

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	l ² C/ SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	—	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	—	Interrupt-on-change input.
RC6/ANC6/CK ⁽³⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	CK ⁽³⁾	TTL/ST	CMOS/OD	EUSART synchronous mode clock input/output.
	IOCC6	TTL/ST	—	Interrupt-on-change input.
RC7/ANC7/RX ⁽¹⁾ /DT ⁽³⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	—	ADC Channel C7 input.
	RX ⁽¹⁾	TTL/ST	—	EUSART Asynchronous mode receiver data input.
	DT ⁽³⁾	TTL/ST	CMOS/OD	EUSART Synchronous mode data input/output.
	IOCC7	TTL/ST	—	Interrupt-on-change input.
RE3/IOCE3/MCLR/Vpp	RE3	TTL/ST	-	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	IOCE3	TTL/ST	—	Interrupt-on-change input.
	MCLR	ST	—	Master clear input with internal weak pull up resistor.
	Vpp	HV	—	ICSP™ High-Voltage Programming mode entry input.
Vdd	Vdd	Power	—	Positive supply voltage input.

TABLE 1-2: PIC16F18855 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Legend: AN = Analog input or output TTL = TTL compatible input ST

= Open-Drain = Schmitt Trigger input with I²C

1²C

Note

HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx This is a PPS remappable input signal. The input function may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit 7 if a label points to a location in the program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants	
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW LOW cons	stants
MOVWF FSR1L	
MOVLW HIGH cor	nstants
MOVWF FSR1H	
MOVIW 0[FSR1]	
; THE PROGRAM MEMORY	IS IN W

3.2 Data Memory Organization

The data memory is partitioned into 32 memory banks with 128 bytes in each bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-12.

TABLE 3-2:	CORE REGISTERS
------------	----------------

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

IABLE	3-13: SPE		-UNCTION	REGISTE		RT BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30												
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
F0Ch — F0Fh	_	-		Unimplemented							—	
F10h	RA0PPS		—	—			RAC	PPS<5:0>			00 0000	uu uuuu
F11h	RA1PPS		_	_			RA1	PPS<5:0>			00 0000	uu uuuu
F12h	RA2PPS		_	_		RA2PPS<5:0>						uu uuuu
F13h	RA3PPS		_	_			RAS	PPS<5:0>			00 0000	uu uuuu
F14h	RA4PPS		_	_			RA4	PPS<5:0>			00 0000	uu uuuu
F15h	RA5PPS		_	_			RAS	PPS<5:0>			00 0000	uu uuuu
F16h	RA6PPS		_	_		RA6PPS<5:0>					00 0000	uu uuuu
F17h	RA7PPS		_	_	RA7PPS<5:0>						00 0000	uu uuuu
F18h	RB0PPS		-	—	RB0PPS<5:0>						00 0000	uu uuuu
F19h	RB1PPS		-	-		RB1PPS<5:0>						uu uuuu
F1Ah	RB2PPS		-	-			RB2	PPS<5:0>			00 0000	uu uuuu
F1Bh	RB3PPS		1	—			RB3	PPS<5:0>			00 0000	uu uuuu
F1Ch	RB4PPS			_		RB4PPS<5:0>					00 0000	uu uuuu
F1Dh	RB5PPS			_		RB5PPS<5:0>				00 0000	uu uuuu	
F1Eh	RB6PPS		—	-		RB6PPS<5:0>				00 0000	uu uuuu	
F1Fh	RB7PPS		—	—		RB7PPS<5:0>				00 0000	uu uuuu	
F20h	RCOPPS		—	—		RC0PPS<5:0>					00 0000	uu uuuu
F21h	RC1PPS		_	_			RC1	PPS<5:0>			00 0000	uu uuuu
F22h	RC2PPS		_	_			RC2	PPS<5:0>			00 0000	uu uuuu
F23h	RC3PPS		_	_			RC3	PPS<5:0>			00 0000	uu uuuu

© 2015-2017 Microchip Technology Inc.

DS40001802D-page 77

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2: SUPERVISORS

							1
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	-
		bit 13					bit 8
[
R/P-1	R/P-1	R/P-1	U-1	U-1	U-1	R/P-1	R/P-1
BORE	N<1:0>	LPBOREN	—	—	—	PWRTE	MCLRE
bit 7							bit 0
Legend:							
R = Readable bit		P = Programmable	e bit	U = Unimplement	ed bit, read as '1'		
'0' = Bit is cleared		'1' = Bit is set		n = Value when bl	ank or after Bulk E	rase	
bit 13	DEBUG : Debug 1 = OFF B 0 = ON B	gger Enable bit ⁽²⁾ Background debugger Background debugger	r disabled; ICSPCL r enabled; ICSPCL	K and ICSPDAT ar K and ICSPDAT ar	e general purpose e dedicated to the c	I/O pins debugger	
bit 12	STVREN: Stack 1 = ON 5 0 = OFF 5	K Overflow/Underflow Stack Overflow or Und Stack Overflow or Und	Reset Enable bit derflow will cause a derflow will not cau	a Reset ise a Reset			
bit 11	PPS1WAY: PPS 1 = ON 0 = OFF	SLOCKED One-Way S The PPSLOCKED bit The PPSLOCKED bit	Set Enable bit can be cleared and can be set and cle	d set only once; PP ared repeatedly (su	'S registers remain ubject to the unlock	locked after one cle sequence)	ear/set cycle
bit 10	ZCDDIS: Zero- 1 = ON 0 = OFF	Cross Detect Disable ZCD disabled. ZCD c ZCD always enabled	bit an be enabled by s (EN bit is ignored)	setting the EN bit of	f the ZCDxCON reg	ister	
bit 9	BORV: Brown-out Reset Voltage Selection bit ⁽¹⁾ 1 = LOW Brown-out Reset voltage (VBOR) set to lower trip point level 0 = HIGH Brown-out Reset voltage (VBOR) set to higher trip point level The higher voltage setting is recommended for operation at or above 16 MHz.						
bit 8	Unimplemented: Read as '1'						
bit 7-6	BOREN<1:0>: Brown-out Reset Enable bits When enabled, Brown-out Reset Voltage (VBOR) is set by the BORV bit 11 = ON Brown-out Reset is enabled; SBOREN bit is ignored 10 = SLEEP Brown-out Reset is enabled while running, disabled in Sleep; SBOREN bit is ignored 01 = SBOREN Brown-out Reset is enabled according to SBOREN 00 = OFF Brown-out Reset is disabled						
bit 5	LPBOREN: Low-power BOR enable bit 1 = LPBOR disabled 0 = LPBOR enabled						
bit 4-2	Unimplemented: Read as '1'						
bit 1	PWRTE: Power-up Timer Enable bit 1 = OFF PWRT is disabled 0 = ON PWRT is enabled						
bit 0	MCLRE: Master Clear (\overline{MCLR}) Enable bitIf LVP = 1:RA3 pin function is \overline{MCLR} .If LVP = 0:1 = ON \overline{MCLR} pin is \overline{MCLR} .0 = OFF \overline{MCLR} pin function is port-defined function.						
Note 1: See	VBOR paramete	r tor specific trip point	voltages.				

 The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
—	—	TMR0IE	IOCIE	_	—	—	INTE
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		

REGISTER 7-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt
	0 = Disables the TMRU Interrupt
bit 4	IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt
bit 3-1	Unimplemented: Read as '0'
bit 0	 INTE: INT External Interrupt Flag bit⁽¹⁾ 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt

Unimplemented: Read as '0'

bit 7-6

Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 13-1).

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt
	controlled by PIE1-PIE8. Interrupt sources
	controlled by the PIE0 register do not
	require PEIE to be set in order to allow
	interrupt vectoring (when GIE is set).

9.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0				
-	-			WDTPS<4:0>(1)			SEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5-1	WDTPS<4:0>: Watchdog Timer Prescale Select bits ⁽¹⁾
	Bit Value = Prescale Rate
	11111 = Reserved. Results in minimum interval (1:32)
	•
	•
	•
	10011 = Reserved. Results in minimum interval (1:32)
	10010 = 1:8388608 (2 ²³) (Interval 256s nominal)
	$10001 = 1:4194304 (2^{22})$ (Interval 128s nominal)
	$10000 = 1:2097152 (2^{21})$ (Interval 64s nominal)
	$01111 = 1:1048576 (2^{20}) (Interval 32s nominal)$
	$01110 = 1:524288 (2^{19})$ (Interval 16s nominal)
	$01101 = 1:262144 (2^{10}) (Interval 8s nominal)$
	01100 = 1:131072 (211) (Interval 4s nominal)
	01011 = 1.00000 (interval 2s nominal) (Reset value)
	01001 = 1.32700 (interval 13 forminal) 01001 = 1.16384 (interval 512 ms nominal)
	01000 = 1.8192 (Interval 256 ms nominal)
	00111 = 1:4096 (Interval 128 ms nominal)
	00110 = 1:2048 (Interval 64 ms nominal)
	00101 = 1:1024 (Interval 32 ms nominal)
	00100 = 1:512 (Interval 16 ms nominal)
	00011 = 1:256 (Interval 8 ms nominal)
	00010 = 1:128 (Interval 4 ms nominal)
	00001 = 1:64 (Interval 2 ms nominal)
	00000 = 1:32 (Interval 1 ms nominal)
bit 0	SEN: Software Enable/Disable for Watchdog Timer bit
	<u>If WDTE<1:0> = 1x:</u>
	This bit is ignored.
	$\frac{\text{If WDTE} < 1:0 > = 01:}{1:0 + 1:0 + 1:0}$
	1 = VVD1 is turned on
	WU

- Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

u = Bit is unchanged

'1' = Bit is set

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-16: WPUB: WEAK PULL-UP PORTB REGISTER

x = Bit is unknown

'0' = Bit is cleared

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits⁽¹⁾ 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-17: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCB7 | ODCB6 | ODCB5 | ODCB4 | ODCB3 | ODCB2 | ODCB1 | ODCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCB<7:0>:** PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

12.14 PORTE Registers (PIC16(L)F18875)

12.14.1 DATA REGISTER

PORTE is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISE (Register 12-46). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize PORTE.

Reading the PORTE register (Register 12-45) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

The PORT data latch LATE (Register 12-47) holds the output port data, and contains the latest value of a LATE or PORTE write.

12.14.2 DIRECTION CONTROL

The TRISE register (Register 12-46) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.14.3 INPUT THRESHOLD CONTROL

The INLVLE register (Register 12-52) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

12.14.4 OPEN-DRAIN CONTROL

The ODCONE register (Register 12-50) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONE bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONE bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

12.14.5 SLEW RATE CONTROL

The SLRCONE register (Register 12-51) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONE bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONE bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

12.14.6 ANALOG CONTROL

The ANSELE register (Register 12-48) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELE bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELE bits has no effect on digital output functions. A pin with TRIS clear and ANSELE set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELC bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

12.14.7 WEAK PULL-UP CONTROL

The WPUE register (Register 12-49) controls the individual weak pull-ups for each port pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	ANSA6	ANSA4	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	205
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220
INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	134
PIE0	—	_	TMR0IE	IOCIE	—	—	_	INTE	135
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	262
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	262
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	262
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	263
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	263
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	263
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	264
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	264
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	264
IOCEP		_		_	IOCEP3	_	_		265
IOCEN			—	—	IOCEN3	—	_	—	265
IOCEF	_	_	—	—	IOCEF3	—	_	—	266

TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

FIGURE 20-3: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

21.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 21-5. The compensating pull-up for this series resistance can be determined with Equation 21-4 because the pull-up value is independent from the peak voltage.

EQUATION 21-5: SERIES R FOR V RANGE

$$RSERIES = \frac{VMAXPEAK + VMINPEAK}{7 \times 10^{-4}}$$

21.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

21.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-On-Reset (POR). When the ZCDDIS Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the EN bit of the ZCDxCON register must be set to enable the ZCD module.

21.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit, which disables the ZCD module when set, but it can be enabled using the EN bit of the ZCDCON register (Register 21-1). If the ZCD bit is clear, the ZCD is always enabled.
- 2. The ZCD can also be disabled using the ZCDMD bit of the PMD2 register (Register 14-3) this is subject to the status of the ZCD bit.

23.6 Register Definitions: ADC Control

REGISTER 23-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0
ADON	ADCONT	—	ADCS	_	ADFRM0		ADGO
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	e at POR and BOF	R/Value at al	I other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is	cleared by hardwa	are	
bit 7	ADON: ADC	Enable bit					
	1 = ADC is er	abled					
hit 6		C Continuous	Operation Ena	ble hit			
bit 0	1 = ADGO is	retriggered up	on completion	of each conv	ersion trigger unt	il ADTIF is a	set (if ADSOL is
	set)	or until ADGO	is cleared (reg	ardless of the	e value of ADSOI)		
	0 = ADGO is	cleared upon c	ompletion of e	ach conversi	on trigger		
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	ADCS: ADC (Clock Selection	n bit				
	1 = Clock sup	plied from FRO	C dedicated os	cillator			
	0 = Clock sup	plied by Fosc,	divided accord	ding to ADCL	K register		
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	ADFRM0: AD	C results Form	nat/alignment S	Selection			
	1 = ADRES a		ata are right-ju	stified	ad		
b #4		na ADPREV a		unea, zero-nii	ea		
		ted: Read as	0				
DIT U	ADGO: ADC	Conversion Sta	atus dit in progress S	etting this hi	t starts an ADC o	onversion c	wele. The hit is
	cleared b	y hardware as	determined by	the ADCON	T bit		yole. The bit is
	0 = ADC conv	ersion comple	ted/not in prog	ress			

26.0 DATA SIGNAL MODULATOR (DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- · Carrier Source Pin Disable
- · Programmable Modulator Data
- · Modulator Source Pin Disable
- · Modulated Output Polarity Select
- Slew Rate Control

Figure 26-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

29.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)

FIGURE 29-12:

• Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

PIC16(L)F18855/75

Rev. 10-000203A 4/7/2016 MODE 0b10001 TMRx_clk PRx 5 Instruction⁽¹⁾ BSF (BCF) BSF BSF BCF ON TMRx_ers ، 3 1 2 3 4 5 5 0 2 3 5 TMRx 0 1 2 4 0 1) 4 0 TMRx_postscaled PWM Duty 3 Cycle **PWM Output**

RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ON ⁽¹⁾	CKPS<2:0>				OUTPS	S<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are	
bit 7	ON: Timerx (1 = Timerx i 0 = Timerx i	Dn bit s on s off: all counte	rs and state m	nachines are res	set		
bit 6-4	CKPS<2:0>: Timer2-type Clock Prescale Select bits 111 = 1:128 Prescaler 110 = 1:64 Prescaler 101 = 1:32 Prescaler 100 = 1:16 Prescaler 011 = 1:8 Prescaler 010 = 1:4 Prescaler 001 = 1:2 Prescaler						
bit 3-0	OUTPS<3:0> 1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 P 0111 = 1:8 P 0110 = 1:7 P 0101 = 1:6 P 0100 = 1:5 P 0011 = 1:4 P 0010 = 1:3 P 0001 = 1:2 P 0000 = 1:1 P	Timerx Outpu Postscaler	t Postscaler S	Select bits			

REGISTER 29-2: TxCON: TIMER2/4/6 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 29.5 "Operation Examples".

FIGURE 32-16: CAPTURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC16(L)F18855/75

37.3 DC Characteristics

TABLE 37-1:SUPPLY VOLTAGE

PIC16LF18855/75				Standard Operating Conditions (unless otherwise stated)				
PIC16F18855/75								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions	
Supply Voltage								
D002	Vdd		1.8 2.5		3.6 3.6	V V	$Fosc \le 16 \text{ MHz}$ Fosc > 16 MHz	
D002	Vdd		2.3 2.5		5.5 5.5	V V	$Fosc \le 16 \text{ MHz}$ $Fosc \ge 16 \text{ MHz}$	
RAM Data Retention ⁽¹⁾								
D003	Vdr		1.5	—	—	V	Device in Sleep mode	
D003	Vdr		1.5	_	—	V	Device in Sleep mode	
Power-c	on Reset	Release Voltage ⁽²⁾						
D004	VPOR		_	1.6	_	V	BOR or LPBOR disabled ⁽³⁾	
D004	VPOR		_	1.6	—	V	BOR or LPBOR disabled ⁽³⁾	
Power-c	on Reset	Rearm Voltage ⁽²⁾						
D005	VPORR		_	0.8	—	V	BOR or LPBOR disabled ⁽³⁾	
D005	VPORR		_	1.2	—	V	BOR or LPBOR disabled ⁽³⁾	
VDD Ris	e Rate to	ensure internal Power-on F	Reset sig	gnal ⁽²⁾				
D006	SVDD		0.05	—	_	V/ms	BOR or LPBOR disabled ⁽³⁾	
D006	SVDD		0.05	—		V/ms	BOR or LPBOR disabled ⁽³⁾	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 37-3, POR and POR REARM with Slow Rising VDD.

3: Please see Table 37-11 for BOR and LPBOR trip point information.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν		S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B