							
	000001 = AN	AO							

REGISTER 23-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

Note 1: See Section 25.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information.

- 2: See Section 16.0 "Fixed Voltage Reference (FVR)" for more information.
- 3: See Section 17.0 "Temperature Indicator Module" for more information.
- 4: PIC16(L)F18875 only.

25.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DAC1OUT pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

EQUATION 25-1: DAC OUTPUT VOLTAGE

25.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 25-1:

$$\begin{split} V_{OUT} &= \left((V_{SOURCE+}) - (V_{SOURCE-}) \times \frac{DAC1R\langle 4:0 \rangle}{2^5} \right) + (V_{SOURCE-}) \\ V_{SOURCE+} &= V_{DD} \quad or \quad V_{REF+} \quad or \; FVR \\ V_{SOURCE-} &= V_{SS} \quad or \; V_{REF-} \end{split}$$

25.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 37-15.

25.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1/2 pins by setting the DAC1OE1/2 bits of the DAC1CON0 register, respectively. Selecting the DAC reference voltage for output on the DAC1OUT1/2 pins automatically overrides the digital output buffer and digital input threshold detector functions, disables the weak pull-up, and disables the current-controlled drive function of that pin. Reading the DAC1OUT1/2 pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to the DAC1OUT1/2 pins. Figure 25-2 shows an example buffering technique.

28.8 Timer1 Interrupts

The timer register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When the timer rolls over, the respective timer interrupt flag bit of the PIR5 register is set. To enable the interrupt on rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE4 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: To avoid immediate interrupt vectoring, the TMR1H:TMR1L register pair should be preloaded with a value that is not imminently about to rollover, and the TMR1IF flag should be cleared prior to enabling the timer interrupts.

28.9 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- ON bit of the T1CON register must be set
- TMR1IE bit of the PIE4 register must be set
- PEIE bit of the INTCON register must be set
- SYNC bit of the T1CON register must be set
- CLK bits of the T1CLK register must be configured
- The timer clock source must be enabled and continue operation during sleep. When the SOSC is used for this purpose, the SOSCEN bit of the OSCEN register must be set.

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the SYNC bit setting.

28.10 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

The Timer1 to CCP1/2/3/4/5 mapping is not fixed, and can be assigned on an individual CCP module basis. All of the CCP modules may be configured to share a single Timer1 (or Timer3, or Timer5) resource, or different CCP modules may be configured to use different Timer1 resources. This timer to CCP mapping selection is made in the CCPTMRS0 and CCPTMRS1 registers.

For more information, see Section 30.0 "Capture/Compare/PWM Modules".

28.11 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a timer interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1.

The timer should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of the timer can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see Section 30.2.4 "Compare During Sleep".

30.1 Capture Mode

The Capture mode function described in this section is available and identical for all CCP modules.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR6 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value. Figure 30-1 shows a simplified diagram of the capture operation.

30.1.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

The capture source is selected by configuring the CCPxCTS<2:0> bits of the CCPxCAP register. The following sources can be selected:

- CCPxPPS input
- C1OUT_sync
- C2OUT_sync
- IOC_interrupt
- LC1_out
- LC2_out
- LC3_out
- LC4_out

FIGURE 30-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0			
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	t7 t									
Legend:										
R = Reada	ible bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'				
u = Bit is u	nchanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is	set	'0' = Bit is cleared		HC = Cleared	d by hardware	S = User set				
bit 7	GCEN: General 1 = Enable inf 0 = General c	ral Call Enable terrupt when a all address dis	bit (in I ² C Sla general call a abled	ve mode only) ddress (0x00 d	or 00h) is receiv	ed in the SSPx	SR			
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge St dge was not re dge was receiv	atus bit (in I ² C eceived ved	mode only)						
bit 5	ACKDT: Ackn	nowledge Data	bit (in I ² C mo	de only)						
	<u>In Receive mo</u> Value transmi 1 = Not Ackno 0 = Acknowle	ode: itted when the owledge dge	user initiates a	an Acknowledg	je sequence at i	the end of a red	ceive			
bit 4	ACKEN: Ackr	nowledge Sequ	uence Enable	bit (in I ² C Mas	ter mode only)					
	In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle									
bit 3	RCEN: Recei	ve Enable bit (in I ² C Master	mode only)						
	1 = Enables Receive mode for I^2C 0 = Receive idle									
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)					
	SCKMSSP Release Control: 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle									
bit 1	RSEN: Repea 1 = Initiate Re 0 = Repeated	 RSEN: Repeated Start Condition Enable bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 								
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit						
	<u>In Master moo</u> 1 = Initiate Sta 0 = Start conc	In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle								
	<u>In Slave mode:</u> 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled									
Note 1	For hits ACKEN D			ha l ² C madula	is not in the IDI	E mada thia h	it may not be			

REGISTER 31-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

34.0 REFERENCE CLOCK OUTPUT MODULE

The Reference Clock Output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The Reference Clock Output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM).

The Reference Clock Output module has the following features:

- · Selectable input clock
- Programmable clock divider
- · Selectable duty cycle

34.1 CLOCK SOURCE

The Reference Clock Output module has a selectable clock source. The CLKRCLK register (Register 34-2) controls which input is used.

34.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (CLKREN) is set, the module is ensured to be glitch-free at start-up.

When the Reference Clock Output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

34.2 PROGRAMMABLE CLOCK DIVIDER

The module takes the selected clock input and divides it based on the value of the CLKRDIV<2:0> bits of the CLKRCON register (Register 34-1).

The following configurations can be made based on the CLKRDIV<2:0> bits:

- Base input clock value
- Input clock divided by 2
- Input clock divided by 4
- Input clock divided by 8
- Input clock divided by 16
- Input clock divided by 32
- Input clock divided by 64
- Input clock divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDIV<2:0> bits should only be changed when the module is disabled (CLKREN = 0).

34.3 SELECTABLE DUTY CYCLE

The CLKRDC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDC<1:0> bits should only be changed when the module is disabled (CLKREN = 0).

Note: The CLKRDC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

34.4 OPERATION IN SLEEP MODE

The Reference Clock Output module is not affected by Sleep mode. The Reference Clock Output module can still operate during Sleep if the clock source selected by CLKRCLK is also active during Sleep.

37.3 DC Characteristics

TABLE 37-1:SUPPLY VOLTAGE

PIC16LF18855/75			Standard Operating Conditions (unless otherwise stated)						
PIC16F18855/75									
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
Supply Voltage									
D002	Vdd		1.8 2.5		3.6 3.6	V V	$Fosc \le 16 \text{ MHz}$ Fosc > 16 MHz		
D002	Vdd		2.3 2.5		5.5 5.5	V V	$Fosc \le 16 \text{ MHz}$ $Fosc \ge 16 \text{ MHz}$		
RAM Da	ta Retent	tion ⁽¹⁾							
D003	Vdr		1.5	—	—	V	Device in Sleep mode		
D003	Vdr		1.5	_	—	V	Device in Sleep mode		
Power-c	on Reset	Release Voltage ⁽²⁾							
D004	VPOR		_	1.6	_	V	BOR or LPBOR disabled ⁽³⁾		
D004	VPOR		_	1.6	—	V	BOR or LPBOR disabled ⁽³⁾		
Power-on Reset Rearm Voltage ⁽²⁾									
D005	VPORR		_	0.8	—	V	BOR or LPBOR disabled ⁽³⁾		
D005	VPORR		_	1.2	—	V	BOR or LPBOR disabled ⁽³⁾		
VDD Rise Rate to ensure internal Power-on Reset signal ⁽²⁾									
D006	SVDD		0.05	—	_	V/ms	BOR or LPBOR disabled ⁽³⁾		
D006	SVDD		0.05	—		V/ms	BOR or LPBOR disabled ⁽³⁾		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 37-3, POR and POR REARM with Slow Rising VDD.

3: Please see Table 37-11 for BOR and LPBOR trip point information.

39.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

39.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker