

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<u></u> <u></u>
 6(
L)
Γ1
80
55
5/7
J

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16F18875) (CONTINUED)

O/i	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC0	15	30	34	32	ANC0		_		—	_	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_			_		IOCC0	SOSCO
RC1	16	31	35	35	ANC1	—	—	—	—	—	—	—	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	_	_	—	_	IOCC1	SOSCI
RC2	17	32	36	36	ANC2	_	_	—	-	—	_	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾			—		IOCC2	_
RC3	18	33	37	37	ANC3		—	—	_	SCL1 ^(3,4) SCK1 ⁽¹⁾		_	T2IN ⁽¹⁾		-	-			IOCC3	Ι
RC4	23	38	42	42	ANC4	_	—	-		SDA1 ^(3,4) SDI1 ⁽¹⁾		-	_		_	-		-	IOCC4	
RC5	24	39	43	43	ANC5	_	—	—	_	—	_	_	T4IN ⁽¹⁾	_	_	_	_	_	IOCC5	_
RC6	25	40	44	44	ANC6	_	—	—	—	—	CK ⁽³⁾	_	—	_	—	—	—	_	IOCC6	_
RC7	26	1	1	1	ANC7	_	_	_	—	_	RX ⁽¹⁾ DT ⁽³⁾	_	—	_	-	-	_		IOCC7	_
RD0	19	34	38	38	AND0	_	—	—		—	_	_	—	-	_	_	—	—	-	
RD1	20	35	39	39	AND1	_	_	—	-	—	—	_	_	_	_	_	_	_	-	-
RD2	21	36	40	40	AND2	_	—	—		—	_	_	—	-	_	_	—	—	-	
RD3	22	37	41	41	AND3	_	_	—		—	-	_	_	_	_	_	—	_	-	
RD4	27	2	2	2	AND4	_	_	-	-	_	_	_	_	_			—		—	
RD5	28	3	3	3	AND5	—	—		_	—	—	—	—	—	_	—	—	_		_
RD6	29	4	4	4	AND6	_	—	—	—	—	_	—	—	—	-	_	—	_	_	—
RD7	30	5	5	5	AND7	—			_		_	_	—	—	_	_	—	_	_	—
RE0	8	23	25	25	ANE0	—	—	-	—	—	—	_	—	—	—	_	—	—	-	—
RE1	9	24	26	26	ANE1	—	—		_	—	—	—	—	—	_	—	—	_	_	—
RE2	10	25	27	27	ANE2	-	-	—	—	-	-	-	_	_	—	-	_	—	_	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit 7 if a label points to a location in the program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants	
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW LOW cons	stants
MOVWF FSR1L	
MOVLW HIGH cor	nstants
MOVWF FSR1H	
MOVIW 0[FSR1]	
; THE PROGRAM MEMORY	IS IN W

3.2 Data Memory Organization

The data memory is partitioned into 32 memory banks with 128 bytes in each bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-12.

TABLE 3-2:	CORE REGISTERS
------------	----------------

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

IABLE	3-13: SPE		FUNCTION		R SUMMA	RY BANKS	0-31 (CONTI	NUED)	-			-
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 7												
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
38Ch	PWM6DCL		DC<	1:0>	_	-	_	-	_	_	xx	uu
38Dh	PWM6DCH				•	•	DC<9:2>	•	•		xxxx xxxx	uuuu uuuu
38Eh	PWM6CON		EN	—	OUT	POL	-	-	-	—	0-00	0-00
38Fh	—	—				U	Inimplemented			•	—	—
390h	PWM7DCL		DC<	1:0>	-	-	-	_	_	_	xx	uu
391h	PWM7DCH						DC<9:2>	÷			xxxx xxxx	uuuu uuuu
392h	PWM7CON		EN	—	OUT	POL	-	-	—	—	0-00	0-00
393h	_	_				U	Inimplemented				—	—
394h	_	-				U	Inimplemented				—	—
395h	-	—				U	Inimplemented				—	—
396h	_	-				U	Inimplemented				—	—
397h	_	-				U	Inimplemented				—	—
398h	-	-				U	Inimplemented				—	—
399h	_	-				U	Inimplemented				—	—
39Ah	_	-				U	Inimplemented				—	—
39Bh	_	-				U	Inimplemented				—	—
39Ch	_	_				U	Inimplemented				—	_
39Dh	_	_				U	Inimplemented				—	—
39Eh	—	—				U	Inimplemented				—	—
39Fh	_	_				U	Inimplemented				_	

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

PIC16(L)F18855/75

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
	1 = Enables	the USART rec	eive interrupt				
	0 = Enables	the USART rec	eive interrupt				
bit 4	TXIE: USARI	I Transmit Inter	rrupt Enable b	oit			
	1 = Enables 0 = Disables	the USART tra	nsmit interrup Insmit interrup	t ot			
bit 3	BCL2IE: MSS	SP2 Bus Collisi	on Interrupt E	nable bit			
	1 = MSSP bu	us Collision inte	errupt enabled	l			
	0 = MSSP bu	us Collision inte	errupt disabled	t			
bit 2	SSP2IE: Syn	chronous Seria	I Port (MSSP	2) Interrupt En	able bit		
	1 = MSSP but	us collision Inte	errupt				
hit 1			inupi Ion Intorrunt E	nable bit			
		us collision inte	rrunt enabled				
	0 = MSSP bu	us collision inte	rrupt disabled				
bit 0	SSP1IE: Syne	chronous Seria	I Port (MSSP	1) Interrupt En	able bit		
1 = Enables the MSSP interrupt							
	0 = Disables	the MSSP inte	rrupt				
Note:	Bit PEIE of the IN	TCON register	must be				
	set to enable a	ny peripheral	interrupt				
	controlled by PIE1	-PIE8.					

REGISTER 7-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0						
	_	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF						
bit 7							bit 0						
Legend:													
R = Readable bi	it	W = Writable bit		U = Unimpleme	ented bit, read	l as '0'							
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BO	R/Value at all other F	Resets						
'1' = Bit is set		'0' = Bit is cleare	ed	HS = Hardware	e set								
hit 7 5	Unimplomo	eted: Bood on '0'											
bit 4	CCP5IE: CC	P5 Interrunt Flag hit											
				CCPM	Mode								
	Value	Canto				DIA/M							
			re	Compose motob o	are		ourrod						
	1	(must be cleared in se	oftware)	(must be cleared i	in software)	(must be cleared in so	ftware)						
	0	Capture did not occur		Compare match d	id not occur	Output trailing edge die	d not occur						
bit 3	CCP4IF: CC	CP4IF: CCP4 Interrupt Flag bit											
		CCPM Mode											
	Value	Capture		Compare		PWM							
	1	Capture occurred (must be cleared in se	oftware)	Compare match o (must be cleared i	ccurred in software)	Output trailing edge oc (must be cleared in so	curred ftware)						
	0	Capture did not occur		Compare match d	id not occur	Output trailing edge did	d not occur						
bit 2	CCP3IF: CC	23 Interrupt Flag bit											
		CCPM Mode											
	value	Captu	re	Comp	are	PWM							
	1	Capture occurred (must be cleared in se	oftware)	Compare match o (must be cleared i	ccurred in software)	Output trailing edge of (must be cleared in sol	curred ftware)						
	0	Capture did not occur		Compare match d	id not occur	Output trailing edge die	d not occur						
bit 1	CCP2IF: CC	P2 Interrupt Flag bit											
		CCPM Mode											
	Value	Captu	re	Comp	are	PWM							
	1	Capture occurred (must be cleared in se	oftware)	Compare match o (must be cleared i	ccurred in software)	Output trailing edge oc (must be cleared in so	curred ftware)						
	0	Capture did not occur		Compare match d	lid not occur	Output trailing edge die	d not occur						
bit 0	CCP1IF: CC	P1 Interrupt Flag bit											
				ССРМ	Mode								
	Value	Captu	re	Comp	are	PWM							
		•		Compare match o	ccurred	Output trailing edge or	curred						
	1	Capture occurred (must be cleared in se	oftware)	(must be cleared i	in software)	(must be cleared in sol	ftware)						

REGISTER 7-17: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

10.4.7 NVMREG DATA EEPROM MEMORY, USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS

Instead of accessing Program Flash Memory (PFM), the Data EEPROM Memory, the User ID's, Device ID/ Revision ID and Configuration Words can be accessed when NVMREGS = 1 in the NVMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-3.

When read access is initiated on an address outside the parameters listed in Table 10-3, the NVMDATH: NVMDATL register pair is cleared, reading back '0's.

FLASH PROGRAM MEMORY MODIFY

TABLE 10-3:EEPROM, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS
(NVMREGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	8005h-8006h Device ID/Revision ID		No
8007h-800Bh	Configuration Words 1-5	Yes	No
F000h-F0FFh EEPROM		Yes	Yes

11.10.1 BURST MODE

When MODE = 01, the scanner is in Burst mode. In Burst mode, CPU operation is stalled beginning with the operation after the one that sets the SCANGO bit, and the scan begins, using the instruction clock to execute. The CPU is held until the scan stops. Note that because the CPU is not executing instructions, the SCANGO bit cannot be cleared in software, so the CPU will remain stalled until one of the hardware end-conditions occurs. Burst mode has the highest throughput for the scanner, but has the cost of stalling other execution while it occurs.

11.10.2 CONCURRENT MODE

When MODE = 00, the scanner is in Concurrent mode. Concurrent mode, like Burst mode, stalls the CPU while performing accesses of memory. However, while Burst mode stalls until all accesses are complete, Concurrent mode allows the CPU to execute in between access cycles.

11.10.3 TRIGGERED MODE

When MODE = 11, the scanner is in Triggered mode. Triggered mode behaves identically to Concurrent mode, except instead of beginning the scan immediately upon the SCANGO bit being set, it waits for a rising edge from a separate trigger clock, the source of which is determined by the SCANTRIG register.

11.10.4 PEEK MODE

When MODE = 10, the scanner is in Peek mode. Peek mode waits for an instruction cycle in which the CPU does not need to access the NVM (such as a branch instruction) and uses that cycle to do its own NVM access. This results in the lowest throughput for the NVM access (and can take a much longer time to complete a scan than the other modes), but does so without any impact on execution times, unlike the other modes.

MODE<1:0>		Description							
		First Scan Access	CPU	J Operation					
11	Triggered	As soon as possible following a trigger	Stalled during NVM access	CPU resumes execution following each access					
10	Peek	At the first dead cycle	Timing is unaffected	CPU continues execution following each access					
01	Burst		Stalled during NV/M appage	CPU suspended until scan completes					
00	Concurrent	As soon as possible		CPU resumes execution following each access					

TABLE 11-1: SUMMARY OF SCANNER MODES

11.10.5 INTERRUPT INTERACTION

The INTM bit of the SCANCON0 register controls the scanner's response to interrupts depending on which mode the NVM scanner is in, as described in Table 11-2.

TABLE 11-2: SCAN INTERRUPT MODES

INITM	MODE<1:0>						
	MODE == Burst	MODE != Burst					
1	Interrupt overrides SCANGO to pause the burst and the interrupt handler executes at full speed; Scanner Burst resumes when interrupt completes.	Scanner suspended during interrupt response; interrupt executes at full speed and scan resumes when the interrupt is complete.					
0	Interrupts do not override SCANGO, and the scan (burst) operation will continue; interrupt response will be delayed until scan completes (latency will be increased).	Scanner accesses NVM during interrupt response. If MODE != Peak the interrupt handler execution speed will be affected.					

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-14 for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 28.7 "Timer Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 28-1) for more information.

18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN0+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See Section 16.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 25.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- · CxIN- pin
- FVR (Fixed Voltage Reference)
- · Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

PIC16(L)F18855/75

23.4.1 CVD OPERATION

A CVD operation begins with the ADC's internal (C_{HOLD}) sample and hold capacitor being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, CHOLD is precharged to VDD or Vss, while the path to the sensor node is also discharged to VDD or VSS. Typically, this node is discharged to the level opposite that of CHOLD. When the precharge phase is complete, the VDD/VSS bias paths for the two nodes are shut off and CHOLD and the path to the external sensor node are reconnected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged CHOLD and sensor nodes, which results in a final voltage level setting on CHOLD which is determined by the capacitances and precharge levels of the two nodes. After acquisition, the ADC converts the voltage level on CHOLD. This process is then repeated with the selected precharge levels for both the CHOLD and the inverted sensor nodes. Figure 23-7 shows the waveform for two inverted CVD measurements, which is known as differential CVD measurement.

REGISTER 23-4: ADCON3: ADC THRESHOLD REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
—	/	ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCAL<2:0>: ADC Error Calculation Mode Select bits

	Action During		
ADCALC	ADDSEN = 0 Single-Sample Mode	ADDSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	ADFLTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers If ADCONT = 0 bit is ignored.

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Always set ADTIF at end of calculation
- 110 = Set ADTIF if ADERR>ADUTH
- 101 = Set ADTIF if ADERR≤ADUTH
- 100 = Set ADTIF if ADERR<ADLTH or ADERR>ADUTH
- 011 = Set ADTIF if ADERR>ADLTH and ADERR<ADUTH
- 010 = Set ADTIF if ADERR≥ADLTH
- 001 = Set ADTIF if ADERR<ADLTH
- 000 = ADTIF is disabled

Note 1: When ADPSIS = 0, the value of (ADRES-ADPREV) is the value of (S2-S1) from Table 23-3.

- **2:** When ADPSIS = 0
- 3: When ADPSIS = 1.

IC16(L)F18855/75

29.0 TIMER2/4/6 MODULE

The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- 8-bit period register
- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- Alternate clock sources
- · Interrupt-on-period

- Three modes of operation:
 - Free Running Period
 - One-shot
 - Monostable

See Figure 29-1 for a block diagram of Timer2. See Figure 29-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4, and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.

FIGURE 29-1: TIMER2 BLOCK DIAGRAM

29.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 29-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 5002014 5002014	
MODE	0600001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

PIC16(L)F18855/75

REGISTER 30-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	_		CTS<2:0>	
bit 7							bit 0

Legend:

- J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture	CCP3.capture	CCP4.capture	CCP5.capture		
111		LC4_out					
110	LC3_out						
101	LC2_out						
100	LC1_out						
011	IOC_interrupt						
010	C2OUT						
001	C1OUT						
000	CCP1PPS	CCP2PPS	CCP3PPS	CCP4PPS	CCP5PPS		

REGISTER 30-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPR | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
CCPxMODE = Capture mode
CCPRxL<7:0>: Capture value of TMR1L
CCPxMODE = Compare mode
CCPRxL<7:0>: LS Byte compared to TMR1L
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxL<7:0>: Pulse-width Least Significant eight bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxL<7:6>: Pulse-width Least Significant two bits
CCPRxL<5:0>: Not used.

32.1 SMT Operation

The core of the module is the 24-bit counter, SMTxTMR combined with a complex data acquisition front-end. Depending on the mode of operation selected, the SMT can perform a variety of measurements summarized in Table 32-1.

32.1.1 CLOCK SOURCES

Clock sources available to the SMT include:

- Fosc
- Fosc/4
- HFINTOSC (16 MHz)
- LFINTOSC
- MFINTOSC/16 (31.25 kHz)

The SMT clock source is selected by configuring the CSEL<2:0> bits in the SMTxCLK register. The clock source can also be prescaled using the PS<1:0> bits of the SMTxCON0 register. The prescaled clock source is used to clock both the counter and any synchronization logic used by the module.

32.1.2 PERIOD MATCH INTERRUPT

Similar to other timers, the SMT triggers an interrupt when SMTxTMR rolls over to '0'. This happens when SMTxTMR = SMTxPR, regardless of mode. Hence, in any mode that relies on an external signal or a window to reset the timer, proper operation requires that SMTxPR be set to a period larger than that of the expected signal or window.

32.2 Basic Timer Function Registers

The SMTxTMR time base and the SMTxCPW/SMTxPR/SMTxCPR buffer registers serve several functions and can be manually updated using software.

32.2.1 TIME BASE

The SMTxTMR is the 24-bit counter that is the center of the SMT. It is used as the basic counter/timer for measurement in each of the modes of the SMT. It can be reset to a value of 24'h00_0000 by setting the RST bit of the SMTxSTAT register. It can be written to and read from software, but it is not guarded for atomic access, therefore reads and writes to the SMTxTMR should only be made when the GO = 0, or the software should have other measures to ensure integrity of SMTxTMR reads/writes.

32.2.2 PULSE WIDTH LATCH REGISTERS

The SMTxCPW registers are the 24-bit SMT pulse width latch. They are used to latch in the value of the SMTxTMR when triggered by various signals, which are determined by the mode the SMT is currently in.

The SMTxCPW registers can also be updated with the current value of the SMTxTMR value by setting the CPWUP bit of the SMTxSTAT register.

32.2.3 PERIOD LATCH REGISTERS

The SMTxCPR registers are the 24-bit SMT period latch. They are used to latch in other values of the SMTxTMR when triggered by various other signals, which are determined by the mode the SMT is currently in.

The SMTxCPR registers can also be updated with the current value of the SMTxTMR value by setting the CPRU bit in the SMTxSTAT register.

32.3 Halt Operation

The counter can be prevented from rolling-over using the STP bit in the SMTxCON0 register. When halting is enabled, the period match interrupt persists until the SMTxTMR is reset (either by a manual reset, **Section 32.2.1 "Time Base**") or by clearing the SMTxGO bit of the SMTxCON1 register and writing the SMTxTMR values in software.

32.4 Polarity Control

The three input signals for the SMT have polarity control to determine whether or not they are active high/positive edge or active low/negative edge signals.

The following bits apply to Polarity Control:

- WSEL bit (Window Polarity)
- SSEL bit (Signal Polarity)
- CSEL bit (Clock Polarity)

These bits are located in the SMTxCON0 register.

32.5 Status Information

The SMT provides input status information for the user without requiring the need to deal with the polarity of the incoming signals.

32.5.1 WINDOW STATUS

Window status is determined by the WS bit of the SMTxSTAT register. This bit is only used in Windowed Measure, Gated Counter and Gated Window Measure modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

32.5.2 SIGNAL STATUS

Signal status is determined by the AS bit of the SMTxSTAT register. This bit is used in all modes except Window Measure, Time of Flight and Capture modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

32.6.11 WINDOWED COUNTER MODE

This mode counts pulses on the SMTx_signal input, within a window dictated by the SMTxWIN input. It begins counting upon seeing a rising edge of the SMTxWIN input, updates the SMTxCPW register on a falling edge of the SMTxWIN input, and updates the SMTxCPR register on each rising edge of the SMTxWIN input beyond the first. See Figure 32-21 and Figure 32-22.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PIE8	—	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	143
PIR8	—	—	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	153
SMT1TMRL				SMT1TM	IR<7:0>				549
SMT1TMRH				SMT1TM	R<15:8>				549
SMT1TMRU		SMT1TMR<23:16>						549	
SMT1CPRL				SMT1CP	'R<7:0>				550
SMT1CPRH				SMT1CPI	R<15:8>				550
SMT1CPRU				SMT1CPF	R<23:16>				550
SMT1CPWL				SMT1CP	W<7:0>				551
SMT1CPWH				SMT1CP\	N<15:8>				551
SMT1CPWU				SMT1CPV	/<23:16>				551
SMT1PRL				SMT1PF	R<7:0>				552
SMT1PRH				SMT1PF	<15:8>				552
SMT1PRU	SMT1PR<23:16>						552		
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1PS	S<1:0>	543
SMT1CON1	SMT1GO	REPEAT	—	— MODE<3:0>					544
SMT1STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	545
SMT1CLK	_	—	—	— — CSEL<2:0>				546	
SMT1SIG	_	_	— — SSEL<4:0>					548	
SMT1WIN	_	_	—			WSEL<4:0>			547
SMT2TMRL				SMT2TM	IR<7:0>				549
SMT2TMRH				SMT2TM	R<15:8>				549
SMT2TMRU				SMT2TMF	?<23:16>				549
SMT2CPRL				SMT2CP	'R<7:0>				550
SMT2CPRH				SMT2CPI	R<15:8>				550
SMT2CPRU				SMT2CPF	R<23:16>				550
SMT2CPWL				SMT2CP	W<7:0>				551
SMT2CPWH				SMT2CP\	N<15:8>				551
SMT2CPWU				SMT2CPV	/<23:16>				551
SMT2PRL				SMT2PF	R<7:0>				552
SMT2PRH				SMT2PF	<15:8>				552
SMT2PRU				SMT2PR	<23:16>				552
SMT2CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT2PS	6<1:0>	543
SMT2CON1	SMT2GO	REPEAT	_	_		MODE	<3:0>		544
SMT2STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	545
SMT2CLK	—	—	—	—	—		CSEL<2:0>	•	546
SMT2SIG	—	—	—			SSEL<4:0>			548
SMT2WIN	_					WSEL<4:0>			547

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: - = unimplemented read as '0'. Shaded cells are not used for SMTx module.

PIC16(L)F18855/75

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIF = 1

TABLE 37-14: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	—		±30	mV	VICM = VDD/2	
CM02	VICM	Input Common Mode Range	GND	—	Vdd	V		
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	—	dB		
CM04	VHYST	Comparator Hysteresis	15	25	35	mV		
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	—	300	600	ns		
		Response Time, Falling Edge	—	220	500	ns		

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-15: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DSB01	VLSB	Step Size	_	(VDACREF+ -VDACREF-) /32	—	V	
DSB01	VACC	Absolute Accuracy	—	—	± 0.5	LSb	
DSB03*	RUNIT	Unit Resistor Value	_	5000	—	Ω	
DSB04*	Тэт	Settling Time ⁽¹⁾	_	_	10	μS	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
FVR01	VFVR1	1x Gain (1.024V)	-4	—	+4	%	VDD \ge 2.5V, -40°C to 85°C	
FVR02	VFVR2	2x Gain (2.048V)	-4	—	+4	%	VDD \geq 2.5V, -40°C to 85°C	
FVR03	VFVR4	4x Gain (4.096V)	-5	—	+5	%	VDD \ge 4.75V, -40°C to 85°C	
FVR04	TFVRST	FVR Start-up Time	_	25		us		

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min	Тур†	Мах	Units	Comments	
ZC01	VPINZC	Voltage on Zero Cross Pin	_	0.75	-	V		
ZC02	IZCD_MAX	Maximum source or sink current		—	600	μA		
ZC03	TRESPH	Response Time, Rising Edge		1	_	μS		
	TRESPL	Response Time, Falling Edge		1	_	μS		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.