

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18875t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC0/ANC0/T1CKI ⁽¹⁾ /T3CKI ⁽¹⁾ /T3G ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN111/10CC0/SOSCO	ANC0	AN	—	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	—	Timer1 external digital clock input.
	T3CKI ⁽¹⁾	TTL/ST	—	Timer3 external digital clock input.
	T3G ⁽¹⁾	TTL/ST	—	Timer3 gate input.
	SMTWIN1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/ANC1/SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
10001/50501	ANC1	AN	—	ADC Channel C1 input.
	SMTSIG1 ⁽¹⁾	TTL/ST	—	Signal Measurement Timer1 (SMT1) signal input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	IOCC1	TTL/ST	—	Interrupt-on-change input.
	SOSCI	AN	—	32.768 kHz secondary oscillator crystal driver input.
RC2/ANC2/T5CKI ⁽¹⁾ /CCP1 ⁽¹⁾ /IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	—	ADC Channel C2 input.
	T5CKI ⁽¹⁾	TTL/ST	—	Timer5 external digital clock input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC2	TTL/ST	—	Interrupt-on-change input.
RC3/ANC3/SCL1 ^(3,4) /SCK1 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	ANC3	AN	—	ADC Channel C3 input.
	SCL1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C clock input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	T2IN ⁽¹⁾	TTL/ST	—	Timer2 external input.
	IOCC3	TTL/ST	—	Interrupt-on-change input.
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	I ² C/SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output Legend: AN = Analog input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels TTL = TTL compatible input ST l²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note 1: pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options

2: as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IABLE	3-13: SPE	CIAL	FUNCTION	REGISTE	K SUMMA	KI BANKS	J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 4												
					CPU	CORE REGISTER	RS; see Table 3-2 t	for specifics				
20Ch	TMR1L		Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							0000 0000	uuuu uuuu	
20Dh	TMR1H		Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							0000 0000	uuuu uuuu	
20Eh	T1CON		—	—	CKP	S<1:0>	-	SYNC	RD16	ON	00 -000	uu -uuu
20Fh	T1GCON		GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	0000 0x	uuuu ux
210h	T1GATE		—	_	—		GSS<4:0>				0 0000	u uuuu
211h	T1CLK		_	_	—	_	CS<3:0>				0000	uuuu
212h	TMR3L		Holding Registe	er for the Least	st Significant Byte of the 16-bit TMR3 Register						0000 0000	uuuu uuuu
213h	TMR3H		Holding Registe	er for the Most S	Significant Byte of	the 16-bit TMR3 R	legister				0000 0000	uuuu uuuu
214h	T3CON		—	—	CKP	S<1:0>	_	SYNC	RD16	ON	00 -000	uu -uuu
215h	T3GCON		GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	0000 0x	uuuu ux
216h	T3GATE		—	_	—			GSS<4:0>			0 0000	u uuuu
217h	T3CLK		—	_	—	—		CS<3	3:0>		0000	uuuu
218h	TMR5L		Holding Registe	er for the Least	Significant Byte o	f the 16-bit TMR5 F	Register				0000 0000	uuuu uuuu
219h	TMR5H		Holding Registe	er for the Most S	Significant Byte of	the 16-bit TMR5 R	legister				0000 0000	uuuu uuuu
21Ah	T5CON		—	—	CKP	S<1:0>	—	SYNC	RD16	ON	00 -000	uu -uuu
21Bh	T5GCON		GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	-	—	x0 0000	uuuu ux
21Ch	T5GATE		—	—	—			GSS<4:0>			0 0000	u uuuu
21Dh	T5CLK		-	—	—	—		CS<3	3:0>		0000	uuuu
21Eh	CCPTMRS0		C4TSE	L<1:0>	C3TSI	EL<1:0>	C2TS	SEL<1:0>	C1TSE	EL<1:0>	0101 0101	0101 0101
21Fh	CCPTMRS1		_	—	P7TSI	EL<1:0>	P6TS	EL<1:0>	C5TSE	EL<1:0>	01 0101	01 0101

© 2015-2017 Microchip Technology Inc.

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

IARLE	3-13: SPE		FUNCTION	REGISTE	RSUMMA	RY BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	6											
	CPU CORE REGISTERS; see Table 3-2 for specifics											
80Ch	WDTCON0		_	– – PS<4:0> SEN				dd dddo	dd dddo			
80Dh	WDTCON1		—		WDTCS<2:02	>	—		WINDOW<2:0>		-ঀ৾৾ঀ৾৾ঀ -ঀ৾ঀ৾ঀ	-ववव -ववव
80Eh	WDTPSL			PSCNT<7:0>							0000 0000	0000 0000
80Fh	WDTPSH			PSCNT<7:0>							0000 0000	0000 0000
810h	WDTTMR		—	WDTTMR<3:0> STATE PSCNT<17:16>				<17:16>	-000 0000	-000 0000		
811h	BORCON		SBOREN	—	—	_	_	—	—	BORRDY	1 q	uu
812h	VREGCON ⁽¹⁾		_	_	—	_	_	—	VREGPM	Reserved	01	01
813h	PCON0		STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 11qq	qqqq qquu
814h	CCDCON		CCDEN	—	_	-	-	—	CCDS	6<1:0>	0xx	0uu
815h	—	_				U	Inimplemented	·			-	_
816h	—	-				U	Inimplemented				-	_
817h	—	-				U	Inimplemented				-	-
818h	-	-				U	Inimplemented				-	_
819h	—	-				U	Inimplemented				-	_
81Ah	NVMADRL					N	IVMADR<7:0>				0000 0000	0000 0000
81Bh	NVMADRH		(2)				NVMADR<1	4:8>			1000 0000	1000 0000
81Ch	NVMDATL					Ν	IVMDAT<7:0>				0000 0000	0000 0000
81Dh	NVMDATH		—	—			NVM	DAT<13:8>			00 0000	00 0000
81Eh	NVMCON1		—	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 g000
81Fh	NVMCON2					N	VMCON2<7:0>				0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

IABLE	3-13: SPE	CIA		UNCTION	REGISTE		KI DANNS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
F24h	RC4PPS			_	—			RC	4PPS<5:0>			00 0000	uu uuuu
F25h	RC5PPS			_	—			RC	5PPS<5:0>			00 0000	uu uuuu
F26h	RC6PPS			_	—		RC6PPS<5:0>00 0000						
F27h	RC7PPS			—	—			00 0000	uu uuuu				
5001		—	х	—	- RD0PPS<5:0>							00 0000	uu uuuu
F28h	RD0PPS	х	—		Unimplemented								
500	22 (222	—	х	_	RD1PPS<5:0>						00 0000	uu uuuu	
F29h	RD1PPS	х	-		Unimplemented								
50.41		—	х	_							00 0000	uu uuuu	
F2Ah	RD2PPS	х	—		· · · · · · · · · · · · · · · · · · ·		l	Jnimplemented					
5001	000000	—	х	_	-			RD	3PPS<5:0>			00 0000	uu uuuu
F2BN	RD3PPS	х	—				l	Jnimplemented					
FOOL		—	х	—	—			RD4	4PPS<5:0>			00 0000	uu uuuu
FZCN	RD4PP5	х	—				l	Jnimplemented					
5001	005000	—	х	_	-			RD	5PPS<5:0>			00 0000	uu uuuu
F2Dh	RD5PPS	х	—				l	Jnimplemented					
5051	000000	—	х	_	-			RD	6PPS<5:0>			00 0000	uu uuuu
r∠EN	KD6PPS	х	-		-		l	Jnimplemented					
	007000	—	Х	—	—			RD	7PPS<5:0>			00 0000	uu uuuu
r∠rn	KU/PPS	х	-		-		l	Jnimplemented					
5001	050000	—	Х	—	—			REC)PPS<5:0>			00 0000	uu uuuu
F30h	REUPPS	Х	_				l	Jnimplemented					

CISTED SUMMADY DANKS 0.24 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

Unimplemented, read as '1'. 2:

6.2.1.4 4x PLL

The oscillator module contains a PLL that can be used with external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 37-9.

The PLL may be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to enable the EXTOSC with 4x PLL.
- 2. Write the NOSC bits in the OSCCON1 register to enable the EXTOSC with 4x PLL.

6.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 31 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 6.3 "Clock Switching"** for more information.

FIGURE 6-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

REGISTER 6	6-4: OSC	STAT: OSCILI		IUS REGISTE	ER 1				
R-q/q	R-0/q	R-0/q	R-0/q	R-q/q	R-q/q	U-0	R-q/q		
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR		
bit 7							bit 0		
Legend:									
R = Readable b	pit	W = Writable b	it	U = Unimpleme	ented bit, read as	ʻ0'			
u = Bit is uncha	inged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	alue at all other	Resets		
'1' = Bit is set '0' = Bit is cleared									
bit 7	EXTOR: EXT	OSC (external) O	scillator Ready I	oit					
	1 = The osci	illator is ready to	be used	t roady to be used	4				
hit G			hed, of is not ye	l leady to be used	J.				
DILO	1 = The oscillator is ready to be used								
	0 = The osc	illator is not enab	led, or is not ve	t ready to be used	d.				
bit 5	MFOR: MFIN	TOSC Oscillator I	Ready bit	,					
	1 = The osci	llator is ready to b	be used						
	0 = The osci	llator is not enabl	ed, or is not yet	ready to be used					
bit 4	LFOR: LFINT	OSC Oscillator R	eady bit						
	1 = The osc	illator is ready to	be used						
	0 = The osc	illator is not enab	led, or is not yet	ready to be used	1.				
bit 3	SOR: Second	ary (Timer1) Osc	illator Ready bit						
	1 = 1 he osc	illator is ready to	be used	ready to be used	J				
h it O		niator is not enab		ready to be used	1.				
DIT 2	ADUR: CRC	Uscillator Ready	DIT boursod						
	0 = The osc	illator is not enab	led or is not vet	ready to be used	1				
bit 1	Unimplement	ted: Read as '0'			-				
bit 0	PIIR·PII is	Ready bit							
20	1 = The PLL is ready to be used								
	0 = The PLI	is not enabled,	the required inpu	ut source is not re	ady, or the PLL is	s not locked.			

REGISTER 6-7: OSCTUNE: HFINTOSC TUNING REGISTER

U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			HFTUN	N<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'.
bit 5-0	HFTUN<5:0>: HFINTOSC Frequency Tuning bits 11 1111 = Maximum frequency
	•
	•
	•
	10 0001
	10 0000 = Center frequency. Oscillator module is running at the calibrated frequency (default value).
	01 1111
	•
	•
	•
	00 0000 = Minimum frequency.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx registers)

The PIR1, PIR2, PIR3 and PIR4 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	e set,
	regardless	of	the	state	of	any	other
	enable bits	-					

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0
_	_	TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS= Hardwa	re Set		
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	TMROIF: TMF	R0 Overflow Int	errupt Flag bi	t			
	1 = TMR0 re	egister has ove	rflowed (must	be cleared in	software)		
	0 = TMR0 re	egister did not o	overflow				
bit 4	IOCIF: Interru	pt-on-Change	Interrupt Flag	bit (read-only)	(2)		
	1 = One or r	nore of the IOC	AF-IOCEF re	gister bits are o	currently set, ind	licating an ena	bled edge was
		by the IOC m	odule.	ite ere eurrent	hu aat		
			JEF register t	ons are current	ly set		
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	INTF: INT Ex	ternal Interrupt	Flag bit ⁽¹⁾				
	1 = The INT external interrupt occurred (must be cleared in software)						
	0 = The INT external interrupt did not occur						

REGISTER 7-11: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0

- Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 13-1).
 - 2: The IOCIF bits are the logical OR of all the IOCAF-IOCEF flags. Therefore, to clear the IOCIF flag, application firmware should clear all of the lower level IOCAF-IOCEF register bits.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	—	—	INTEDG	134
PIE0	_	—	TMR0IE	IOCIE	_	—	—	INTE	135
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	136
PIE2	-	ZCDIE	—	_		—	C2IE	C1IE	137
PIE3	-	—	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE		TMR5GIE	TMR3GIE	TMR1GIE	140
PIE6	—	—	—	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	141
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	142
PIE8	_	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	143
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	144
PIR1	OSFIF	CSWIF	—	_	_	—	ADTIF	ADIF	145
PIR2	_	ZCDIF	—	_	_	—	C2IF	C1IF	146
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
PIR4	-	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF	149
PIR6	_	—	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	150
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	152
PIR8	_		SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	153

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

10.5 Register Definitions: Flash Program Memory Control

REGISTER 10-1: NVMDATL: NONVOLATILE MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
NVMDAT<7:0>									
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						ʻ0'			
u = Bit is unchanged x = Bit is unknown			/n	-n/n = Value at	POR and BOR/V	alue at all other l	Resets		
'1' = Bit is set		'0' = Bit is cleare	d						

bit 7-0 NVMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: NVMDATH: NONVOLATILE MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		NVMDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 NVMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: NVMADRL: NONVOLATILE MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
NVMADR<7:0>								
bit 7 b								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NVMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: NVMADRH: NONVOLATILE MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				NVMADR<14:8	}>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 NVMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1').

12.4 PORTA Registers

12.4.1 DATA REGISTER

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize PORTA.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The PORT data latch LATA (Register 12-4) holds the output port data, and contains the latest value of a LATA or PORTA write.

EXAMPLE 12-1: INITIALIZING PORTA

<pre>; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner.</pre>						
BANKSEL CLRF BANKSEL CLRF BANKSEL CLRF BANKSEL MOVLW MOVWF	PORTA PORTA LATA ANSELA ANSELA TRISA B'00111000' TRISA	; ;Init PORTA ;Data Latch ; ; ;digital I/O ; ;Set RA<5:3> as inputs ;and set RA<2:0> as ;outputs				

12.4.2 DIRECTION CONTROL

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.4.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 12-7) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

12.4.4 SLEW RATE CONTROL

The SLRCONA register (Register 12-8) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

FIGURE 20-1: SIMPLIFIED CWG BLOCK DIAGRAM (HALF-BRIDGE MODE)

PIC16(L)F18855/75

21.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero crossing threshold is the zero crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 21-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

21.1 External Resistor Selection

The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 21-1 and Figure 21-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 21-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

EXTERNAL VOLTAGE

ADC² BLOCK DIAGRAM FIGURE 23-1:

25.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

25.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

REGISTER 26-4: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTEI	GISTER 26-4:	HIGH CARRIER CONTROL REGISTER
---	--------------	-------------------------------

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			—		MDCHS	S<3:0> ⁽¹⁾	
bit 7			•				bit 0
							,
Legend:							
R = Readab	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is un	nchanged	x = Bit is unkı	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-4	Unimplem	nented: Read as '	0'				
bit 3-0	MDCHS<3	3:0> Modulator Da	ata High Carrie	er Selection bits	₃ (1)		
	1111 = L	C4 out			-		
	1110 = L	C3 out					
	1101 = L	C2 out					
	1100 = L	C1 out					
	1011 = N	ICO output					
	1010 = P	WM7 out					
	1001 = P	WM6_out					
	1000 = C	CP5 output (PWN	/ Output mod	e only)			
	0111 = C	CP4 output (PWN	/ Output mod	e only)			
	0110 = C	CP3 output (PWN	/ Output mod	e only)			
	0101 = C	CP2 output (PWN	/I Output mod	e only)			
	0100 = C	CP1 output (PWN	/ Output mod	e only)			
	0011 = R	eference clock m	odule signal (CLKR)			
	0010 = H	IFINTOSC					
	0001 = F	OSC					
	0000 = P	in selected by MD	CARHPPS				

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PIE8	—	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	143
PIR8	—	—	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	153
SMT1TMRL	SMT1TMR<7:0>								549
SMT1TMRH	SMT1TMR<15:8>								549
SMT1TMRU	SMT1TMR<23:16>								549
SMT1CPRL	SMT1CPR<7:0>								550
SMT1CPRH	SMT1CPR<15:8>								550
SMT1CPRU	SMT1CPR<23:16>								550
SMT1CPWL	SMT1CPW<7:0>								551
SMT1CPWH	SMT1CPW<15:8>								551
SMT1CPWU	SMT1CPW<23:16>								551
SMT1PRL	SMT1PR<7:0>								552
SMT1PRH	SMT1PR<15:8>								552
SMT1PRU	SMT1PR<23:16>								552
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1PS	S<1:0>	543
SMT1CON1	SMT1GO	REPEAT	— — MODE<3:0>						544
SMT1STAT	CPRUP	CPWUP	RST	—	_	TS	WS	AS	545
SMT1CLK	_	—	—	—	_		CSEL<2:0>		546
SMT1SIG	SSEL<4:0>							548	
SMT1WIN	— — — WSEL<4:0>								547
SMT2TMRL	SMT2TMR<7:0>								549
SMT2TMRH	SMT2TMR<15:8>								549
SMT2TMRU	SMT2TMR<23:16>								549
SMT2CPRL	SMT2CPR<7:0>								550
SMT2CPRH	SMT2CPR<15:8>								550
SMT2CPRU	SMT2CPR<23:16>								550
SMT2CPWL	SMT2CPW<7:0>								551
SMT2CPWH	SMT2CPW<15:8>								551
SMT2CPWU	SMT2CPW<23:16>								551
SMT2PRL	SMT2PR<7:0>								552
SMT2PRH	SMT2PR<15:8>								552
SMT2PRU	SMT2PR<23:16>								552
SMT2CON0	EN	—	STP	WPOL SPOL CPOL SMT2PS<1:0>					543
SMT2CON1	SMT2GO	REPEAT	_	— MODE<3:0>					544
SMT2STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	545
SMT2CLK	—	—	—	— — CSEL<2:0>					546
SMT2SIG	—	—	—	SSEL<4:0>					548
SMT2WIN	— — — WSEL<4:0>								547

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: - = unimplemented read as '0'. Shaded cells are not used for SMTx module.

FIGURE 37-3: POR AND POR REARM WITH SLOW RISING VDD