

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	DSM	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RB5	26	23	ANB5		—			—			T1G ⁽¹⁾ SMTSIG2 ⁽¹⁾	CCP3 ⁽¹⁾	—	—	_		IOCB5	—
RB6	27	24	ANB6	—	-	—	—	—	—	—	—	—	—	CLCIN2 ⁽¹⁾	—	—	IOCB6	ICSPCLK
RB7	28	25	ANB7	_	DAC1OUT2	_		—	_		T6IN ⁽¹⁾	-	—	CLCIN3 ⁽¹⁾		-	IOCB7	ICSPDAT
RC0	11	8	ANC0	_	-	_	_	—	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	—	_	_	_	IOCC0	SOSCO
RC1	12	9	ANC1		-	_		—	_		SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	—	_	Ι	-	IOCC1	SOSCI
RC2	13	10	ANC2	-	—	-	-	—	—	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	_		—	IOCC2	—
RC3	14	11	ANC3		_			SCL1 ^(3,4) SCK1 ⁽¹⁾			T2IN ⁽¹⁾		—	_	_		IOCC3	—
RC4	15	12	ANC4		-			SDA1 ^(3,4) SDI1 ⁽¹⁾		_	_		_	—	-		IOCC4	—
RC5	16	13	ANC5	_	—		-	—	—	_	T4IN ⁽¹⁾	-	—	—	—	_	IOCC5	—
RC6	17	14	ANC6	—	-	—	—	—	CK(3)	—	—	—	—	—	—	—	IOCC6	—
RC7	18	15	ANC7		—			—	RX ⁽¹⁾ DT ⁽³⁾	_	—		—	—	-		IOCC7	—
RE3	1	26	_	_	_	_	_	_	_	_	_	_	—	_	_	_	IOCE3	MCLR VPP
Vdd	20	17	—	_	—	—	_	—	_	_	—	—	—	—	—	_	—	—
Vss	8, 19	5, 16	_		_	_	—	-	_	—	_	-	—	-	-	-	—	—

TABLE 2: 28-PIN ALLOCATION TABLE (PIC16(L)F18855) (CONTINUED)

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTX pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTX pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input 4: logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

TABLE 2: 28-PIN ALLOCATION TABLE (PIC16(L)F18855) (CONTINUED)

Q	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPUI ² C)	EUSART	MSD	Timers/SMT	CCP and PWM	CWG	сгс	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
OUT ⁽²⁾	_		ADGRDA ADGRDB	_		C1OUT C2OUT	_	SDO1 SCK1 SDO2 SCK2	TX/ CK ⁽³⁾ DT ⁽³⁾	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 CCP5 PWM60UT PWM70UT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR	_	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTX pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTX pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RA5/ANA5/SS1 ⁽¹⁾ /MDSRC ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	—	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	MDSRC ⁽¹⁾	TTL/ST	—	Modulator Source input.
	IOCA5	TTL/ST	—	Interrupt-on-change input.
RA6/ANA6/OSC2/CLKOUT/IOCA6	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	_	ADC Channel A6 input.
	OSC2	—	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver out- put.
	CLKOUT	—	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	—	Interrupt-on-change input.
RA7/ANA7/OSC1/CLKIN/IOCA7	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	—	ADC Channel A7 input.
	OSC1	XTAL	—	External Crystal/Resonator (LP, XT, HS modes) driver input.
	CLKIN	TTL/ST	—	External digital clock input.
	IOCA7	TTL/ST	—	Interrupt-on-change input.
RB0/ANB0/C2IN1+/ZCD/SS2 ⁽¹⁾ /	RB0	TTL/ST	CMOS/OD	General purpose I/O.
	ANB0	AN	—	ADC Channel B0 input.
	C2IN1+	AN	—	Comparator positive input.
	ZCD	AN	AN	Zero-cross detect input pin (with constant current sink/ source).
	SS2 ⁽¹⁾	TTL/ST	—	MSSP2 SPI slave select input.
	CCP4 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM4 (default input location for capture function).
	CWG1IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	—	External interrupt request input.
	IOCB0	TTL/ST	—	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/SCL2 ^(3,4) /	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SCR2 /CWGZIN //OCD1	ANB1	AN	—	ADC Channel B1 input.
	C1IN3-	AN	—	Comparator negative input.
	C2IN3-	AN	—	Comparator negative input.
	SCL2 ^(3,4)	I ² C/SMBus	OD	MSSP2 I ² C clock input/output.
	SCK2 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP2 SPI serial clock (default input location, SCK2 is a PPS remappable input and output).
	CWG2IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 2 input.
	IOCB1	TTL/ST	—	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN
 = Analog input or output TTL
 CMOS
 = CMOS compatible input or output ST
 OD
 = Open-Drain

 TTL
 TTL compatible input High Voltage XTAL= Crystal levels
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²CHV=

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	PIC16(L)F18855	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 8												
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
40Ch	SCANLADRL						LADR<7:0>				0000 0000	0000 0000
40Dh	SCANLADRH						_ADR<15:8>				0000 0000	0000 0000
40Eh	SCANHADRL						HADR<7:0>				1111 1111	1111 1111
40Fh	SCANHADRH					ł	HADR<15:8>				1111 1111	1111 1111
410h	SCANCON0		EN	SCANGO	BUSY	INVALID	INTM	INTM — MODE<1:0>				0000 0-00
411h	SCANTRIG		—	—	_	—		TSEL		0000	0000	
412h	_	-		Unimplemented							-	-
413h	-	_		Unimplemented							-	-
414h	-	_				U	nimplemented				-	-
415h	_	_				U	nimplemented				_	_
416h	CRCDATL						DATA<7:0>				XXXX XXXX	xxxx xxxx
417h	CRCDATH						DATA<15:8>				xxxx xxxx	xxxx xxxx
418h	CRCACCL						ACC<7:0>				0000 0000	0000 0000
419h	CRCACCH						ACC<15:8>				0000 0000	0000 0000
41Ah	CRCSHIFTL	1					SHIFT<7:0>				0000 0000	0000 0000
41Bh	CRCSHIFTH	1				Ş	SHIFT<15:8>				0000 0000	0000 0000
41Ch	CRCXORL	1				X<7:1>				_	xxxx xxx-	xxxx xxx-
41Dh	CRCXORH	1					X<15:8>				xxxx xxxx	xxxx xxxx
41Eh	CRCCON0	1	EN	CRCGO	BUSY	ACCM	_	_	SHIFTM	FULL	000000	000000
41Fh	CRCCON1			DLI	EN<3:0>	1		PLEN	0000 0000	0000 0000		

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

3.4 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 3-4 through Figure 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.4.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

	Rev. 10.000013A 700/0013
TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled
0x0E	
0x0D	
0x0C	
0x0B	Initial Stack Configuration:
0x0A	
0x09	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x08	Pointer is pointing at 0x1F. If the Stack
0x07	Overflow/Underflow Reset is enabled, the TOSH/TOSL register will return '0' If the
0x06	Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL register will return the contents of stack address
0x04	0x0F.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F (STVREN = 1)
N	N , , , , ,

FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as shown in Table 4-1.

TABLE 4-1:CONFIGURATION WORD
LOCATIONS

Configuration Word	Location
CONFIG1	8007h
CONFIG2	8008h
CONFIG3	8009h
CONFIG4	800Ah
CONFIG5	800Bh

Note:	The DEBUG bit in Configuration Words is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

6.2.2.2 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 6-7).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

6.2.2.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- TMR1
- TMR0
- TMR2
- SMT1
- SMT2
- CLKREF
- CLC

6.2.2.4 MFINTOSC

In addition to the two independent internal oscillators, the internal oscillator block also contains a divider block called MFINTOSC, to supply certain specific frequencies to other modules on the device. The MFINTOSC module takes the undivided HFINTOSC clock as an input and outputs two clocks, a 500 kHz clock (MFINTOSC) and a 31.25 kHz clock (MFINTOSC/16).

The MFINTOSC is enabled through one of the following methods:

• Setting the MFOEN bit of OSCEN (see Section 6.2.2.5 "Oscillator Status and Manual Enable")

• Selecting MFINTOSC or MFINTOSC/16 as an input clock for one of the peripherals that uses the clock.

Peripherals that use the MFINTOSC output (500 kHz) are:

- TMR1
- TMR3
- TMR5
- SMT1
- SMT2
- CLKREF

Peripherals that use the MFINTOSC/16 output (31.25 kHz) are:

- WDT
- TMR2
- TMR4
- TMR6
- SMT1
- SMT2
- CLKREF

Note: Enabling the MFINTOSC will also enable the HFINTOSC.

6.2.2.5 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT register (Register 6-4). The oscillators can also be manually enabled through the OSCEN register (Register 6-7). Manual enabling makes it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT register.

6.5 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—		NOSC<2:0> ^{(2,3}	3)		NDIV<3	:0> ^(2,3,4)	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits
	The setting requests a source oscillator and PLL combination per Table 6-1.
	POR value = RSTOSC (Register 4-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits
	The setting determines the new postscaler division ratio per Table 6-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 6-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 6-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾						
—	COSC<2:0>			CDIV<3:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '	o'
		-

bit 6-4 **COSC<2:0>:** Current Oscillator Source Select bits (read-only)

Indicates the current source oscillator and PLL combination per Table 6-1.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 6-1.

Note 1: The POR value is the value present when user code execution begins.

2: The reset value (n/n) is the same as the NOSC/NDIV bits.

PIC16(L)F18855/75

REGISTER 12-10: CCDPA: CURRENT-CONTROLLED DRIVE POSITIVE PORTA REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDPA7 | CCDPA6 | CCDPA5 | CCDPA4 | CCDPA3 | CCDPA2 | CCDPA1 | CCDPA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDPA<7:0>: RA<7:0> Current-Controlled Drive Positive Control bits

- 1 = Current-controlled source enabled⁽¹⁾
- 0 = Current-controlled source disabled

Note 1: If CCDPAy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-11: CCDNA: CURRENT-CONTROLLED DRIVE NEGATIVE PORTA REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDNA7 | CCDNA6 | CCDNA5 | CCDNA4 | CCDNA3 | CCDNA2 | CCDNA1 | CCDNA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDNA<7:0>: RA<7:0> Current-Control Drive Negative Control bits

1 = Current-controlled source enabled⁽¹⁾

0 = Current-controlled source disabled

Note 1: If CCDNAy is set when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

PIC16(L)F18855/75

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged x = Bit is unkn		iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-36: WPUD: WEAK PULL-UP PORTD REGISTER

bit 7-0 WPUD<7:0>: WPUD I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-37: ODCOND: PORTD OPEN-DRAIN CONTROL REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCD<7:0>**: ODCD I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

	INLVLE3	_		_	
bit 7					
				bit 0	
Legend:					
R = Readable bit W = Writable bit	U = Unimpleme	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknown	-n/n = Value at	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set '0' = Bit is cleared					

REGISTER 12-44: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

bit 7-4	Unimplemented: Read as '0'
bit 3	INLVLE3: PORTE Input Level Select bits For RE3 pin.
	 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change
bit 2-0	Unimplemented: Read as '0'

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE		_		-	RE3			_	233
WPUE	—		—		WPUE3				233
INLVLE	_	_		_	INLVLE3				234

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

TABLE 12-7: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_	02
CONFIGZ	7:0	BORE	N<1:0>	LPBOREN	_	—	-	PWRTE	MCLRE	93

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

PIC16(L)F18855/75

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			MDMS<4:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	eared				
bit 7-5	Unimplemen	ted: Read as	'0'				
bit 4-0	MDMS<4:0>	Modulation So	ource Selection	n bits			
	11111 = Res	erved. No cha	nnel connecte	d.			
	•						
	•						
	10100 = Res	erved No cha	nnel connecte	h			
	10011 = MS	SP2 SDO		G .			
	10010 = MS S	SP1 SDO					
	10001 = EUS	SART TX/CK o	output				
	10000 = EUS	SART DT outp	ut				
	01111 = CLC						
	01101 = CLC	22 output					
	01100 = CLC	C1 output					
	01011 = C2	(Comparator 2) output				
	01010 = C1	(Comparator 1) output				
	01001 = NC0	O output					
	01000 = PW	M7 output					
	00110 = CCF	P5 output (PW	M Output mod	e onlv)			
	00101 = CCF	P4 output (PW	M Output mod	e only)			
	00100 = CCF	P3 output (PW	M Output mod	e only)			
	00011 = CCF	P2 output (PW	M Output mod	e only)			
	00010 = CCF		M Output mod	e only)			
	00001 = MDI	SRCPPS	io register is fr	iouulation sour	Je		

REGISTER 26-3: MDSRC: MODULATION SOURCE CONTROL REGISTER

29.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 29-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 29-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

29.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)

FIGURE 29-12:

• Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

PIC16(L)F18855/75

Rev. 10-000203A 4/7/2016 MODE 0b10001 TMRx_clk PRx 5 Instruction⁽¹⁾ BSF (BCF) BSF BSF BCF ON TMRx_ers ، 3 1 2 3 4 5 5 0 2 3 5 TMRx 0 1 2 4 0 1) 4 0 TMRx_postscaled PWM Duty 3 Cycle **PWM Output**

RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

31.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 31-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 31-6, Figure 31-8, Figure 31-9 and Figure 31-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 31-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 31-6: SPI MODE WAVEFORM (MASTER MODE)

31.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 31-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 31-39).

FIGURE 31-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 31-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

TABLE 37-11:RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	_	μS			
RST02*	Tioz	I/O high-impedance from Reset detection		_	2	μS			
RST03	TWDT	Watchdog Timer Time-out Period		16	_	ms	16 ms Nominal Reset Time		
RST04*	TPWRT	Power-up Timer Period		65	_	ms			
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)		1024	_	Tosc			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.60 2.10	V V V	BORV = 0 BORV = 1 (PIC16F18855/75) BORV = 1 (PIC16LF18855/75)		
RST07	VBORHYS	Brown-out Reset Hysteresis		40	_	mV			
RST08	TBORDC	Brown-out Reset Response Time	_	3	_	μS			
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	2.3	2.45	2.7	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operati VDD = 3	Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Unit s	Conditions			
AD01	Nr	Resolution	—		10	bit				
AD02	EIL	Integral Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD04	EOFF	Offset Error	—	0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD05	Egn	Gain Error	_	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V				
AD07	VAIN	Full-Scale Range	ADREF-		ADREF+	V				
AD08	Zain	Recommended Impedance of Analog Voltage Source		10		kΩ				
AD09	RVREF	ADC Voltage Reference Ladder Impedance	_	50	_	kΩ	Note 3			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

PIC16(L)F18855/75

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-55: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF18855/75 Only.

FIGURE 38-56: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F18855/75 Only.

FIGURE 38-57: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V.

FIGURE 38-58: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.0V.

FIGURE 38-59: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.6V.

FIGURE 38-60: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	Е	1.27 BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	Х			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2