

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16F18875) (CONTINUED)

O/ï	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RE3	1	16	18	18		—	—	—	—		—		—	—	—	—	_	_	IOCE3	MCLR VPP
VDD	11, 32	7, 26	8, 28	7, 28		—	—	_	_		_		—	—	—	—	_	-	—	—
Vss	12, 31	6, 27	6, 31, 30	6, 29	_	—	—	_			_	_	—		—	—		Ι	—	_
OUT ⁽²⁾					ADGRDA ADGRDB	_	-	C1OUT C2OUT		SDO1 SCK1 SDO2 SCK2	TX/ CK ⁽³⁾ DT ⁽³⁾	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 CCP5 PWM6OUT PWM7OUT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR	_	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
OSFIF	CSWIF	_	—	_	_	ADTIF	ADIF
bit 7				•			bit 0
Legend:							
R = Readable	adable bit W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value a				R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7 OSFIF : Oscillator Fail-Safe Interrupt Flag bit 1 = Oscillator fail-safe interrupt has occurred (must be cleared in software) 0 = No oscillator fail-safe interrupt							
bit 6	bit 6 CSWIF: Clock Switch Complete Interrupt Flag bit						
	 1 = The clock switch module indicates an interrupt condition (must be cleared in software) 0 = The clock switch does not indicate an interrupt condition 						
bit 5-2	Unimplemen	ted: Read as '	כ'				
bit 1	ADTIF : Analo 1 = An A/D m 0 = A/D meas	g-to-Digital Co easurement wa urements have	nverter (ADC) as beyond the e been within t	Threshold Co configured the he configured	mpare Interrupt eshold (must b threshold	t Flag bit e cleared in sof	ťware)
bit 0	bit 0 ADIF : Analog-to-Digital Converter (ADC) Interrupt Flag bit 1 = An A/D conversion or complex operation has completed (must be cleared in software) 0 = An A/D conversion or complex operation is not complete						
Note: Inte cor its Ena Use app	errupt flag bits a dition occurs, re corresponding e able bit, GIE, o er software propriate interru	re set when an egardless of the enable bit or th f the INTCON should ensu upt flag bits a	interrupt e state of e Global register. ure the ure clear				

REGISTER 7-12: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

prior to enabling an interrupt.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	
bit 7						·	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set			
bit 7	SCANIF: Prog	gram Memory S	Scanner Interr	upt Flag bit				
	1 = The opera 0 = No operat	ation has comp tion is pending	leted (a SCAN or the operation	NGO 1 to 0 tran on is still in pro	nsition has occu paress	ırred)		
bit 6	CRCIF: CRC	Interrupt Flag	pit		9			
	1 = The operation	ation has comp	leted (a BUSY	1 to 0 transiti	on has occurred	d)		
	0 = No operat	tion is pending	or the operation	on is still in pro	ogress			
bit 5	NVMIF: Non-Volatile Memory (NVM) Interrupt Flag bit							
	1 = The reque 0 = NVM inter	ested NVM ope rrupt not assert	ration has cor ed	npleted				
bit 4	NCO1IF: Num	nerically Contro	lled Oscillator	· (NCO) Interru	upt Flag bit			
	1 = The NCO 0 = No CLC4	has rolled ove interrupt event	r has occurred					
bit 3	Unimplemen	ted: Read as ')'					
bit 2	CWG3IF: CW	/G3 Interrupt FI	ag bit					
	1 = CWG3 ha	s gone into shu	utdown					
	0 = CWG3 is	operating norm	ally, or interru	pt cleared				
bit 1	CWG2IF: CW	/G2 Interrupt Fl	ag bit					
	1 = CWG2 ha	s gone into shu	utdown	at closed				
h # 0	0 = CWG3 IS	operating norm	ally, or interru	pt cleared				
DIEU		G I Interrupt Fl	ag Dit Itdown					
	0 = CWG1 is	operating norm	allv. or interru	pt cleared				
			- ,,					
Note: Inte	rrupt flag bits a	re set when an	interrupt					

REGISTER 7-19: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of										
	its corresponding enable bit or the Global										
	Enable bit, GIE, of the INTCON register.										
	User software should ensure the										
	appropriate interrupt flag bits are clear										
	prior to enabling an interrupt.										

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	_	_	—	—	INTEDG	134
PIE0	_	—	TMR0IE	IOCIE	_	—	—	INTE	135
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	136
PIE2	-	ZCDIE	—	_		—	C2IE	C1IE	137
PIE3	-	—	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE		TMR5GIE	TMR3GIE	TMR1GIE	140
PIE6	—	—	—	CCP5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	141
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	142
PIE8	_	—	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	143
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	144
PIR1	OSFIF	CSWIF	—	_	_	_	ADTIF	ADIF	145
PIR2	_	ZCDIF	—	_	_	_	C2IF	C1IF	146
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
PIR4	-	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF	149
PIR6	_	—	—	CCP5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	150
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	152
PIR8	_		SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	153

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

10.2 Data EEPROM Memory

Data EEPROM Memory consists of 256 bytes of user data memory. The EEPROM provides storage locations for 8-bit user defined data.

EEPROM can be read and/or written through:

- FSR/INDF indirect access (Section 10.3 "FSR and INDF Access")
- NVMREG access (Section 10.4 "NVMREG Access")
- In-Circuit Serial Programming (ICSP)

Unlike PFM, which must be written to by row, EEPROM can be written to word by word.

10.3 FSR and INDF Access

The FSR and INDF registers allow indirect access to the PFM or EEPROM.

10.3.1 FSR READ

With the intended address loaded into an FSR register a MOVIW instruction or read of INDF will read data from the PFM or EEPROM.

Reading from NVM requires one instruction cycle. The CPU operation is suspended during the read, and resumes immediately after. Read operations return a single word of memory.

10.3.2 FSR WRITE

Writing/erasing the NVM through the FSR registers (ex. MOVWI instruction) is not supported in the PIC16(L)F18855/75 devices.

10.4 NVMREG Access

The NVMREG interface allows read/write access to all the locations accessible by FSRs, and also read/write access to the User ID locations, and read-only access to the device identification, revision, and Configuration data.

Reading, writing, or erasing of NVM via the NVMREG interface is prevented when the device is code-protected.

10.4.1 NVMREG READ OPERATION

To read a NVM location using the NVMREG interface, the user must:

- Clear the NVMREGS bit of the NVMCON1 register if the user intends to access PFM locations, or set NMVREGS if the user intends to access User ID, Configuration, or EEPROM locations.
- Write the desired address into the NVMADRH:NVMADRL register pair (Table 10-2).
- 3. Set the RD bit of the NVMCON1 register to initiate the read.

Once the read control bit is set, the CPU operation is suspended during the read, and resumes immediately after. The data is available in the very next cycle, in the NVMDATH:NVMDATL register pair; therefore, it can be read as two bytes in the following instructions.

NVMDATH:NVMDATL register pair will hold this value until another read or until it is written to by the user.

EXAMPLE 10-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

; This sample ; 1.A valid ad ; 2.ADDRH and	row erase routine assum dress within the erase ADDRL are located in co	nes the following: row is loaded in variables ADDRH:ADDRL ommon RAM (locations 0x70 - 0x7F)
BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1, NVMREGS	; Choose PFM memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON,GIE	; Disable interrupts during unlock sequence
;	REQU	JIRED UNLOCK SEQUENCE:
MOVLW	55h	; Load 55h to get ready for unlock sequence
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	AAh	; Second step is to load AAh into W
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2
BSF	NVMCON1,WR	; Final step is to set WR bit
;		
BSF	INTCON, GIE	; Re-enable interrupts, erase is complete
BCF	NVMCON1,WREN	; Disable writes

TABLE 10-2: NVM ORGANIZATION AND ACCESS INFORMATION

N	laster Values		N	VMREG Acc	ess	FSF	R Access	
Memory Function	ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR <15:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	8000h		8000h		
User Memory	0001h		0	8001h		8001h		
	0003h	PFM		8003h	Read	8003h	Read-Only	
INT Vector	0004h		0	8004h	Write	8004h	rioud only	
User Memory	0005h		0	8005h		8005h		
	07FFh			87FFh		87FFh		
User ID	8000h	PFM	1	8000h	Read			
	8003h			8003h	Write			
Reserved	8004h	_	—	8004h	_			
Rev ID	8005h		1	8005h	Read			
Device ID	8006h		1	8006h	Write			
CONFIG1	8007h	PFM	1	8007h		No	Access	
CONFIG2	8008h		1	8008h				
CONFIG3	8009h		1	8009h	Read-Only			
CONFIG4	800Ah		1	800Ah				
CONFIG5	800Bh		1	800Bh				
User Memory	F000h	EEPROM	1	F000h	Read	7000h	Read-Only	
	F0FFh			F0FFh	Write	70FFh		

10.4.8 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

REGISTER 12-49: WPUE: WEAK PULL-UP PORTE REGISTER

Legend:							
bit 7							bit 0
_	—	—	—	WPUE3	WPUE2	WPUE1	WPUE0
U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3-0	WPUE<3:0> Weak Pull-up Register bit ⁽¹⁾
	1 = Pull-up enabled
	0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-50: ODCONE: PORTE OPEN-DRAIN CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—	—	—	ODCE2	ODCE1	ODCE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented:	Read as '0'
------------------------	-------------

bit 2-0 ODCE<2:0>: PORTE Open-Drain Enable bits

- For RE<2:0> pins, respectively
 - 1 = Port pin operates as open-drain drive (sink current only)
 - 0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 15-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEF3	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS - Bit is set	t in hardware		
bit 7-4	Unimplemen	ted: Read as '(ר י				

	Uninplemented. Acad as 0
bit 3	 IOCEF3: Interrupt-on-Change PORTE Flag bit 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx. 0 = No change was detected, or the user cleared the detected change
bit 2-0	Unimplemented: Read as '0'

22.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 22-3 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 22-3: DATA GATING LOGIC

CLCxGLSy	LCxGyPOL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 22-7)
- Gate 2: CLCxGLS1 (Register 22-8)
- Gate 3: CLCxGLS2 (Register 22-9)
- Gate 4: CLCxGLS3 (Register 22-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 22-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

22.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 22-2. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

22.1.4 OUTPUT POLARITY

The last stage in the Configurable Logic Cell is the output polarity. Setting the LCxPOL bit of the CLCxPOL register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

22.7 Register Definitions: CLC Control

REGISTER 22-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LCxEN	_	LCxOUT	LCxINTP	LCxINTN		LCxMODE<2:0>	
bit 7							bit 0
<u> </u>							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	LCxEN: Configurable Logic Cell Enable bit
	 1 = Configurable logic cell is enabled and mixing input signals 0 = Configurable logic cell is disabled and has logic zero output
bit 6	Unimplemented: Read as '0'
bit 5	LCxOUT: Configurable Logic Cell Data Output bit
	Read-only: logic cell output data, after LCPOL; sampled from CLCxOUT
bit 4	LCxINTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit
	 1 = CLCxIF will be set when a rising edge occurs on CLCxOUT 0 = CLCxIF will not be set
bit 3	LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit
	 1 = CLCxIF will be set when a falling edge occurs on CLCxOUT 0 = CLCxIF will not be set
bit 2-0	LCxMODE<2:0>: Configurable Logic Cell Functional Mode bits
	111 = Cell is 1-input transparent latch with S and R
	110 = Cell is J-K flip-flop with R
	101 = Cell is 2-input D flip-flop with R
	100 = Cell is 1-input D flip-flop with S and R
	011 = Cell is S-R latch
	010 = Cell is 4-input AND
	001 = Cell is OR-XOR
	000 = Cell is AND-OR

R-0/0	R-0/0	R-0/0	R/C/HS-0/0	U-0	R-0/0	R-0/0	R-0/0
ADAOV	ADUTHR	ADLTHR	ADMATH	—		ADSTAT<2:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ADAOV: ADO 1 = ADC accu 0 = ADC accu	C Computation umulator or AD umulator and A	Overflow bit ERR calculatio DERR calculat	n have overflo ion have not o	wed verflowed		
bit 6	ADUTHR: AD 1 = ADERR > 0 = ADERR≤)C Module Gre ∙ADUTH ADUTH	ater-than Uppe	er Threshold Fl	ag bit		
bit 5	ADLTHR: ADC Module Less-than Lower Threshold Flag bit 1 = ADERR <adlth 0 = ADERR≥ADLTH</adlth 						
bit 4	bit 4 ADMATH: ADC Module Computation Status bit 1 = Registers ADACC, ADFLTR, ADUTH, ADLTH and the ADAOV bit are updating or have already updated 0 = Associated registers/bits have not changed since this bit was last cleared						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	ADSTAT<0:2 111 = ADC m 110 = ADC m 101 = ADC m 100 = Not use 011 = ADC m 010 = ADC m 001 = ADC m 000 = ADC m	>: ADC Moduli nodule is in 2 nd nodule is in 2 nd ed nodule is in 1 st nodule is in 1 st nodule is in 1 st nodule is in 1 st	e Cycle Multista conversion sta acquisition sta precharge sta conversion sta acquisition sta precharge stag	age Status bits age ge ge ge ge ge	(1)		
		Food Food the	aa hita may ha	involid			

REGISTER 23-5: ADSTAT: ADC THRESHOLD REGISTER

Note 1: If ADOSC=1, and FOSC<FRC, these bits may be invalid.

TMRxGE
TxGPOL
TxGTM
selected
TxGVAL
TMRxH: TMRxL N XN+1 XN+2 XN+3 N+4 XN+5 XN+6 XN+7 XN+8 Count

FIGURE 28-5: TIMER1 GATE SINGLE-PULSE MODE

FIGURE 29-2: TIMER2 CLOCK SOURCE BLOCK DIAGRAM

29.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 29-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- a write to the T2HLT register
- · any device Reset
- External Reset Source event that resets the timer.

Note: TMR2 is not cleared when T2CON is written.

29.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next cycle and increments the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register then a one clock period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

29.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

29.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

29.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · CWG, as an auto-shutdown source
- · Memory Scanner, as a trigger to begin a scan
- Timer 1/3/5, as a gate input
- Timer 2/4/6, as an external reset signal
- · SMT, as both a window and signal input

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 30.0** "**Capture/Compare/PWM Modules**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 29.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

29.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 29-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 5002014 5002014	
MODE	0600001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

FIGURE 32-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC16(L)F18855/75

33.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 33-3 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

33.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 33-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

33.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TX1STA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TX1STA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

33.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

33.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUD1CON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 33.4.1.2 "Clock Polarity"**.

33.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE3 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

REGISTER 33-4: RC1REG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RC1RE	G<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 RC1REG<7:0>: Lower eight bits of the received data; read-only; see also RX9D (Register 33-2)

Note 1: RCREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 33-5: TX1REG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TX1REG<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TX1REG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-1)

Note 1: TXREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 33-6: SP1BRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SP1BRG<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SP1BRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

40.0 PACKAGING INFORMATION

40.1 Package Marking Information

Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e_3))
		can be found on the outer packaging for this package.
Note:	In the ever	nt the full Microchip part number cannot be marked on one line, it will
	be carried	d over to the next line, thus limiting the number of available
	characters	s for customer-specific information.