

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Namo	Eunction	Input		Description
Naille	Function	Туре	Output Type	Description
RB7/ANB7/DAC1OUT2/T6IN ⁽¹⁾ / CLCIN3 ⁽¹⁾ /IOCB7/ICSPDAT	RB7	TTL/ST	CMOS/OD	General purpose I/O.
	ANB7	AN	_	ADC Channel B7 input.
	DAC1OUT2	—	AN	Digital-to-Analog Converter output.
	T6IN ⁽¹⁾	TTL/ST	—	Timer6 external digital clock input.
	CLCIN3 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCB7	TTL/ST	-	Interrupt-on-change input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data input/out- put.
RC0/ANC0/T1CKI(1)/T3CKI ⁽¹⁾ /T3G ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SINT WINT MOLEO/SUSCO	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	_	Timer1 external digital clock input.
	T3CKI ⁽¹⁾	TTL/ST	-	Timer3 external digital clock input.
	T3G ⁽¹⁾	TTL/ST	-	Timer3 gate input.
	SMTWIN1 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer1 (SMT1) input.
	IOCC0	TTL/ST	-	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
10001/80801	ANC1	AN	-	ADC Channel C1 input.
	SMTSIG1 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer1 (SMT1) signal input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	-	Interrupt-on-change input.
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	_	ADC Channel C2 input.
	T5CKI ⁽¹⁾	TTL/ST	-	Timer5 external digital clock input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /T2IN ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
10003	ANC3	AN	-	ADC Channel C3 input.
	SCL1 ^(3,4)	I ² C/ SMBus	OD	MSSP1 I ² C clock input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	_	Timer2 external input.

IOCC3 CMOS = CMOS compatible input or output Legend: AN = Analog input or output TTL compatible input TTL = ST = Schmitt Trigger input with CMOS levels

= High Voltage

TTL/ST

OD = Open-Drain = Schmitt Trigger input with I²C

ΗV

XTAL = Crystal levels I²C

Note

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

Interrupt-on-change input.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

а

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F18855/75

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1:	RETLW INSTRUCTION
constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CO	DDE
MOVLW DA	ATA_INDEX
call constant	s
; THE CONSTA	ANT IS IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, the older table read method must be used because the BRW instruction is not available in some devices.

IADLE	3-13: 3PE		FUNCTION	REGISTE	R SUMMA	KI DANKS (
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 28												
					CPU	CORE REGISTER	S; see Table 3-2 t	for specifics				
E0Ch	—	—				U	nimplemented				—	—
E0Dh	—	—				U	nimplemented				-	—
E0Eh	—	—				Unimplemented						—
E0Fh	CLCDATA		—	—	_	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000	0000
E10h	CLC1CON		LC1EN	—	LC10UT	LC1INTP	LC1INTN	LC1MODE<2:0>			0-x0 0000	0-x0 0000
E11h	CLC1POL		LC1POL	—	-	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
E12h	CLC1SEL0		—	—			xx xxxx	uu uuuu				
E13h	CLC1SEL1		—	—		LC1D2S<5:0>						uu uuuu
E14h	CLC1SEL2		—	_			LC1	D3S<5:0>			xx xxxx	uu uuuu
E15h	CLC1SEL3		—	_			LC1	D4S<5:0>			xx xxxx	uu uuuu
E16h	CLC1GLS0		LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
E17h	CLC1GLS1		LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
E18h	CLC1GLS2		LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
E19h	CLC1GLS3		LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
E1Ah	CLC2CON		LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>		0-x0 0000	0-x0 0000
E1Bh	CLC2POL		LC2POL	_		_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
E1Ch	CLC2SEL0		—	—			LC2	D1S<5:0>			xx xxxx	uu uuuu
E1Dh	CLC2SEL1		—	—			LC2	D2S<5:0>			xx xxxx	uu uuuu
E1Eh	CLC2SEL2		—	—			LC2	D3S<5:0>			xx xxxx	uu uuuu
E1Fh	CLC2SEL3		—	—			LC2	D4S<5:0>			xx xxxx	uu uuuu
E20h	CLC2GLS0		LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuuu
E21h	CLC2GLS1		LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu

TION DECISTED SUMMARY PANKS 0.24 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Register present on PIC16F18855/75 devices only. Legend:

Note 1:

Unimplemented, read as '1'. 2:

IADLE	3-13: 3PE			UNCTION	REGISTE	R SUMMA	T DANNS L						
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
		—	Х	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111
F5Ch	SLRCOND	х	—	Unimplemented									
		—	х	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111
F5Dh	INLVLD	Х	—		Unimplemented								
F5Eh — F60h	_	-	-		Unimplemented							—	_
Fou	000110	—	х	CCDND7	CCDND6	CCDND5	CCDND4	CCDND3	CCDND2	CCDND1	CCDND0	0000 0000	0000 0000
F61h	X - Unimplemented												
		—	х	CCDPD7	CCDPD6	CCDPD5	CCDPD4	CCDPD3	CCDPD2	CCDPD1	CCDPD0	0000 0000	0000 0000
F62h	CCDPD	Х	—		Unimplemented								
F63h	—	-	_				U	nimplemented				—	—
F0.4h		—	х	_	—	—	—	—	ANSE2	ANSE1	ANSE0	111	111
F64N	ANSELE	Х	—		Unimplemented								
Forh		—	х	_	—	—	—	WPUE3	WPUE2	WPUE1	WPUE0	0000	0000
Foon	WPUE	Х	—	_	—	—	_	WPUE3	—	—	_	0	0
Foot		—	х	_	—	—	_	—	ODCE2	ODCE1	ODCE0	000	000
Foon	ODCONE	Х	—				U	nimplemented			•		
507		—	х	_	—	—	—	—	SLRE2	SLRE1	SLRE0	111	111
F6/N	SLRCONE	Х	—				U	nimplemented			•		
Feeh		—	Х	_	—	—	_	INLVLE3	INLVLE2	INLVLE1	INLVLE0	1111	1111
F08U		Х	—	_	—	—	—	INLVLE3	—	—	—	1	1
F69h	IOCEP			—	—	—	—	IOCEP3	—	—	—	0	0
F6Ah	IOCEN			_	_	—	_	IOCEN3	_	_	_	0	0

DECISTED SUMMARY RANKS A 24 (CONTINUED) TION

x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Register present on PIC16F18855/75 devices only. Legend:

Note 1:

2: Unimplemented, read as '1'.

7.6 Register Definitions: Interrupt Control

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-1/1
GIE	PEIE			—	_	—	INTEDG
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7	GIE: Global Interrupt Enable bit						
	1 = Enables a	II active interru	ipts				
	0 = Disables a	all interrupts	-				
bit 6	PEIE: Periphe	eral Interrupt E	nable bit				
	1 = Enables a	Il active periph	eral interrupts	;			
	0 = Disables a	all peripheral in	iterrupts				
bit 5-1	Unimplement	ted: Read as '	0'				
bit 0	INTEDG: Inte	rrupt Edge Sel	ect bit				
	1 = Interrupt c	on rising edge o	of INT pin				
	0 = Interrupt c	on failing edge	of INT pin				
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, re	egardless of the	e state of				
i	its corresponding e	enable bit or th	e Global				
	Enable bit, GIE, o	f the INTCON	register.				
	User software	should ensu	ure the				
	appropriate intern prior to enabling ar	ipi ilag bils a interrunt					
	prior to chabiling al	i interiupt.					

U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0					
_	_	_	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF					
bit 7	•	•	1	1			bit 0					
Legend:												
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'								
u = Bit is unchar	nged	x = Bit is unkno	wn									
"1" = Bit is set		"0" = Bit is clear	ed	HS = Hardware	e set							
bit 7-5	Unimplemente	d. Read as '0'										
bit 4	CCP5IF: CCP5	Interrupt Flag bi	t									
	CCP5IF = 1:											
	Capture mode:	Capture occurre	d (must be clear	red in software)	offwara)							
	PWM mode: Ou	utput trailing edge	e occurred (mus	st be cleared in s	software)							
	CCP5IF = 0:		·									
	Capture mode:	Capture did not	occur h did not occur									
	PWM mode: Ou	utput trailing edge	e did not occur									
bit 3	CCP4IF: CCP4	CCP4IF: CCP4 Interrupt Flag bit										
	$\frac{\text{CCP4IF} = 1}{\text{Capture mode:}}$	$\frac{\text{CCP4IF} = 1}{\text{Contrast operations}}$										
	Compare mode	Capture mode: Capture occurred (must be cleared in software) Compare mode: Compare match occurred (must be cleared in software)										
	PWM mode: Ou	utput trailing edge	e occurred (mus	st be cleared in s	software)							
	$\frac{\text{CCP4IF} = 0}{\text{Capture mode}}$	Capture did not	occur									
	Compare mode	: Compare matc	h did not occur									
	PWM mode: Ou	utput trailing edg	e did not occur									
bit 2	CCP3IF: CCP3 CCP3IF = 1°	Interrupt Flag bi	t									
	Capture mode:	Capture occurre	d (must be clea	red in software)								
	Compare mode	: Compare matc	h occurred (mus	st be cleared in s	software)							
	CCP3IF = 0:	utput trailing edg	e occurrea (mus	st de cleared in s	sonware)							
	Capture mode:	Capture did not	occur									
	Compare mode	: Compare matc	h did not occur									
bit 1	CCP2IF: CCP2	Interrupt Flag bi	t									
	<u>CCP2IF = 1</u> :											
	Capture mode:	Capture occurre	d (must be clear	red in software)	offuero)							
	PWM mode: Ou	utput trailing edge	e occurred (mus	st be cleared in s	software)							
	CCP2IF = 0:		,		,							
	Capture mode:	Capture did not	occur h did not occur									
	PWM mode: Ou	utput trailing edge	e did not occur									
bit 0	CCP1IF: CCP1	Interrupt Flag bi	t									
	CCP1IF = 1:	Contras consume		nedia estuare)								
	Capture mode: Compare mode	: Compare matc	d (must be clear h occurred (mus	st be cleared in software)	software)							
	PWM mode: Ou	utput trailing edg	e occurred (mus	st be cleared in s	software)							
	$\frac{\text{CCP1IF} = 0}{\text{Capture mode:}}$	Canturo did not	occur									
	Compare mode	: Compare matc	h did not occur									
	PWM mode: Ou	utput trailing edg	e did not occur									

REGISTER 7-18: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT<	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Rese	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit			nted hit read as 'O'		

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	ACC<7:0>										
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

u = Bit is unchanged

'1' = Bit is set

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—		_		_	CCDPE2	CCDPE1	CCDPE0
bit 7		•			•		bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-53: CCDPE: CURRENT CONTROL DRIVE NEGATIVE PORTE REGISTER

bit 7-3	Unimplemented: Read as '0'
bit 2-0	CCDPE<2:0>: RE<2:0> Current Control Drive Positive Control bits ⁽¹⁾
	1 = Current control source enabled
	0 = Current control source disabled

x = Bit is unknown

'0' = Bit is cleared

Note 1: If CCDPEy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-54: CCDNE: CURRENT CONTROL DRIVE NEGATIVE PORTE REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_		_	—	—	CCDNE2	CCDNE1	CCDNE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as 1

bit 2-0 CCDNE<2:0>: RE<2:0> Current Control Drive Negative Control bits⁽¹⁾

- 1 = Current control source enabled
 - 0 = Current control source disabled

Note 1: If CCDNEy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 20-3: CWGxDBR: CWGx RISING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		DBR<5:0>						
bit 7							bit 0		
Legend:									

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBR<5:0>: Rising Event Dead-Band Value for Counter bits

REGISTER 20-4: CWGxDBF: CWGx FALLING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
_			DBF<5:0>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBF<5:0>: Falling Event Dead-Band Value for Counter bits

FIGURE 26-2: ON OFF KEYING (OOK) SYNCHRONIZATION

FIGURE 26-3: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 26-4: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

Carrier High (CARH)					
Carrier Low (CARL)			uļu		
Modulator (MOD)					
MDCHSYNC = 1 MDCLSYNC = 0					
Active Carrier State	CARH	/both	CARL	CARH	both CARL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	205
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	207
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	222
MDCON0	MDEN	—	MDOUT	MDOPOL	_	—	_	MDBIT	397
MDCON1	—	—	MDCHPOL	MDCHSYNC	-	—	MDCLPOL	MDCLSYNC	398
MDSRC		—	—	MDMS<4:0>					399
MDCARH	—	—	—	—		MDC	:HS<3:0>		400
MDCARL	—	—	—	—		MDC	CLS<3:0>		401
MDCARLPPS		—			ME	CARLPPS<	4:0>		249
MDCARHPPS	—	—	—		MD	CARHPPS<	:4:0>		249
MDSRCPPS	—	—	—		M	DSRCPPS<4	4:0>		249
RxyPPS		—				RxyPPS<4:0)>		250
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	207
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	222
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

31.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 31-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

31.5.9 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 31-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

32.5.3 GO STATUS

Timer run status is determined by the TS bit of the SMTxSTAT register, and will be delayed in time by synchronizer delays in non-Counter modes.

32.6 Modes of Operation

The modes of operation are summarized in Table 32-1. The following sections provide detailed descriptions, examples of how the modes can be used. Note that all waveforms assume WPOL/SPOL/CPOL = 0. When WPOL/SPOL/CPOL = 1, all SMTSIGx, SMTWINx and SMT clock signals will have a polarity opposite to that indicated. For all modes, the REPEAT bit controls whether the acquisition is repeated or single. When REPEAT = 0 (Single Acquisition mode), the timer will stop incrementing and the SMTxGO bit will be reset upon the completion of an acquisition. Otherwise, the timer will continue and allow for continued acquisitions to overwrite the previous ones until the timer is stopped in software.

32.6.1 TIMER MODE

Timer mode is the simplest mode of operation where the SMTxTMR is used as a 16/24-bit timer. No data acquisition takes place in this mode. The timer increments as long as the SMTxGO bit has been set by software. No SMT window or SMT signal events affect the SMTxGO bit. Everything is synchronized to the SMT clock source. When the timer experiences a period match (SMTxTMR = SMTxPR), SMTxTMR is reset and the period match interrupt trips. See Figure 32-3.

MODE	Mode of Operation	Synchronous Operation	Reference
0000	Timer	Yes	Section 32.6.1 "Timer Mode"
0001	Gated Timer	Yes	Section 32.6.2 "Gated Timer Mode"
0010	Period and Duty Cycle Acquisition	Yes	Section 32.6.3 "Period and Duty-Cycle Mode"
0011	High and Low Time Measurement	Yes	Section 32.6.4 "High and Low Measure Mode"
0100	Windowed Measurement	Yes	Section 32.6.5 "Windowed Measure Mode"
0101	Gated Windowed Measurement	Yes	Section 32.6.6 "Gated Window Measure Mode"
0110	Time of Flight	Yes	Section 32.6.7 "Time of Flight Measure Mode"
0111	Capture	Yes	Section 32.6.8 "Capture Mode"
1000	Counter	No	Section 32.6.9 "Counter Mode"
1001	Gated Counter	No	Section 32.6.10 "Gated Counter Mode"
1010	Windowed Counter	No	Section 32.6.11 "Windowed Counter Mode"
1011-1111	Reserved	—	—

TABLE 32-1: MODES OF OPERATION

FIGURE 32-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

PIC16(L)F18855/75

REGISTER 32-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 32-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	
SMTxPR<15:8>								
bit 7								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 32-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPR | <23:16> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

33.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 33-1 and Figure 33-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 33-1: EUSART TRANSMIT BLOCK DIAGRAM

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Clearing the CSRC bit of the TX1STA register configures the device as a slave. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 33.4.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

37.4 AC Characteristics

TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
CLC01*	TCLCIN	CLC input time	_	7	OS17	ns	(Note 1)		
CLC02*	TCLC	CLC module input to output progagation time		24 12		ns ns	Vdd = 1.8V Vdd > 3.6V		
CLC03*	TCLCOUT	CLC output time Rise Time	_	OS18	_	_	(Note 1)		
		Fall Time		OS19		_	(Note 1)		
CLC04*	FCLCMAX	CLC maximum switching frequency		32	Fosc	MHz			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: See Table 37-10 for OS17, OS18 and OS19 rise and fall times.