

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC0/ANC0/T1CKI ⁽¹⁾ /T3CKI ⁽¹⁾ /T3G ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN111/10CC0/SOSCO	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 external digital clock input.
	T3G ⁽¹⁾	TTL/ST	—	Timer3 gate input.
	SMTWIN1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
10001/50501	ANC1	AN	—	ADC Channel C1 input.
	SMTSIG1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) signal input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	—	Interrupt-on-change input.
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	—	ADC Channel C2 input.
	T5CKI ⁽¹⁾	TTL/ST	—	Timer5 external digital clock input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	ANC3	AN	—	ADC Channel C3 input.
	SCL1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C clock input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	—	Interrupt-on-change input.
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output Legend: AN = Analog input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels TTL = TTL compatible input ST l²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options

2: as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	PIC16(L)F18855	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 3												
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
18Ch	SSP1BUF					Ş	SSPBUF<7:0>				xxxx xxxx	xxxx xxxx
18Dh	SSP1ADD					Ś	SSPADD<7:0>				0000 0000	0000 0000
18Eh	SSP1MSK					S	SSPMSK<7:0>				1111 1111	1111 1111
18Fh	SSP1STAT		SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
190h	SSP1CON1		WCOL	SSPOV	SSPEN	СКР		SSPM	1<3:0>		0000 0000	0000 0000
191h	SSP1CON2		GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
192h	SSP1CON3		ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
193h	_			•		L	Inimplemented				_	—
194h	—	—				L	Inimplemented				_	—
195h	—	—				L	Inimplemented				_	—
196h	SSP2BUF					S	SSPBUF<7:0>				xxxx xxxx	XXXX XXXX
197h	SSP2ADD					S	SSPADD<7:0>				0000 0000	0000 0000
198h	SSP2MSK					S	SSPMSK<7:0>				1111 1111	1111 1111
199h	SSP2STAT		SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
19Ah	SSP2CON1		WCOL	SSPOV	SSPEN	СКР		SSPM	1<3:0>	·	0000 0000	0000 0000
19Bh	SSP2CON2		GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
19Ch	SSP2CON3		ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
19Dh	—	_				L	Inimplemented				-	—
19Eh		—				L	Inimplemented				-	—
19Fh	_	—				L	Inimplemented				—	—

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

IADLE	3-13: 3PE		FUNCTION	REGISIE		KI DANNO		NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 18	Bank 18											
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
90Ch	FVRCON		FVREN	FVRRDY	TSEN	TSRNG	CDA	FVR<1:0>	ADFV	R<1:0>	0q00 0000	0q00 0000
90Dh	_	-		L		U	Inimplemented		L		-	_
90Eh	DAC1CON0		DAC1EN	—	DAC10E1	DAC10E2	DAC1	PSS<1:0>	_	DAC1NSS	0-0- 00	0-0- 00
90Fh	DAC1CON1		—	— — — DAC1R<4:0>						0 0000	0 0000	
910h	_	-		Unimplemented						-	—	
911h	_	-		Unimplemented						-	_	
912h	-	-		Unimplemented						-	_	
913h	_	-				U	Inimplemented				-	_
914h	_	-				U	Inimplemented				-	_
915h	_	-				U	Inimplemented				-	_
916h	_	-				U	Inimplemented				-	—
917h	_	-				U	Inimplemented				-	—
918h	—	-				U	Inimplemented				-	_
919h	_	-				U	Inimplemented				-	_
91Ah	-	-				U	Inimplemented				-	—
91Bh	—	-				U	Inimplemented				-	—
91Ch	—	-				U	Inimplemented				-	—
91Dh	—	-				U	Inimplemented				-	—
91Eh	—	-				U	Inimplemented				-	-
91Fh	ZCDCON		EN	_	OUT	POL	_	_	INTP	INTN	0-x000	0-x000

SPECIAL EURCTION DECISTED SUMMARY RANKS 0.24 (CONTINUED) 2 42.

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Note 1:

2: Unimplemented, read as '1'.

IADLE	3-13. 3FE	CIA		UNCTION	REGISTE		KI DANNS		NUED)				
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
F24h	RC4PPS	1		_	_			RC4	PPS<5:0>			00 0000	uu uuuu
F25h	RC5PPS			—	—			RC	6PPS<5:0>			00 0000	uu uuuu
F26h	RC6PPS			—	—			RC	PPS<5:0>			00 0000	uu uuuu
F27h	RC7PPS			—	—			RC	'PPS<5:0>			00 0000	uu uuuu
500	000000	—	х	_	—		RD0PPS<5:0>						uu uuuu
F28n	RDUPPS	х	—			Unimplemented							
500	22/222	—	х	_	—	RD1PPS<5:0> Unimplemented						00 0000	uu uuuu
F29h	RD1PPS	х	—										
50.41		—	х	_	—	RD2PPS<5:0>					00 0000	uu uuuu	
F2An	RD2PPS	х	—				ι	Jnimplemented					
FORM	20000	—	х	_	—			RD	8PPS<5:0>			00 0000	uu uuuu
FZBII	RD3PPS	х	—				ι	Jnimplemented					
Fach			х	_	—			RD4	PPS<5:0>			00 0000	uu uuuu
FZGN	RD4PP5	х	—				ι	Inimplemented					
	005000		х	_	—			RD	SPPS<5:0>			00 0000	uu uuuu
F2DN	RD5PPS	х	—				ι	Jnimplemented					
	DDCDDC	_	х	-	—			RD	PPS<5:0>			00 0000	uu uuuu
r2EN	KU0PPS	х	—				ι	Jnimplemented					
EDEN	DD7DD9	_	Х	_	—			RD	'PPS<5:0>			00 0000	uu uuuu
r zr ii	RU/PPS	х	—				ι	Jnimplemented					
Faab	DEADDO	—	х	—	—			REC	PPS<5:0>			00 0000	uu uuuu
-30h RE0PPS		Х	—				ι	Jnimplemented					

CISTED SUMMADY DANKS 0.24 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

Unimplemented, read as '1'. 2:

6.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC and Secondary Oscillator).

FIGURE 6-9: FSCM BLOCK DIAGRAM

6.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 6-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

6.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

6.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
_	_	_	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF		
bit 7	•	•	1	1			bit 0		
Legend:									
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'					
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets					
"I" = Bit is set		"0" = Bit is clear	ed	HS = Hardware	e set				
bit 7-5	Unimplemente	d. Read as '0'							
bit 4	CCP5IF: CCP5	Interrupt Flag bi	t						
	CCP5IF = 1:								
	Capture mode:	Capture occurre	d (must be clear	red in software)					
	PWM mode: Ou	utput trailing edge	e occurred (mus	st be cleared in s	software)				
	CCP5IF = 0:		·						
	Capture mode:	Capture did not	occur h did not occur						
	PWM mode: Ou	utput trailing edge	e did not occur						
bit 3	CCP4IF: CCP4	Interrupt Flag bi	t						
	$\frac{\text{CCP4IF} = 1}{\text{Capture mode:}}$	Capturo occurro	d (must bo close	rod in coffwara)					
	Compare mode	: Compare matc	h occurred (mus	st be cleared in s	software)				
	PWM mode: Ou	utput trailing edge	e occurred (mus	st be cleared in s	software)				
	$\frac{\text{CCP4IF} = 0}{\text{Capture mode}}$	Capture did not	occur						
	Compare mode	: Compare matc	h did not occur						
	PWM mode: Ou	utput trailing edg	e did not occur						
bit 2	CCP3IF: CCP3 CCP3IF = 1°	Interrupt Flag bi	t						
	Capture mode:	Capture occurre	d (must be clea	red in software)					
	Compare mode	: Compare matc	h occurred (mus	st be cleared in s	software)				
	CCP3IF = 0:	utput trailing edg	e occurrea (mus	st de cleared in s	sonware)				
	Capture mode:	Capture did not	occur						
	Compare mode	: Compare matc	h did not occur						
bit 1	CCP2IF: CCP2	Interrupt Flag bi	t						
	<u>CCP2IF = 1</u> :								
	Capture mode:	Capture occurre	d (must be clear	red in software)	offuroro)				
	PWM mode: Ou	utput trailing edge	ipare match occurred (must be cleared in software)						
	CCP2IF = 0:		,		,				
	Capture mode:	Capture did not	occur h did not occur						
	PWM mode: Ou	utput trailing edge	e did not occur						
bit 0	CCP1IF: CCP1	Interrupt Flag bi	t						
	CCP1IF = 1:	Contras consume		nedia estuare)					
	Capture mode: Compare mode	: Compare matc	d (must be clear h occurred (mus	st be cleared in software)	software)				
	PWM mode: Ou	utput trailing edg	e occurred (mus	st be cleared in s	software)				
	$\frac{\text{CCP1IF} = 0}{\text{Capture mode:}}$	Canturo did not	occur						
	Compare mode	: Compare matc	h did not occur						
	PWM mode: Ou	utput trailing edg	e did not occur						

REGISTER 7-18: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	—	—	INTEDG	134
PIE0	_	—	TMR0IE	IOCIE	_	—	—	INTE	135
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	136
PIE2	-	ZCDIE	—	_		—	C2IE	C1IE	137
PIE3	-	—	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE		TMR5GIE	TMR3GIE	TMR1GIE	140
PIE6	—	—	—	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	141
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	142
PIE8	_	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	143
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	144
PIR1	OSFIF	CSWIF	—	_	_	—	ADTIF	ADIF	145
PIR2	_	ZCDIF	—	_	_	—	C2IF	C1IF	146
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
PIR4	-	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF	149
PIR6	_	—	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	150
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	152
PIR8	_		SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	153

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

9.1 Independent Clock Source

The WDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC/16 internal oscillators, depending on the value of either the WDTCCS<2:0> Configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section 37.0 "Electrical Specifications"** for LFINTOSC and MFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SEN bit of the WDTCON0 register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SEN	Device Mode	WDT Mode
11	Х	Х	Active
10		Awake	Active
10	X	Sleep	Disabled
0.1	1	х	Active
UT	0	х	Disabled
00	Х	Х	Disabled

TARI F 9-1.	WDT OPERATING MODES
IADLL J-I.	WDI OFLINATING WODLS

9.3 Time-Out Period

The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Watchdog Window

The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WDT Reset, similar to a WDT time out. See Figure 9-2 for an example.

The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111.

In the event of a <u>window</u> violation, a Reset will be generated and the WDTWV bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware.

9.5 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- Valid CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running
- · Any write to the WDTCON0 or WDTCON1 registers

9.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE)

When in Windowed mode, the WDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation.

See Table 9-2 for more information.

9.6 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section 3.0 "Memory Organization"** for more information.

10.4.5 NVMREG WRITE TO PFM

Program memory is programmed using the following steps:

- 1. Load the address of the row to be programmed into NVMADRH:NVMADRL.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-4 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of NVMADRH:NVMADRL, (NVMADRH<6:0>:NVMADRL<7:5>) with the lower five bits of NVMADRL, (NVMADRL<4:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the NVMDATH:NVMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the NVMCON1 register.
- 2. Clear the NVMREGS bit of the NVMCON1 register.
- Set the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the NVMADRH:NVMADRL register pair with the address of the location to be written.
- 5. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.4.2 "NVM Unlock Sequence"). The write latch is now loaded.
- 7. Increment the NVMADRH:NVMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.4.2 "NVM Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-4. The initial address is loaded into the NVMADRH:NVMADRL register pair; the data is loaded using indirect addressing.

10.4.6 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-6:

FLASH PROGRAM MEMORY MODIFY

INTCON GIE PEIE INTEDG	134
PIR5 CLC4IF CLC3IF CLC2IF CLC1IF — TMR5GIF TMR3GIF TMR1GIF	149
PIE5 CLC4IE CLC4IE CLC2IE CLC1IE — TMR5GIE TMR3GIE TMR1GIE	140
CLC1CON LC1EN - LC1OUT LC1INTP LC1INTN LC1MODE<2:0>	327
CLC1POL LC1POL — — LC1G4POL LC1G3POL LC1G2POL LC1G1POL	328
CLC1SEL0 — — LC1D1S<5:0>	329
CLC1SEL1 – – LC1D2S<5:0>	329
CLC1SEL2 – – LC1D3S<5:0>	329
CLC1SEL3 — — LC1D4S<5:0>	329
CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N	330
CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N	331
CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N	332
CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N	333
CLC2CON LC2EN - LC2OUT LC2INTP LC2INTN LC2MODE<2:0>	327
CLC2POL LC2POL — — LC2G4POL LC2G3POL LC2G2POL LC2G1POL	328
CLC2SEL0 — — LC2D1S<5:0>	329
CLC2SEL1 — — LC2D2S<5:0>	329
CLC2SEL2 — — LC2D3S<5:0>	329
CLC2SEL3 — — LC2D4S<5:0>	329
CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N	330
CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N	331
CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N	332
CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N	333
CLC3CON LC3EN - LC3OUT LC3INTP LC3INTN LC3MODE<2:0>	327
CLC3POL LC3POL – – – LC3G4POL LC3G3POL LC3G2POL LC3G1POL	328
CLC3SEL0 — — LC3D1S<5:0>	329
CLC3SEL1 — — LC3D2S<5:0>	329
CLC3SEL2 — — LC3D3S<5:0>	329
CLC3SEL3 — — LC3D4S<5:0>	329
CLC3GLS0 LC3G1D4T LC3G1D4N LC3G1D3T LC3G1D3N LC3G1D2T LC3G1D2N LC3G1D1T LC3G1D1N	330
CLC3GLS1 LC3G2D4T LC3G2D4N LC3G2D3T LC3G2D3N LC3G2D2T LC3G2D2N LC3G2D1T LC3G2D1N	331
CLC3GLS2 LC3G3D4T LC3G3D4N LC3G3D3T LC3G3D3N LC3G3D2T LC3G3D2N LC3G3D1T LC3G3D1N	332
CLC3GLS3 LC3G4D4T LC3G4D4N LC3G4D3T LC3G4D3N LC3G4D2T LC3G4D2N LC3G4D1T LC3G4D1N	333
CLC4CON LC4EN — LC4OUT LC4INTP LC4INTN LC4MODE<2:0>	327
CLC4POL LC4POL — — LC4G4POL LC4G3POL LC4G2POL LC4G1POL	328
CLC4SEL0 — — LC4D1S<5:0>	329
CLC4SEL1 — — LC4D2S<5:0>	329
CLC4SEL2 — — LC4D3S<5:0>	329
CLC4SEL3 — — LC4D4S<5:0>	329
CLC4GLS0 LC4G1D4T LC4G1D4N LC4G1D3T LC4G1D3N LC4G1D2T LC4G1D2N LC4G1D1T LC4G1D1N	330

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

REGISTER 23-16: A	ADRESH: ADC RESULT	REGISTER HIGH, ADFRM= 0
-------------------	--------------------	--------------------------------

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unchanged x = Bit is unkno			own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 ADRES<9:2>: ADC Result Register bits Most Significant eight bits of 10-bit conversion result.

REGISTER 23-17: ADRESL: ADC RESULT REGISTER LOW, ADFRM=0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRE | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6ADRES<1:0>: ADC Result Register bits. Least Significant two bits of 10-bit conversion result.bit 5-0Reserved: Do not use.

REGISTER 23-18: ADRESH: ADC RESULT REGISTER HIGH, ADFRM=1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| — | — | — | — | — | — | ADRE | S<9:8> |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Sample Result bits. Most Significant two bits of 10-bit conversion result.

REGISTER 23-24: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADSTP	T<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimp		U = Unimplen	nented bit, read	d as '0'			
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value		R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADSTPT<15:8>**: ADC Threshold Setpoint MSB. Most Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-25: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADSTP | T<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADSTPT<7:0>**: ADC Threshold Setpoint LSB. Least Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-26: ADERRH: ADC CALCULATION ERROR REGISTER HIGH

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADERF	R<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADERR<15:8>**: ADC Calculation Error MSB. Most Significant Byte of ADC Calculation Error. Calculation is determined by ADCALC bits of ADCON3, see Register 21-1 for more details.

[\]

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TMR0L	Holding Regi	ster for the Le	ast Significa	nt Byte of the 1	6-bit TMR0 Regis	ter			404*
TMR0H	Holding Regi	ster for the M	ost Significar	t Byte of the 1	6-bit TMR0 Regist	er			404*
T0CON0	T0EN	—	TOOUT	T016BIT	T016BIT T0OUTPS<3:0>				
T0CON1		T0CS<2:0>		T0ASYNC T0CKPS<3:0>					408
TOCKIPPS	—	—	_	_		T0CKIPPS	<3:0>		249
TMR0PPS	—	—	_		TMR	0PPS<4:0>			249
ADACT	—	—	_		ADA	ACT<4:0>			359
CLCxSELy	—	—	-		LCx	DyS<4:0>			329
T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	420
INTCON	GIE	PEIE	_	_	—	—	—	INTEDG	134
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	144
PIE0	—	—	TMR0IE	IOCIE	—	—	_	INTE	135

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page with Register information.

REGISTER 31-5:	SSPxMSK: SSPx MASK REGISTER
REGISTER 31-5:	SSPXMSK: SSPX MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			SSPM	SK<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncl	hanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Res			
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	SSPMSK<7	:1>: Mask bits					
	1 = The rec	eived address b	it n is compa	red to SSPxAD	D <n> to detect</n>	I ² C address m	atch
	0 = The rec	eived address b	it n is not use	ed to detect I ² C	address match		
bit 0	SSPMSK<0	>: Mask bit for I	² C Slave mod	de, 10-bit Addre	SS		
	<u>l²C Slave m</u>	ode, 10-bit addr	ess (SSPM<	3:0> = 0111 or	<u>1111)</u> :	•	
	1 = The rec	eived address b	it 0 is compa	red to SSPxAD	D<0> to detect	I ² C address m	atch
	0 = The rec	eived address b	it 0 is not use	ed to detect I ² C	address match		
	I ² C Slave m	ode 7-bit addre					

MSK0 bit is ignored.

REGISTER 31-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSPAD | D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPADD<2:1>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 SSPADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

- bit 7-1 SSPADD<7:1>: 7-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

					SYNC	C = 0, BRGH	H = 1, BRC	G16 = 0				
BAUD	Fosc = 32.000 MHz		Fosc = 20.000 MHz			Foso	: = 18.43	2 MHz	Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_			—				_	_	_		
1200	—	_	_	—	_		—	_	—	—	—	—
2400	—	—	—	—	—	—	—	—	—	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE Act	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	—	—			_			_	300	0.16	207	
1200		—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	—	—	—	_	—	115.2k	0.00	1	_	_	—	

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 37-14: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CM01	VIOFF	Input Offset Voltage	—		±30	mV	VICM = VDD/2		
CM02	VICM	Input Common Mode Range	GND	_	Vdd	V			
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	—	dB			
CM04	VHYST	Comparator Hysteresis	15	25	35	mV			
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	—	300	600	ns			
		Response Time, Falling Edge	—	220	500	ns			

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-15: 5-BIT DAC SPECIFICATIONS

Standard O VDD = 3.0V,	Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C										
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments				
DSB01	VLSB	Step Size	—	(VDACREF+ -VDACREF-) /32	_	V					
DSB01	VACC	Absolute Accuracy	—	—	± 0.5	LSb					
DSB03*	RUNIT	Unit Resistor Value	—	5000	_	Ω					
DSB04*	Тѕт	Settling Time ⁽¹⁾	—	_	10	μS					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
FVR01	VFVR1	1x Gain (1.024V)	-4	—	+4	%	VDD \ge 2.5V, -40°C to 85°C		
FVR02	VFVR2	2x Gain (2.048V)	-4	—	+4	%	VDD \geq 2.5V, -40°C to 85°C		
FVR03	VFVR4	4x Gain (4.096V)	-5	—	+5	%	VDD \ge 4.75V, -40°C to 85°C		
FVR04	TFVRST	FVR Start-up Time	_	25		us			

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min	Тур†	Мах	Units	Comments	
ZC01	VPINZC	Voltage on Zero Cross Pin	_	0.75	-	V		
ZC02	IZCD_MAX	Maximum source or sink current		—	600	μA		
ZC03	TRESPH	Response Time, Rising Edge		1	_	μS		
	TRESPL	Response Time, Falling Edge		1	_	μS		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS				
	, N		5		
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			2.35	
Optional Center Pad Length	T2			2.35	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A