

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16F18855 PINOUT DESCRIPTION ((CONTINUED)
		/

Name	Function	Input Type	Output Type	Description
RA5/ANA5/SS1 ⁽¹⁾ /MDSRC ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	—	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI slave select input.
	MDSRC ⁽¹⁾	TTL/ST	—	Modulator Source input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.
RA6/ANA6/OSC2/CLKOUT/IOCA6	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	—	ADC Channel A6 input.
	OSC2	—	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver output.
	CLKOUT	—	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	—	Interrupt-on-change input.
RA7/ANA7/OSC1/CLKIN/IOCA7	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	—	ADC Channel A7 input.
	OSC1	XTAL	—	External Crystal/Resonator (LP, XT, HS modes) driver input.
	CLKIN	TTL/ST	—	External digital clock input.
	IOCA7	TTL/ST	—	Interrupt-on-change input.
RB0/ANB0/C2IN1+/ZCD/SS2 ⁽¹⁾ /	RB0	TTL/ST	CMOS/OD	General purpose I/O.
	ANB0	AN	—	ADC Channel B0 input.
	C2IN1+	AN	—	Comparator positive input.
	ZCD	AN	AN	Zero-cross detect input pin (with constant current sink/source).
	SS2 ⁽¹⁾	TTL/ST	—	MSSP2 SPI slave select input.
	CCP4 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM4 (default input location for capture function).
	CWG1IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	—	External interrupt request input.
	IOCB0	TTL/ST	—	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/SCL2 ^(3,4) /	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SCR2 /CWG2IN /IOCB1	ANB1	AN	—	ADC Channel B1 input.
	C1IN3-	AN	—	Comparator negative input.
	C2IN3-	AN	—	Comparator negative input.
	SCL2 ^(3,4)	l ² C/ SMBus	OD	MSSP2 I ² C clock input/output.
	SCK2 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP2 SPI serial clock (default input location, SCK2 is a PPS remappable input and output).
	CWG2IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 2 input.
	IOCB1	TTL/ST	_	Interrupt-on-change input.
Legend: AN = Analog input or out	out CMOS =	= CMOS co	mpatible input or	output OD = Open-Drain

TTL = TTL compatible input

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels = Crystal levels XTAL

1²C = Schmitt Trigger input with I^2C

= High Voltage ΗV Note

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F18855/75

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1:	RETLW INSTRUCTION
constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CO	DDE
MOVLW DA	ATA_INDEX
call constant	s
; THE CONSTA	ANT IS IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, the older table read method must be used because the BRW instruction is not available in some devices.

TABLE 3-6: PIC16F18855/75 MEMORY MAP BANK 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	Core Registers (Table 3-2)	880h	Core Registers (Table 3-2)	900h	Core Registers (Table 3-2)	980h	Core Registers (Table 3-2)	A00h	Core Registers (Table 3-2)	A80h	Core Registers (Table 3-2)	B00h	Core Registers (Table 3-2)	B80h	Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch	WDTCON0	88Ch	CPUDOZE	90Ch	FVRCON	98Ch	_	A0Ch		A8Ch		B0Ch		B8Ch	
80Dh	WDTCON1	88Dh	OSCCON1	90Dh	_	98Dh	_								
80Eh	WDTPSL	88Eh	OSCCON2	90Eh	DAC1CON0	98Eh	_								
80Fh	WDTPSH	88Fh	OSCCON3	90Fh	DAC1CON1	98Fh	CMOUT								
810h	WDTTMR	890h	OSCSTAT	910h	_	990h	CM1CON0								
811h	BORCON	891h	OSCEN	911h	_	991h	CM1CON1								
812h	VREGCON ⁽¹⁾	892h	OSCTUNE	912h	_	992h	CM1NSEL								
813h	PCON0	893h	OSCFRQ	913h	_	993h	CM1PSEL								
814h	CCDCON	894h	—	914h	_	994h	CM2CON0								
815h	_	895h	CLKRCON	915h	_	995h	CM2CON1								
816h	_	896h	CLKRCLK	916h	_	996h	CM2NSEL								
817h	_	897h	MDCON0	917h	—	997h	CM2PSEL		Unimplemented		Unimplemented		Unimplemented		Unimplemented
818h	_	898h	MDCON1	918h	_	998h			Read as '0'		Read as '0'		Read as '0'		Read as '0'
819h	_	899h	MDSRC	919h	—	999h	_								
81Ah	NVMADRL	89Ah	MDCARL	91Ah	—	99Ah	_								
81Bh	NVMADRH	89Bh	MDCARH	91Bh	—	99Bh	—								
81Ch	NVMDATL	89Ch	—	91Ch	—	99Ch	—								
81Dh	NVMDATH	89Dh	_	91Dh	—	99Dh	—								
81Eh	NVMCON1	89Eh	_	91Eh	—	99Eh	—								
81Fh	NVMCON2	89Fh		91Fh	ZCDCON	99Fh									
820h		8A0h		920h		9A0h									
	Unimplemented		Unimplemented		Unimplemented		Unimplemented								
		0551	11000 03 0	OGEN	11000 05 0	OFEN	11000 03 0			4 F F h		DOF		DEEP	
80Fh	0	8EFh	0	90F11	0	9EFII	0	A6Fh	0	AEFN	0	BOLU	0	BEFN	0
0/00		orun		9700		arou		Arun		AFUN		Brun		BENU	
075-	70h – 7Fh		70h – 7Fh	0755	70h – 7Fh		70h – 7Fh		70h – 7Fh	A	70h – 7Fh		70h – 7Fh		70h – 7Fh
0/ ГЛ		orrn		9/50		9FFN									-

Note 1: PIC16F18855/75 only.

IADLE	3-13: 3PE		FUNCTION	REGISTE	R SUMMA	KI DANKS (
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 28												
	CPU CORE REGISTERS; see Table 3-2 for specifics											
E0Ch	10Ch — — Unimplemented — — —										—	
E0Dh	—	—				U	nimplemented				-	—
E0Eh	—	—				U	nimplemented				-	—
E0Fh	CLCDATA		—	—	_	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000	0000
E10h	CLC1CON		LC1EN	—	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0>		0-x0 0000	0-x0 0000
E11h	CLC1POL		LC1POL	—	-	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
E12h	CLC1SEL0		—	—		LC1D1S<5:0>xx xxxx						
E13h	CLC1SEL1		—	—			LC1	D2S<5:0>			xx xxxx	uu uuuu
E14h	CLC1SEL2		—	_			LC1	D3S<5:0>			xx xxxx	uu uuuu
E15h	CLC1SEL3		—	_			LC1	D4S<5:0>			xx xxxx	uu uuuu
E16h	CLC1GLS0		LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
E17h	CLC1GLS1		LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
E18h	CLC1GLS2		LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
E19h	CLC1GLS3		LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
E1Ah	CLC2CON		LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>		0-x0 0000	0-x0 0000
E1Bh	CLC2POL		LC2POL	_		_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
E1Ch	CLC2SEL0		—	—			LC2	D1S<5:0>			xx xxxx	uu uuuu
E1Dh	CLC2SEL1		—	—			LC2	D2S<5:0>			xx xxxx	uu uuuu
E1Eh	CLC2SEL2		—	—			LC2	D3S<5:0>			xx xxxx	uu uuuu
E1Fh	CLC2SEL3		—	—			LC2	D4S<5:0>			xx xxxx	uu uuuu
E20h	CLC2GLS0		LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuuu
E21h	CLC2GLS1		LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu

TION DECISTED SUMMARY PANKS 0.24 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Register present on PIC16F18855/75 devices only. Legend:

Note 1:

Unimplemented, read as '1'. 2:

3.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1, the signed value of the operand of the BRA instruction.

PIC16(L)F18855/75

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- · Linear Data Memory
- Data EEPROM Memory
- Program Flash Memory

PIC16(L)F18855/75

REGISIE	CEGISTER 7-14: PIRS: PERIPHERAL INTERRUPT REQUEST REGISTER 3							
U-0	U-0	R-0	R-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	re clearable			
bit 7-6	Unimplemer	ted: Read as '	0'					
bit 5	RCIF: EUSA	RT Receive Inte	errupt Flag (re	ad-only) bit ⁽¹⁾				
	1 = The EUS 0 = The EUS	ART receive bu ART receive bu	Iffer is not em Iffer is empty	pty (contains a	t least one byte)		
bit 4	TXIF: EUSA	RT Transmit Inte	errupt Flag (re	ad-only) bit ⁽²⁾				
	1 = The EUS	ART transmit b	uffer contains	at least one ur	noccupied space	е		
	0 = The EUS	ART transmit b	uffer is curren	tly full. The app	olication firmwar	e should not w	rite to TXREG	
	again, ui	ntil more room k	becomes avai	lable in the trar	nsmit buffer.			
bit 3	BCL2IF: MS	SP2 Bus Collisi	on Interrupt F	lag bit				
	1 = A bus col 0 = No bus c	ollision was dete	cted (must be ected	cleared in soft	ware)			
bit 2	SSP2IF: Syn	chronous Seria	I Port (MSSP2	2) Interrupt Flag	g bit			
	1 = The Tran	smission/Recep	otion/Bus Con	dition is compl	ete (must be cle	eared in softwa	re)	
	0 = Waiting	for the Transmis	ssion/Reception	on/Bus Condition	on in progress			
bit 1	BCL1IF: MS	SP1 Bus Collisi	on Interrupt F	lag bit				
	1 = A bus col	llision was dete	cted (must be	cleared in soft	ware)			
hit 0	0 = 100 bus 0	ollision was de	L Dort (MSSD)	1) Interrupt Ele	a hit			
DILU	1 - The Tran	smission/Pecer	tion/Bus Con	dition is compl	y Dil ete (must be cle	ared in coftwa	ro)	
	0 = Waiting 1	for the Transmis	ssion/Reception	on/Bus Condition	on in progress			
Note 1:	The RCIF flag is a times to remove a	he RCIF flag is a read-only bit. To clear the RCIF flag, the firmware must read from RCREG enough mes to remove all bytes from the receive buffer.						
2:	The TXIF flag is a firmware must writ does not indicate	read-only bit, ir te enough data transmit comple	ndicating if the to TXREG to o etion (use TRM	ere is room in th completely fill a MT for this purp	ne transmit buffe Il available byte pose instead).	er. To clear the s in the buffer.	TXIF flag, the The TXIF flag	

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

REGISTER 7-14: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

8.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are two Power-Down modes: DOZE mode and Sleep mode.

8.1 DOZE Mode

DOZE mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. DOZE mode differs from Sleep mode because the system oscillators continue to

operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 100, the instruction cycle ratio is 1:32. The CPU and memory execute for one instruction cycle and then lay idle for 31 instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

8.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 8-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	220
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	220
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	221
ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	222
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	222
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	222
CCDPC	CCDPC7	CCDPC6	CCDPC5	CCDPC4	CCDPC3	CCDPC2	CCDPC1	CCDPC0	223
CCDNC	CCDNC7	CCDNC6	CCDNC5	CCDNC4	CCDNC3	CCDNC2	CCDNC1	CCDNC0	223
CCDCON	CCDEN	—	—	—	—	—	CCDS	6<1:0>	201

TABLE 12-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

PIC16(L)F18855/75

REGISTER	14-3: PMD2	2: PMD CON	ROL REGIS	TER 2			
U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	DACMD	ADCMD	_		CMP2MD	CMP1MD	ZCDMD
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	Unimplemen	ted: Read as '0)'				
bit 6	DACMD: Disa	able DAC bit					
	1 = DAC mo	dule disabled					
	0 = DAC modelse	dule enabled					
bit 5	ADCMD: Disa	able ADC bit					
	1 = ADC model =	dule disabled					
hit 4 2			۰ ۲				
DIL 4-3		achte Common)			
DIT 2	1 = CMP2mD: DI	sable Compara	tor CMP2 Dit				
	0 = CMP2 m	odule enabled					
bit 1	CMP1MD: Disable Comparator CMP1 bit						
	1 = CMP1 m	odule disabled					
	0 = CMP1 m	odule enabled					
bit 0	ZCDMD: Disa	able ZCD					
	1 = ZCD mod	dule disabled					
	0 = ZCD mod	dule enabled					

15.6 Register Definitions: Interrupt-on-Change Control

REGISTER 15-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3 | IOCAP2 | IOCAP1 | IOCAP0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCAP<7:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCAN<7:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2 | IOCAF1 | IOCAF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCAF<7:0>: Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin. Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

PIC16(L)F18855/75

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	269
ADREF				ADNREF		ADPREF<1:0>		362	
ADPCH					ADPCH<5:0>				363
CM1CON1		_	—		—	—	INTP	INTN	280
CM1NSEL	_	—	—	_	—		NCH<2:0>		281
CM1PSEL	_	—	—	_	—		PCH<2:0>		281
CM2CON1	_	—	—	_	—	—	INTP	INTN	280
CM2NSEL	_	—	—	_	—		NCH<2:0>		281
CM2PSEL	_	_	_	_	_		PCH<2:0>		281
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	389

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

FIGURE 20-12: CWG SHUTDOWN BLOCK DIAGRAM

PIC16(L)F18855/75

INTCON GIE PEIE INTEDG	134
PIR5 CLC4IF CLC3IF CLC2IF CLC1IF — TMR5GIF TMR3GIF TMR1GIF	149
PIE5 CLC4IE CLC4IE CLC2IE CLC1IE — TMR5GIE TMR3GIE TMR1GIE	140
CLC1CON LC1EN - LC1OUT LC1INTP LC1INTN LC1MODE<2:0>	327
CLC1POL LC1POL — — LC1G4POL LC1G3POL LC1G2POL LC1G1POL	328
CLC1SEL0 — — LC1D1S<5:0>	329
CLC1SEL1 – – LC1D2S<5:0>	329
CLC1SEL2 – – LC1D3S<5:0>	329
CLC1SEL3 — — LC1D4S<5:0>	329
CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N	330
CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N	331
CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N	332
CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N	333
CLC2CON LC2EN - LC2OUT LC2INTP LC2INTN LC2MODE<2:0>	327
CLC2POL LC2POL — — LC2G4POL LC2G3POL LC2G2POL LC2G1POL	328
CLC2SEL0 — — LC2D1S<5:0>	329
CLC2SEL1 — — LC2D2S<5:0>	329
CLC2SEL2 — — LC2D3S<5:0>	329
CLC2SEL3 — — LC2D4S<5:0>	329
CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N	330
CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N	331
CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N	332
CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N	333
CLC3CON LC3EN - LC3OUT LC3INTP LC3INTN LC3MODE<2:0>	327
CLC3POL LC3POL – – – LC3G4POL LC3G3POL LC3G2POL LC3G1POL	328
CLC3SEL0 — — LC3D1S<5:0>	329
CLC3SEL1 — — LC3D2S<5:0>	329
CLC3SEL2 — — LC3D3S<5:0>	329
CLC3SEL3 — — LC3D4S<5:0>	329
CLC3GLS0 LC3G1D4T LC3G1D4N LC3G1D3T LC3G1D3N LC3G1D2T LC3G1D2N LC3G1D1T LC3G1D1N	330
CLC3GLS1 LC3G2D4T LC3G2D4N LC3G2D3T LC3G2D3N LC3G2D2T LC3G2D2N LC3G2D1T LC3G2D1N	331
CLC3GLS2 LC3G3D4T LC3G3D4N LC3G3D3T LC3G3D3N LC3G3D2T LC3G3D2N LC3G3D1T LC3G3D1N	332
CLC3GLS3 LC3G4D4T LC3G4D4N LC3G4D3T LC3G4D3N LC3G4D2T LC3G4D2N LC3G4D1T LC3G4D1N	333
CLC4CON LC4EN — LC4OUT LC4INTP LC4INTN LC4MODE<2:0>	327
CLC4POL LC4POL — — LC4G4POL LC4G3POL LC4G2POL LC4G1POL	328
CLC4SEL0 — — LC4D1S<5:0>	329
CLC4SEL1 — — LC4D2S<5:0>	329
CLC4SEL2 — — LC4D3S<5:0>	329
CLC4SEL3 — — LC4D4S<5:0>	329
CLC4GLS0 LC4G1D4T LC4G1D4N LC4G1D3T LC4G1D3N LC4G1D2T LC4G1D2N LC4G1D1T LC4G1D1N	330

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

TABLE 23-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCCS<5:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	000001	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/6	000010	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs
Fosc/8	000011	250 μs ⁽²⁾	400 ns ⁽²⁾	500 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	000111	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽²⁾
Fosc/128	111111	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾
FRC	ADCS(ADCON0 <4>)=1	1.0-6.0 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

- **2:** These values violate the required TAD time.
- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 23-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES (ADSC = 0)

REGISTER 31-5:	SSPxMSK: SSPx MASK REGISTER
REGISTER 31-5:	SSPXMSK: SSPX MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			SSPM	SK<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	SSPMSK<7	:1>: Mask bits					
	1 = The rec	eived address b	it n is compar	ed to SSPxADI	D <n> to detect</n>	I ² C address ma	atch
	0 = The rec	eived address b	it n is not use	d to detect I ² C	address match		
bit 0	SSPMSK<0	>: Mask bit for I	² C Slave mod	le, 10-bit Addre	SS		
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):						
	1 = The received address bit 0 is compared to SSPxADD<0> to detect I ² C address match						atch
	0 = The rec	eived address b	it 0 is not use	d to detect I ² C	address match		
<u>l²C Slave mode, 7-bit address:</u>							

MSK0 bit is ignored.

REGISTER 31-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSPAD | D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPADD<2:1>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 SSPADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

- bit 7-1 SSPADD<7:1>: 7-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

FIGURE 32-16: CAPTURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC16(L)F18855/75

33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when:

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 33.3.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART in Sleep mode.

40.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Microchip Technology Drawing C04-103C Sheet 1 of 2