

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18855t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RA0 2 17 19 19 ANA0 - - Clino- C2INO- C2INO- - - - - - - - - - - - - - - - Clino- - IOCA0 - IOCA0 - IOCA0 - IOCA0 - - IOCA0 IOCA0 IOCA0 IOCA0	O/i	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
Image: Region of the state of the	RA0	2	17	19	19	ANA0		_		—	_		—	-	_	—		—		IOCA0	_
Image: Section of the secting definition of the section of	RA1	3	18	20	20	ANA1		—			—		—	_	_	—	CLCIN1 ⁽¹⁾	—		IOCA1	_
RA4 6 21 23 ANA4 - - - - - MDCARH ⁽¹⁾ TOCKI ⁽¹⁾ CCP5 ⁽¹⁾ - - - IOCA4 - RA5 7 22 24 24 ANA5 - - - - SS1 ⁽¹⁾ - MDSRC ⁽¹⁾ - - - - - IOCA4 - RA6 14 29 33 31 ANA6 - - - - - MDSRC ⁽¹⁾ - - - - - IOCA6 OCCA5 CLKOUT RA7 13 28 32 30 ANA7 - - - - - - - - - - IOCA7 OSC1 RB0 33 8 9 8 ANB0 - I CliN1+ ZCD SS2 ⁽¹⁾ - - - CPC4 ⁽¹⁾ CWG1IN ⁽¹⁾ - - INT ⁽¹⁾ ICLKN RB0 33 8 9 10 9 ANB1	RA2	4	19	21	21	ANA2	VREF-	DAC1OUT1						_	-	—	—			IOCA2	_
RA5 7 22 24 ANA5 - - - - SS1 ⁽¹⁾ - MDSRC ⁽¹⁾ - - - - 0CA5 - RA6 14 29 33 31 ANA6 -	RA3	5	20	22	22	ANA3	VREF+	-	C1IN1+	—	-	—	MDCARL ⁽¹⁾		_	—	_	—	_	IOCA3	—
RA6 14 29 33 31 ANA6 -	RA4	6	21	23	23	ANA4	—	-	_	-		-	MDCARH ⁽¹⁾	T0CKI ⁽¹⁾	CCP5 ⁽¹⁾	—	_	—	—	IOCA4	—
RA7 13 28 32 30 ANA7	RA5	7	22	24	24	ANA5	—	-	_	-	SS1 ⁽¹⁾	_	MDSRC ⁽¹⁾	_	-	—	_	_	_	IOCA5	—
RB0 33 8 9 8 ANB0 - C2IN1+ ZCD SS2(1) - - CCP4(1) CWG1IN(1) - - INT(1) ICCB0 - ICLKIN RB1 34 9 10 9 ANB1 - C1IN3- C2IN3- - SCL2(3.4) SCK2(1) - - - CWG3IN(1) - - - ICLKIN RB2 35 10 11 10 ANB2 - C1IN3- C2IN3- - SCL2(3.4) SCL2(3.4) -	RA6	14	29	33	31	ANA6		—			—		-			—	—	_		IOCA6	OSC2 CLKOUT
RB1 34 9 10 9 ANB1 C1IN3- C2IN3- SCL2 ^(3,4) SCK2 ⁽¹⁾ CWG2IN ⁽¹⁾ IOCB0 RB2 35 10 11 10 ANB2 C1IN3- C2IN3- SCL2 ^(3,4) SCK2 ⁽¹⁾ CWG2IN ⁽¹⁾ IOCB0 RB2 35 10 11 10 ANB2 CWG3IN ⁽¹⁾ IOCB0 RB3 36 11 12 11 ANB3 IOCB1 IOCB2 RB4 37 12 14 14 ANB4 ADCACT ⁽¹⁾ TG6 ⁽¹⁾ SMTSIG2 ⁽¹⁾ IOCB3 RB5 38 13 15 16 ANB6 </td <td>RA7</td> <td>13</td> <td>28</td> <td>32</td> <td>30</td> <td>ANA7</td> <td>-</td> <td>—</td> <td>—</td> <td>—</td> <td></td> <td> </td> <td>—</td> <td>_</td> <td></td> <td></td> <td>—</td> <td>—</td> <td> </td> <td></td> <td>OSC1 CLKIN</td>	RA7	13	28	32	30	ANA7	-	—	—	—			—	_			—	—			OSC1 CLKIN
Image: Normal Section Image: Normal Sec	RB0	33	8	9	8	ANB0		—	C2IN1+	ZCD			—	_	CCP4 ⁽¹⁾		—	—			—
RB3 36 11 12 11 ANB3 C1IN2- C2IN2-	RB1	34	9	10	9	ANB1		_			SCL2 ^(3,4) SCK2 ⁽¹⁾	l	_				—	_		IOCB1	_
Image: Note of the state o	RB2	35	10	11	10	ANB2		_			SDA2 ^(3,4) SDI2 ⁽¹⁾	l	_			CWG3IN ⁽¹⁾	—	_		IOCB2	_
Image: Non-Structure ADCACT ⁽¹⁾ Image: Non-Structure ADCACT ⁽¹⁾ Image: Non-Structure Image: Non-Struct	RB3	36	11	12	11	ANB3		Ι			Ι		_	_	-	—	—			IOCB3	—
RB6 39 14 16 16 ANB6 - - - - - - - - ICCB6 ICSPCLK	RB4	37	12	14	14	ANB4 ADCACT ⁽¹⁾	_	—	—	_	—	—	-	T5G ⁽¹⁾ SMTWIN2 ⁽¹⁾	_	—	—	—	_	IOCB4	—
	RB5	38	13	15	15	ANB5	-	—	_	_	—	-	—	T1G ⁽¹⁾ SMTSIG2 ⁽¹⁾	CCP3(1)	—	—	—	1	IOCB5	_
RB7 40 15 17 17 ANB7 — DAC10UT2 — — — T6IN ⁽¹⁾ — — CLCIN3 ⁽¹⁾ — — IOCB7 ICSPDAT	RB6	39	14	16	16	ANB6	—	—	—	_	—	—	—	—	—	—			—	IOCB6	ICSPCLK
	RB7	40	15	17	17	ANB7	-	DAC10UT2	-	—	—	_	—	T6IN ⁽¹⁾	—	—	CLCIN3 ⁽¹⁾	—	-	IOCB7	ICSPDAT

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16F18875)

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

TABLE 1-3:	PIC16F18875 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS/OD	General purpose I/O.
CLCIN0 ⁽¹⁾ /IOCA0	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	-	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
CLCIN1 ⁽¹⁾ /IOCA1	ANA1	AN	-	ADC Channel A1 input.
	C1IN1-	AN	-	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/VREF-/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC1OUT1/IOCA2	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	VREF-	AN	_	External ADC and/or DAC negative reference input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	-	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
MDCARL ⁽¹⁾ /IOCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	-	External ADC and/or DAC positive reference input.
	MDCARL ⁽¹⁾	TTL/ST	-	Modular Carrier input 1.
	IOCA3	TTL/ST	-	Interrupt-on-change input.
RA4/ANA4/MDCARH ⁽¹⁾ /T0CKI ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
CCP5 ⁽¹⁾ /IOCA4	ANA4	AN	_	ADC Channel A4 input.
	MDCARH ⁽¹⁾	TTL/ST	_	Modular Carrier input 2.
	T0CKI ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	CCP5 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM5 (default input location for capture function).
	IOCA4	TTL/ST	l _	Interrupt-on-change input.

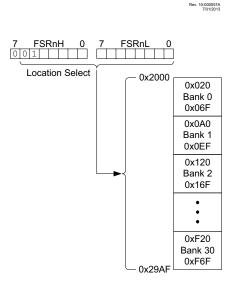
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels Note

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

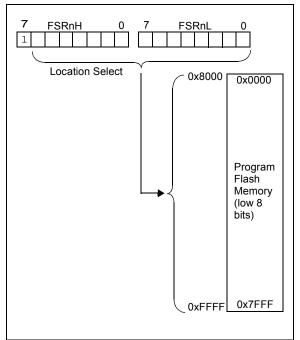

3.5.2 LINEAR DATA MEMORY

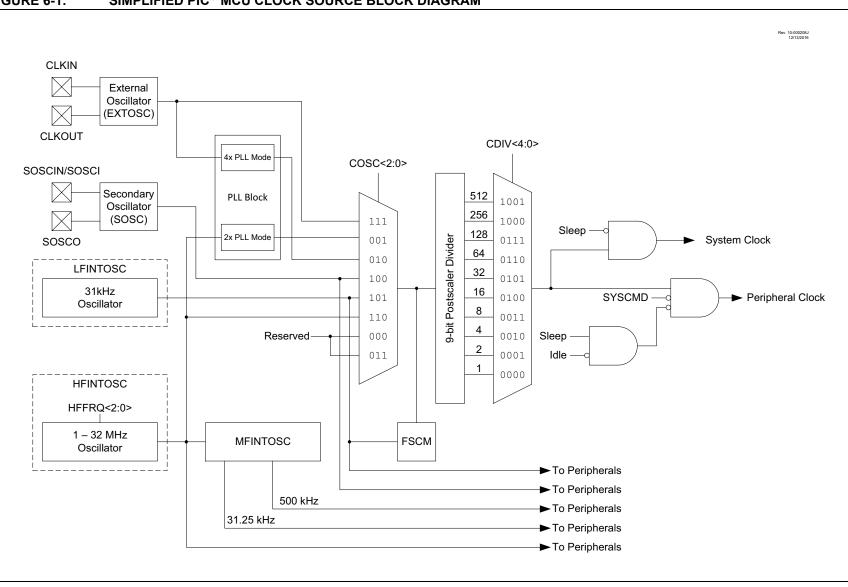
The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP


3.5.3 DATA EEPROM MEMORY


The EEPROM memory can be read or written through NVMCONx/NVMADRx/NVMDATx the reaister interface (see section Section 10.2 "Data EEPROM Memory"). However, to make access to the EEPROM memory easier, read-only access to the EEPROM contents are also available through indirect addressing by an FSR. When the MSB of the FSR (ex: FSRxH) is set to 0x70, the lower 8-bit address value (in FSRxL) determines the EEPROM location that may be read from (through the INDF register). In other words, the EEPROM address range 0x00-0xFF is mapped into the FSR address space between 0x7000-0x70FF. Writing to the EEPROM cannot be accomplished via the FSR/INDF interface. Reads from the EEPROM through the FSR/INDF interface will require one additional instruction cycle to complete.

3.5.4 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

FIGURE 6-1:

PIC16(L)F18855/75

6.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 6.3 "Clock Switching" for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates up to 32 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- The LFINTOSC (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

6.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (1 MHz) or '000' (32 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time.

The HFINTOSC frequency can be selected by setting the HFFRQ<2:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

6.5 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q		
_	1	NOSC<2:0> ^{(2,3}	3)	NDIV<3:0> ^(2,3,4)					
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits
	The setting requests a source oscillator and PLL combination per Table 6-1.
	POR value = RSTOSC (Register 4-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits
	The setting determines the new postscaler division ratio per Table 6-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 6-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 6-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾							
—		COSC<2:0>		CDIV<3:0>				
bit 7							bit 0	

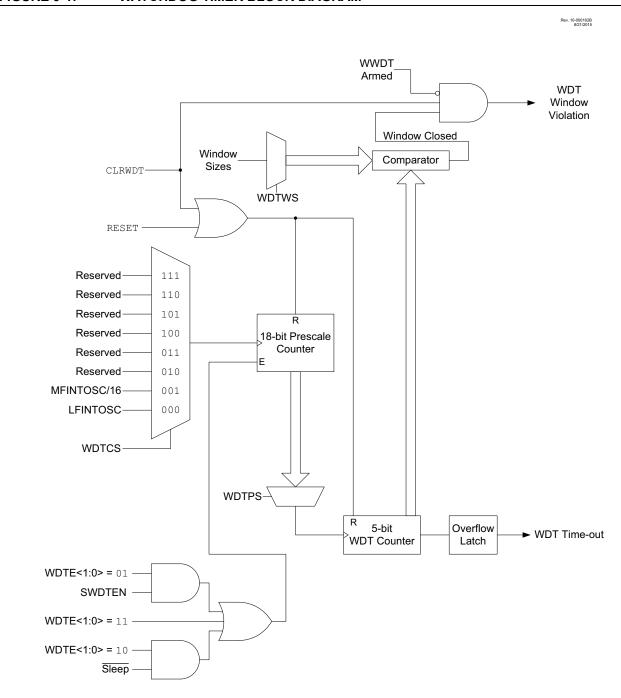
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'

bit 6-4 **COSC<2:0>:** Current Oscillator Source Select bits (read-only)

Indicates the current source oscillator and PLL combination per Table 6-1.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 6-1.


Note 1: The POR value is the value present when user code execution begins.

2: The reset value (n/n) is the same as the NOSC/NDIV bits.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE					
bit 7					I		bit 0					
Legend:												
R = Reada		W = Writable	bit	•	mented bit, read							
	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets					
'1' = Bit is	set	'0' = Bit is cle	ared									
bit 7-6	Unimplemen	nted: Read as '	ı,									
bit 5	•	T Receive Inter		it								
bit 0		the USART rec	•									
		the USART rec										
bit 4	TXIE: USAR	T Transmit Inter	rupt Enable b	oit								
		the USART tra										
h:+ 0		the USART tra	•									
bit 3		BCL2IE: MSSP2 Bus Collision Interrupt Enable bit 1 = MSSP bus Collision interrupt enabled										
		us Collision inte										
bit 2	SSP2IE: Syn	chronous Seria	I Port (MSSP	2) Interrupt En	able bit							
	1 = MSSP b	us collision Inte	rrupt									
		the MSSP Inte	•									
bit 1		SP1 Bus Collisi										
		us collision inte us collision inte										
bit 0			•		ahle hit							
bit 0	•	SSP1IE: Synchronous Serial Port (MSSP1) Interrupt Enable bit 1 = Enables the MSSP interrupt										
		the MSSP inte										
Note:	Bit PEIE of the IN	ITCON register	must be									
	set to enable a		interrupt									
	controlled by PIE1	I-PIE8.										

REGISTER 7-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
—	—	—	—	TSEL<3:0>				
bit 7								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3-0	TSEL<3:0>: Scanner Data Trigger Input Selection bits
	1111-1010 = Reserved
	1001 = SMT2_Match
	1000 = SMT1_Match
	0111 = TMR5_Overflow
	0110 = TMR4_postscaled
	0101 = TMR3_Overflow
	0100 = TMR2_postscaled
	0011 = TMR1_Overflow
	0010 = TMR0_Overflow
	0001 = CLKR

0000 = LFINTOSC

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH CRC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CRCACCH	ACC<15:8>									
CRCACCL	ACC<7:0>									
CRCCON0	EN	EN CRCGO BUSY ACCM — — SHIFTM FULL							193	
CRCCON1		DL	_EN<3:0>			PLEN	<3:0>		193	
CRCDATH				DAT<	15:8>				194	
CRCDATL				DAT<	:7:0>				194	
CRCSHIFTH				SHIFT	<15:8>				195	
CRCSHIFTL	SHIFT<7:0>									
CRCXORH				XOR<	15:8>				195	
CRCXORL				XOR<7:1>				—	195	
INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	134	
PIE4			TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139	
PIR4		—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148	
SCANCON0	EN	SCANGO	BUSY	INVALID	INTM	—	MODE<	<1:0>	196	
SCANHADRH				HADR<	<15:8>				198	
SCANHADRL				HADR	<7:0>				198	
SCANLADRH	LADR<15:8>								197	
SCANLADRL				LADR	<7:0>				197	
SCANTRIG	_			_		TSEL	<3:0>		199	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

* Page provides register information.

13.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 13-1.

		Default			Rem	appable to	Pins of P	ORTx		
Input Signal Name	Input Register Name	Location	Location PIC16F18855		55		I	PIC16F188	75	
	at POR	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTE	
INT	INTPPS	RB0	•	•		•	•			
T0CKI	T0CKIPPS	RA4	•	•		•	•			
T1CKI	T1CKIPPS	RC0	•		•	•		•		
T1G	T1GPPS	RB5		•	•		•	•		
T3CKI	T3CKIPPS	RC0		•	•		•	•		
T3G	T3GPPS	RC0	•		•	•		•		
T5CKI	T5CKIPPS	RC2	•		•	•		•		
T5G	T5GPPS	RB4		•	•		•		•	
T2IN	T2INPPS	RC3	•		•		•		٠	
T4IN	T4INPPS	RC5		•	•		•	•		
T6IN	T6INPPS	RB7		•	•		•		•	
CCP1	CCP1PPS	RC2		•	•		•	•		
CCP2	CCP2PPS	RC1		•	•		•	•		
CCP3	CCP3PPS	RB5		•	•		•		•	
CCP4	CCP4PPS	RB0		•	•		•		•	
CCP5	CCP5PPS	RA4	•		•	•				•
SMTWIN1	SMTWIN1PPS	RC0		•	•		•			
SMTSIG1	SMTSIG1PPS	RC1		•	•		•			
SMTWIN2	SMTWIN2PPS	RB4		•	•		•		•	
SMTSIG2	SMTSIG2PPS	RB5		•	•		•		•	
CWG1IN	CWG1PPS	RB0		•	•		•		•	
CWG2IN	CWG2PPS	RB1		•	•		•		•	
CWG3IN	CWG3PPS	RB2		•	•		•		•	
MDCARL	MDCARLPPS	RA3	•		•	•			•	
MDCARH	MDCARHPPS	RA4	•		•	•			•	
MDMSRC	MDSRCPPS	RA5	•		•	•			•	
CLCIN0	CLCIN0PPS	RA0	•		•	•		•		
CLCIN1	CLCIN1PPS	RA1	•		•	•		•		
CLCIN2	CLCIN2PPS	RB6		•	٠		•		٠	

TABLE 13-1:PPS INPUT SIGNAL ROUTING OPTIONS

20.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 20-2.

TABLE 20-2: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG input PPS pin	CWGxIN PPS
CCP1	CCP1_out
CCP2	CCP2_out
CCP3	CCP3_out
CCP4	CCP4_out
CCP5	CCP5_out
PWM6	PWM6_out
PWM7	PWM7_out
NCO	NCO1_out
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
DSM	DSM_out
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out

The input sources are selected using the CWGxISM register.

20.4 Output Control

20.4.1 OUTPUT ENABLES

Each CWG output pin has individual output enable control. Output enables are selected with the Gx1OEx <3:0> bits. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, EN of the CWGxCON0 register. When EN is cleared, CWG output enables and CWG drive levels have no effect.

20.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWGxCON1. Auto-shutdown and steering options are unaffected by polarity.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			ADRE	S<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 23-19: ADRESL: ADC RESULT REGISTER LOW, ADFRM=1

bit 7-0 ADRES<7:0>: ADC Result Register bits. Least Significant eight bits of 10-bit conversion result.

REGISTER 23-20: ADPREVH: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
ADPREV<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

 bit 7-0
 ADPREV<15:8>: Previous ADC Results Most Significant Byte

 If ADPSIS = 1:
 Most Significant Byte of ADFLTR at the start of current ADC conversion

 If ADPSIS = 0:
 Most Significant bits of ADRES at the start of current ADC conversion⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFRM bit.

24.2 FIXED DUTY CYCLE MODE

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 24-2.

The FDC mode is selected by clearing the N1PFM bit in the NCO1CON register.

24.3 PULSE FREQUENCY MODE

In Pulse Frequency (PF) mode, every time the Accumulator overflows, the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output. The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 24-2.

The value of the active and inactive states depends on the polarity bit, N1POL in the NCO1CON register.

The PF mode is selected by setting the N1PFM bit in the NCO1CON register.

24.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the N1PWS<2:0> bits in the NCO1CLK register.

When the selected pulse width is greater than the Accumulator overflow time frame, then DDS operation is undefined.

24.4 OUTPUT POLARITY CONTROL

The last stage in the NCO module is the output polarity. The N1POL bit in the NCO1CON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCO output signal is available to the following peripherals:

- CLC
- CWG
- Timer1/3/5
- Timer2/4/6
- SMT
- DSM
- Reference Clock Output

24.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCO Interrupt Flag bit, NCO1IF, of the PIR7 register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- N1EN bit of the NCO1CON register
- · NCO1IE bit of the PIE7 register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCO1IF bit in the Interrupt Service Routine.

24.6 Effects of a Reset

All of the NCO registers are cleared to zero as the result of a Reset.

24.7 Operation in Sleep

The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
T0EN		TOOUT	T016BIT		TOOUTI	PS<3:0>					
bit 7							bit (
Legend:	- h:4		L:4		a suite of this was a						
R = Readable		W = Writable		•	nented bit, read						
u = Bit is unc	-	x = Bit is unk		-n/n = value a	it POR and BO	R/Value at all c	other Resets				
'1' = Bit is set	!	'0' = Bit is cle	eared								
h:+ 7) Enchla hit									
bit 7	TOEN: TMRC		and operating								
		 1 = The module is enabled and operating 0 = The module is disabled and in the lowest power mode 									
bit 6		nted: Read as									
bit 5	-	R0 Output bit (r									
	TMR0 output		cad-only)								
bit 4		T016BIT: TMR0 Operating as 16-bit Timer Select bit									
	1 = TMR0 is a 16-bit timer										
	0 = TMR0 is	an 8-bit timer									
bit 3-0	T0OUTPS<3	8:0>: TMR0 out	put postscaler	(divider) select	bits						
	1111 = 1 :16										
	1110 = 1:15										
	1101 = 1:14										
	1100 = 1:13 1011 = 1:12										
	1011 = 1.12 1010 = 1.11										
		1001 = 1.10 Postscaler									
	1000 = 1:9 F	1000 = 1:9 Postscaler									
	0111 = 1:8 F	Postscaler									
	0110 = 1:7 Postscaler										
	0101 = 1:6 F										
	0100 = 1:5 F										
	0011 = 1:4 F										
	0010 = 1:3 F										
	0001 = 1:2 F	USISCAIEI									

29.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 29-6.

FIGURE 29-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)

	Rev. 10 -000 1578 500/2014
MODE	0b00100
TMRx_dk	
PRx	5
Instruction ⁽¹⁾ -	BSF BSF
ON	
TMRx_ers	
TMRx	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	
	1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

31.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 31.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

31.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

31.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 31-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

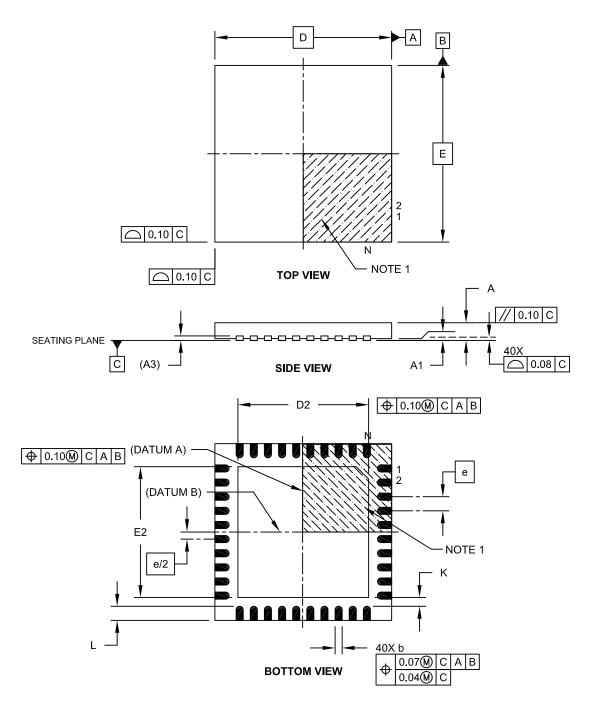
32.6.11 WINDOWED COUNTER MODE

This mode counts pulses on the SMTx_signal input, within a window dictated by the SMTxWIN input. It begins counting upon seeing a rising edge of the SMTxWIN input, updates the SMTxCPW register on a falling edge of the SMTxWIN input, and updates the SMTxCPR register on each rising edge of the SMTxWIN input beyond the first. See Figure 32-21 and Figure 32-22.

REGISTER 33-7: SP1BRGH^(1, 2): BAUD RATE GENERATOR HIGH REGISTER

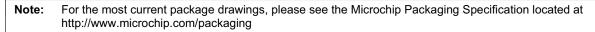
Lonondi							
bit 7							bit 0
			SP1BR0	G<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

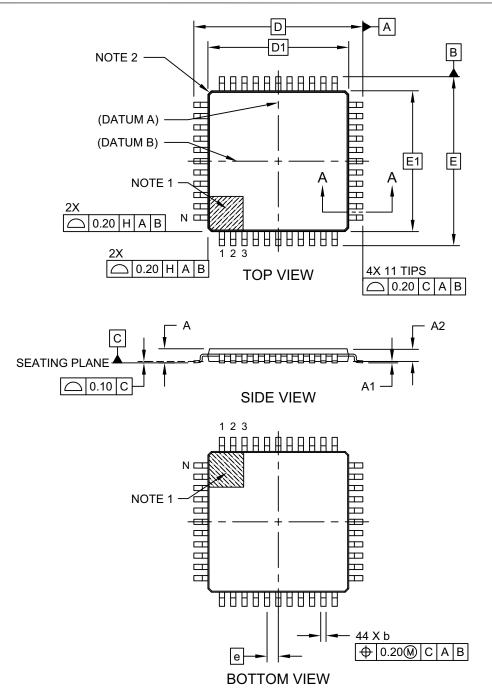
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7 SP1BRG<15:8>: Upper eight bits of the Baud Rate Generator

Note 1: SPBRGH value is ignored for all modes unless BAUD1CON<BRG16> is active.

2: Writing to SPBRGH resets the BRG counter.


40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2