

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<u></u> <u></u>
 6(
L)
Γ1
80
55
5/7
J

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16F18875) (CONTINUED)

O/i	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC0	15	30	34	32	ANC0		_		—	_	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_			_		IOCC0	SOSCO
RC1	16	31	35	35	ANC1	—	—	—	—	—	—	—	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	_	_	—	_	IOCC1	SOSCI
RC2	17	32	36	36	ANC2	_	_	—	-	—	_	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾			—		IOCC2	_
RC3	18	33	37	37	ANC3		_	—	_	SCL1 ^(3,4) SCK1 ⁽¹⁾		_	T2IN ⁽¹⁾		-	-			IOCC3	Ι
RC4	23	38	42	42	ANC4	_	—	-		SDA1 ^(3,4) SDI1 ⁽¹⁾		-	_		_	-		-	IOCC4	
RC5	24	39	43	43	ANC5	_	—	—	_	—	_	_	T4IN ⁽¹⁾	_	_	_	_	_	IOCC5	_
RC6	25	40	44	44	ANC6	_	—	—	—	—	CK ⁽³⁾	_	—	_	—	—	—	_	IOCC6	_
RC7	26	1	1	1	ANC7	_	_	_	—	_	RX ⁽¹⁾ DT ⁽³⁾	_	—	_	-	-	_		IOCC7	_
RD0	19	34	38	38	AND0	_	—	—		—	_	_	—	-	_	_	—	—	-	
RD1	20	35	39	39	AND1	_	_	—	-	—	—	_	_	_	_	_	_	_	-	-
RD2	21	36	40	40	AND2	_	—	—		—	_	_	—	-	_	_	—	—	-	
RD3	22	37	41	41	AND3	_	_	—		—	-	_	_	_	_	_	—	_	-	
RD4	27	2	2	2	AND4	_	_	_	-	_	_	_	_	_			—		—	
RD5	28	3	3	3	AND5	—	—		_	—	—	—	—	—	_	_	—	_	_	_
RD6	29	4	4	4	AND6	_	—	—	—	—	_	—	—	—	-	_	—	_	_	—
RD7	30	5	5	5	AND7	—			_		_	_	—	—	_	_	—	_	_	—
RE0	8	23	25	25	ANE0	—	—	-	—	—	—	_	—	—	—	_	—	—	-	—
RE1	9	24	26	26	ANE1	—	—		_	—	—	—	—	—	_	_	—	_	_	—
RE2	10	25	27	27	ANE2	-	-	—	—	-	-	-	_	_	—	-	_	—	_	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Data EEPROM Memory

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- · Indirect Addressing
- NVMREG access

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F18855/75	8192	1FFFh

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-6: PIC16F18855/75 MEMORY MAP BANK 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	Core Registers (Table 3-2)	880h	Core Registers (Table 3-2)	900h	Core Registers (Table 3-2)	980h	Core Registers (Table 3-2)	A00h	Core Registers (Table 3-2)	A80h	Core Registers (Table 3-2)	B00h	Core Registers (Table 3-2)	B80h	Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch	WDTCON0	88Ch	CPUDOZE	90Ch	FVRCON	98Ch	_	A0Ch		A8Ch		B0Ch		B8Ch	
80Dh	WDTCON1	88Dh	OSCCON1	90Dh	_	98Dh	_								
80Eh	WDTPSL	88Eh	OSCCON2	90Eh	DAC1CON0	98Eh	_								
80Fh	WDTPSH	88Fh	OSCCON3	90Fh	DAC1CON1	98Fh	CMOUT								
810h	WDTTMR	890h	OSCSTAT	910h	_	990h	CM1CON0								
811h	BORCON	891h	OSCEN	911h	_	991h	CM1CON1								
812h	VREGCON ⁽¹⁾	892h	OSCTUNE	912h	_	992h	CM1NSEL								
813h	PCON0	893h	OSCFRQ	913h	_	993h	CM1PSEL								
814h	CCDCON	894h	—	914h	_	994h	CM2CON0								
815h	_	895h	CLKRCON	915h	_	995h	CM2CON1								
816h	_	896h	CLKRCLK	916h	_	996h	CM2NSEL								
817h	_	897h	MDCON0	917h	—	997h	CM2PSEL		Unimplemented		Unimplemented		Unimplemented		Unimplemented
818h	_	898h	MDCON1	918h	_	998h			Read as '0'						
819h	_	899h	MDSRC	919h	—	999h	_								
81Ah	NVMADRL	89Ah	MDCARL	91Ah	—	99Ah	_								
81Bh	NVMADRH	89Bh	MDCARH	91Bh	—	99Bh	—								
81Ch	NVMDATL	89Ch	—	91Ch	—	99Ch	—								
81Dh	NVMDATH	89Dh	_	91Dh	—	99Dh	—								
81Eh	NVMCON1	89Eh	_	91Eh	—	99Eh	—								
81Fh	NVMCON2	89Fh		91Fh	ZCDCON	99Fh									
820h		8A0h		920h		9A0h									
	Unimplemented		Unimplemented		Unimplemented		Unimplemented								
		0551	11000 03 0	OGEN	11000 05 0	OFEN	11000 03 0			A		DOF		DEEP	
80Fh	0	8EFh	0	90F11	0	9EFII	0	A6Fh	0	AEFN	0	BOLU	0	BEFN	0
0/00		orun		9700		arou		Arun		AFUN		Brun		BENU	
075-	70h – 7Fh		70h – 7Fh	0755	70h – 7Fh		70h – 7Fh		70h – 7Fh	A	70h – 7Fh		70h – 7Fh		70h – 7Fh
0/ ГЛ		orrn		9/50		9FFN									-

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F18855/75 only.

TABLE 3-11: PIC16(L)F18875 MEMORY MAP, BANK 30

FOCh — F40h CCDNA F64h F00h — F44h CCDPA F65h F00h — F42h — F66h F00h RA0PPS F44h WPUB F66h F10h RA0PPS F44h WPUB F66h F11h RA1PPS F44h ODCONB F66h F12h RA2PPS F44h ODCONB F66h F13h RA3PPS F44h ODCON F66h F14h RA4PPS F44h IOCEP F6ch F15h RASPPS F44h IOCEN F66h F16h RA8PPS F44h IOCEN F66h F16h RA8PPS F44h IOCEN F66h F16h R84PPS F46h IOCEN F66h F16h R83PPS F46h IOCCN F16h F16h R83PPS F56h IOCCN F16h F16h R63PPS F56h		Bank 30		Bank 30	
F0Dh	F0Ch	_	F40h	CCDNA	F64h
F0Eh	F0Dh	—	F41h	CCDPA	F65h
F0Fh	F0Eh	—	F42h	_	F66h
F10h RA0PPS F44h WPUB F68h F11h RA1PPS F46h SLRCONB F68h F12h RA2PPS F46h SLRCONB F68h F13h RA3PPS F47h INLVLB F68h F14h RA4PPS F48h IOCBP F66h F16h RASPPS F48h IOCBF F68h F16h RASPPS F44h IOCBF F68h F17h RA7PPS F48h IOCBF F68h F16h RASPPS F44h IOCBF F68h F17h RA7PPS F44h IOCBF F68h F18h R80PPS F44h IOCBF F68h F18h R80PPS F44h WPUC F64h F18h R80PPS F54h WPUC IOCCN F16h R8PPS F54h WPUC IOCCP F16h R8PPS F55h IOCCP INLVLC F16h R8PPS F56h IOCCN ISCONC F22h RC3PPS F56h <	F0Fh	_	F43h	ANSELB	F67h
F11h RA1PPS F45h ODCONB F69h F12h RA2PPS F46h SLRCONB F6Ah F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA5PPS F48h IOCBF F6Dh F16h RA6PPS F44h IOCBF F6Dh F17h RA7PPS F48h CCDB F6Dh F18h R80PPS F44h IOCBF F6Eh F18h R80PPS F44h IOCBF F6Eh F18h R80PPS F44h MSELC F6Fh F18h R83PPS F44h WPUC F6Fh F18h R83PPS F44h WPUC F6Fh F16h R83PPS F55h OCCONC F57h F18h R83PPS F55h IOCCP F16h R85PPS F55h IOCCP F20h RC3PPS F55h IOCCP F22h RC3PPS F56h CDNC F22h	F10h	RA0PPS	F44h	WPUB	F68h
F12h RA2PPS F46h SLRCONB F6Ah F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA6PPS F44h IOCBF F6Eh F17h RA7PPS F48h IOCBF F6Eh F17h RA7PPS F48h IOCBF F6Eh F18h RB0PPS F4Ch CCDPB F6Fh F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4th MUUC F10h RB3PPS F5th SLRCONC F10h RB3PPS F5th SLRCONC F12h RC3PPS F5th SLRCONC F12h RC3PPS F5th IOCCP F20h RC3PPS F5th IOCCP F22h RC3PPS F5th IOCCP F22h RC3PPS F5th - F22h RC3PPS F5th - F22h RC3PPS F5th - F22h RC3PPS	F11h	RA1PPS	F45h	ODCONB	F69h
F13h RA3PPS F47h INLVLB F6Bh F14h RA4PPS F48h IOCBP F6Ch F16h RA5PPS F48h IOCBN F6Dh F16h RA6PPS F48h IOCBF F6Eh F17h RA7PPS F48h CCDNB F6Eh F18h RB0PPS F4Ch CCDPB F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB3PPS F4Fh WPUC F10h RB3PPS F51h SLRCONC F18h RB7PS F53h IOCCP F10h RB3PPS F54h IOCCN F16h RB7PS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F58h IOCCP F22h RC2PPS F58h IOCCP F22h RC3PPS F58h IOCCP F22h RC3PPS F58h ODCOND F28h RC6PPS F58h INLVLD	F12h	RA2PPS	F46h	SLRCONB	F6Ah
F14h RA4PPS F48h IOCBP F6Ch F15h RA5PPS F49h IOCBN F6Dh F16h RA6PPS F4Ah IOCBF F6Eh F17h RA7PPS F4Bh CCDNB F6Eh F18h R80PPS F4Ch CCDPB F6Eh F18h R80PPS F4Ch CCDPB F6Eh F18h R80PPS F4Eh ANSELC F6Eh F18h R80PPS F4Eh ANSELC F6Eh F18h R80PPS F61h SLRCONC F6Eh F16h R80PPS F52h INLVLC F1Eh F16h R80PPS F53h IOCCP F12h RC0PPS F53h IOCCP F20h RC0PPS F56h IOCCP F22h RC2PPS F56h IOCCP F22h RC3PPS F57h CCDPC F22h RC6PPS F58h F22h RC6PPS F58h ODCOND F22h RC6PPS F58h ODCOND	F13h	RA3PPS	F47h	INLVLB	F6Bh
F15h RASPPS F49h IOCEN F6Dh F18h RA6PPS F4Ah IOCEF F6Eh F17h RA7PPS F4Bh CCDNB F6Eh F18h RB0PPS F4Ch CCDPB F18h RB0PPS F4Ch CCDPB F18h RB1PPS F4Dh — F18h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB3PPS F51h SLRCONC F10h RB3PPS F51h IOCCP F20h RC0PPS F54h IOCCN F22h RC2PPS F56h CDPC F22h RC3PPS F58h — F22h RC3PPS F56h SLRCOND F28h	F14h	RA4PPS	F48h	IOCBP	F6Ch
F16h RA6PPS F4Ah IOCBF F6Eh F17h RA7PPS F4Bh CCDNB F6Fh F18h RB0PPS F4Ch CCDPB F18h RB1PPS F4Dh F14h RB2PPS F4Eh ANSELC F18h RB3PPS F4Fh WPUC F10h RB4PS F50h ODCONC F10h RB4PS F50h ODCONC F10h RB5PS F51h SLRCONC F10h RB5PS F52h INLVLC F16h RB6PPS F52h IOCCP F10h RB5PS F53h IOCCP F10h RB5PS F53h IOCCP F12h RC0PPS F53h IOCCF F22h RC3PPS F58h F23h RC3PPS F58h F24h RC4PPS F58h F25h RC5PPS F58h ODCOND F28h RC5PPS F58h F38h ANSELA F56h </td <td>F15h</td> <td>RA5PPS</td> <td>F49h</td> <td>IOCBN</td> <td>F6Dh</td>	F15h	RA5PPS	F49h	IOCBN	F6Dh
F17h RA7PPS F4Bh CCDNB F6Fh F18h R80PPS F4Ch CCDPB F19h RB1PPS F4Ch	F16h	RA6PPS	F4Ah	IOCBF	F6Eh
F18h R80PPS F4Ch CCDPB F19h R81PPS F4Dh	F17h	RA7PPS	F4Bh	CCDNB	F6Fh
F19hRB1PPSF4Dh	F18h	RB0PPS	F4Ch	CCDPB	
F1AhRB2PPSF4EhANSELCF1BhRB3PPSF4FhWPUCF1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PSF53hIOCCPF20hRC0PPSF54hIOCCFF21hRC1PPSF55hIOCCFF22hRC3PPSF55hCCDNCF23hRC3PPSF56hCCDNCF24hRC4PPSF58h-F25hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h-F50hSLRCONDF38hANSELAF5Fh-F38hANSELAF60h-F38hSLRCONAF61hCCDNDF38hSLRCONAF61hCCDNDF38hSLRCONAF63h-F38hSLRCONAF63h-F38hINLVLAF63h-F38hIOCAF-	F19h	RB1PPS	F4Dh	_	
F1BhRB3PPSF4FhWPUCF1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF56hCCDNCF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF58hODCONDF27hRC7PPSF58hODCONDF28h	F1Ah	RB2PPS	F4Eh	ANSELC	
F1ChRB4PPSF50hODCONCF1DhRB5PPSF51hSLRCONCF1EhRB6PPSF52hINLVLCF1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF56hODCONDF27hRC7PPSF58hODCONDF28h	F1Bh	RB3PPS	F4Fh	WPUC	
F1Dh R85PPS F51h SLRCONC F1Eh R86PPS F52h INLVLC F1Fh R87PPS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F55h IOCCF F22h RC2PPS F56h CCDNC F23h RC3PPS F57h CCDPC F24h RC4PPS F58h — F25h RC5PPS F59h ANSELD F26h RC6PPS F56h ODCOND F28h	F1Ch	RB4PPS	F50h	ODCONC	
F1Eh RB6PPS F52h INLVLC F1Fh RB7PS F53h IOCCP F20h RC0PPS F54h IOCCN F21h RC1PPS F55h IOCCF F22h RC2PPS F56h CCDNC F23h RC3PPS F57h CCDPC F24h RC4PPS F58h — F25h RC5PPS F59h ANSELD F26h RC6PPS F58h ODCOND F27h RC7PPS F58h ODCOND F28h	F1Dh	RB5PPS	F51h	SLRCONC	
F1FhRB7PPSF53hIOCCPF20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF66hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h	F1Eh	RB6PPS	F52h	INLVLC	
F20hRC0PPSF54hIOCCNF21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28h—F5ChSLRCONDF38hANSELAF5Fh—F38hANSELAF5Fh—F38hSLRCONAF61hCCDNDF38hSLRCONAF63h—F38hSLRCONAF63h—F38hINLVLAF63h—F38hINLVLAF63h—F38hINLVLAF63h—F38hIOCAPF38hIOCAF-F38hIOCAF-	F1Fh	RB7PPS	F53h	IOCCP	
F21hRC1PPSF55hIOCCFF22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF59hANSELDF26hRC6PPSF58hODCONDF27hRC7PPSF58hODCONDF28hF50hINLVLDF37hF50hINLVLDF37hF56hF38hANSELAF5FhF39hWPUAF60hF38hSLRCONAF61hCCDPDF30hINLVLAF63hF30hIOCAPF36hIOCANF63hF37hIOCAF	F20h	RC0PPS	F54h	IOCCN	
F22hRC2PPSF56hCCDNCF23hRC3PPSF57hCCDPCF24hRC4PPSF58hF25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF37hF5DhINLVLDF37hF5DhF38hANSELAF5FhF38hSLRCONAF61hCCDNDF38hSLRCONAF63hF30hIOCAPF33hF32hIOCANF63hF32hIOCAF	F21h	RC1PPS	F55h	IOCCF	
F23hRC3PPSF57hCCDPCF24hRC4PPSF58h-F25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28h-F5ChSLRCONDF37h-F5ChINLVLDF37hANSELAF5Fh-F38hANSELAF5Fh-F38hODCONAF60h-F38hSLRCONAF61hCCDNDF38hSLRCONAF63h-F30hIOCAPF63h-F36hIOCANF63h-F36hIOCANF63h-F37hIOCAF	F22h	RC2PPS	F56h	CCDNC	
F24hRC4PPSF58h—F25hRC5PPSF59hANSELDF26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28h—F5ChSLRCONDF37h—F5Eh—F37hF5Eh——F38hANSELAF5Fh—F38hODCONAF60h—F38hSLRCONAF62hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h—F32hIOCAPF34hIOCANF34hIOCAFF53h—	F23h	RC3PPS	F57h	CCDPC	
F25hRC5PPSF59hANSELDF26hRC6PPSF50hWPUDF27hRC7PPSF50hODCONDF28h-F50hSLRCONDF37h-F50hINLVLDF37hANSELAF56h-F39hWPUAF60h-F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF30hINLVLAF63h-F30hIOCAPF43hIOCAF	F24h	RC4PPS	F58h	_	
F26hRC6PPSF5AhWPUDF27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF28h-F5ChF37hF5Ch-F38hANSELAF5Fh-F39hWPUAF60h-F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h-F32hIOCAPF41hCCDNDF32hIOCAFF41hCCDPD	F25h	RC5PPS	F59h	ANSELD	
F27hRC7PPSF5BhODCONDF28hF5ChSLRCONDF28h-F5Ch-F5DhINLVLDF37hF5Eh-F38hANSELAF5FhF39hWPUAF60hF34hODCONAF61hF3BhSLRCONAF62hF3BhSLRCONAF63hF3BhINLVLAF63hF3ChINLVLAF32hIOCAPF3EhIOCAF	F26h	RC6PPS	F5Ah	WPUD	
F28hF5ChSLRCONDF37hF5DhINLVLDF37hF5Eh—F38hANSELAF5Fh—F39hWPUAF60h—F34hODCONAF61hCCDNDF38hSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3thIOCAF	F27h	RC7PPS	F5Bh	ODCOND	
-F5DhINLVLDF37h-F5Eh-F38hANSELAF5Fh-F39hWPUAF60h-F34hODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h-F3DhIOCAPF34hIOCAF	F28h		F5Ch	SLRCOND	
F37hF5EhF38hANSELAF5FhF39hWPUAF60hF3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAPF3FhIOCAF		—	F5Dh	INLVLD	
F38hANSELAF5FhF39hWPUAF60hF3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAP	F37h		F5Eh	_	
F39hWPUAF60h—F3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3EhIOCANF3FhIOCAFF	F38h	ANSELA	F5Fh	_	
F3AhODCONAF61hCCDNDF3BhSLRCONAF62hCCDPDF3ChINLVLAF63h—F3DhIOCAPF3EhIOCANF3FhIOCAF	F39h	WPUA	F60h	_	
F3BhSLRCONAF62hCCDPDF3ChINLVLAF63hF3DhIOCAPF3EhIOCANF3FhIOCAF	F3Ah	ODCONA	F61h	CCDND	
F3Ch INLVLA F63h	F3Bh	SLRCONA	F62h	CCDPD	
F3DhIOCAPF3EhIOCANF3FhIOCAF	F3Ch	INLVLA	F63h	_	
F3Eh IOCAN F3Fh IOCAF	F3Dh	IOCAP			
F3Fh IOCAF	F3Eh	IOCAN			
	F3Fh	IOCAF			

-64h	ANSELE
-65h	WPUE
-66h	ODCONE
-67h	SLRCONE
-68h	INLVLE
-69h	IOCEP
6Ah	IOCEN
6Bh	IOCEF
6Ch	CCDNE
6Dh	CCDPE
6Eh	_
-6Fh	—

Bank 30

Legend:

= Unimplemented data memory locations, read as '0'.

IARLE	3-13: SPE		FUNCTION	REGISTE	RSUMMA	RY BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	Banks 16											
CPU CORE REGISTERS; see Table 3-2 for specifics												
80Ch	WDTCON0		_	—			PS<4:0>			SEN	dd dddo	dd dddo
80Dh	WDTCON1		—		WDTCS<2:02	>	—		WINDOW<2:0>		-ঀ৾৾ঀ৾৾ঀ -ঀ৾ঀ৾ঀ	-ववव -ववव
80Eh	WDTPSL			•			PSCNT<7:0>	•			0000 0000	0000 0000
80Fh	WDTPSH						PSCNT<7:0>				0000 0000	0000 0000
810h	WDTTMR		—		WDT	TMR<3:0>		STATE	PSCNT	<17:16>	-000 0000	-000 0000
811h	BORCON		SBOREN	—	—	_	_	—	—	BORRDY	1 q	uu
812h	VREGCON ⁽¹⁾		—	_	—	_	_	—	VREGPM	Reserved	01	01
813h	PCON0		STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 11qq	qqqq qquu
814h	CCDCON		CCDEN	—	_	-	-	—	CCDS	6<1:0>	0xx	0uu
815h	—	_				U	Inimplemented	·			-	_
816h	—	-				U	Inimplemented				-	_
817h	—	-				U	Inimplemented				-	-
818h	-	-				U	Inimplemented				-	_
819h	—	-				U	Inimplemented				-	_
81Ah	NVMADRL					N	IVMADR<7:0>				0000 0000	0000 0000
81Bh	NVMADRH		(2)				NVMADR<1	4:8>			1000 0000	1000 0000
81Ch	NVMDATL			NVMDAT<7:0>								0000 0000
81Dh	NVMDATH		—	— — NVMDAT<13:8>								00 0000
81Eh	NVMCON1		—	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 g000
81Fh	NVMCON2			NVMCON2<7:0>								

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- · Linear Data Memory
- Data EEPROM Memory
- Program Flash Memory

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0			
_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF			
bit 7		•					bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set					
bit 7-6	Unimplemen	ted: Read as '	0'							
bit 5	TRM6IF: Time	er6 Interrupt FI	ag bit							
	1 = The TMR6	b postscaler ove	erflowed, or in	1:1 mode, a TN	MR6 to PR6 mat	ch occurred (m	ust be cleared			
	0 = No TMR6	event has occ	urred							
bit 4	TRM5IF: Time	er5 Overflow Ir	terrupt Flag bi	it						
	1 = TMR5 ove	erflow occurred	l (must be clea	ared in softwar	e)					
	0 = No TMR5	overflow occu	rred							
bit 3	TRM4IF: Time	er4 Interrupt FI	r4 Interrupt Flag bit							
	1 = The TMR4	postscaler overflowed, or in 1:1 mode, a TMR4 to PR4 match occurred (must be cleared								
	$0 = N_0 TMR4$	event has occ	urred							
bit 2	TRM3IF: Time	er3 Overflow In	iterrupt Flag bi	it						
	1 = TMR3 ove	erflow occurred	l (must be clea	ared in softwar	e)					
	0 = No TMR3	overflow occu	rred							
bit 1	TRM2IF: Time	er2 Interrupt FI	ag bit							
	1 = The TMR2	2 postscaler ove	erflowed, or in	1:1 mode, a TN	MR2 to PR2 mat	ch occurred (m	ust be cleared			
In software)										
bit 0	TRM1IF: Time	er1 Overflow In	iterrunt Flag hi	it						
5.0	1 = TMR1 ove	erflow occurred	l (must be clea	 ared in softwar	e)					
	0 = No TMR1 overflow occurred									

REGISTER 7-15: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

8.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC16LF18855/75 does not have a
	configurable Low-Power Sleep mode.
	PIC16LF18855/75 is an unregulated
	device and is always in the lowest power
	state when in Sleep, with no wake-up time
	penalty. This device has a lower maximum
	VDD and I/O voltage than the
	PIC16F18855/75. See Section 37.0
	"Electrical Specifications" for more
	information.

8.2.4 IDLE MODE

When the Idle Enable (IDLEN) bit is clear (IDLEN = 0), the SLEEP instruction will put the device into full Sleep mode (see **Section 8.2 "Sleep Mode"**). When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into IDLE mode. In IDLE mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to DOZE mode, except that in IDLE both the CPU and PFM are shut off.

Note:	Peripherals using Fosc will continue
	running while in Idle (but not in Sleep).
	Peripherals using HFINTOSC,
	LFINTOSC, or SOSC will continue
	running in both Idle and Sleep.

Note: If CLKOUT is enabled (CLKOUT = 0, Configuration Word 1), the output will continue operating while in Idle.

8.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can re-enter IDLE by executing the SLEEP instruction.

If Recover-on-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

8.2.4.2 Idle and WDT

When in Idle, the WDT Reset is blocked and will instead wake the device. The WDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

11.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- · Any standard CRC up to 16 bits can be used
- · Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for calculating CRC values not from the memory scanner

11.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using the scanner.

11.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 11-1: BASIC CRC OPERATION EXAMPLE

CRC-16-ANSI

```
x<sup>16</sup> + x<sup>15</sup> + x<sup>2</sup> + 1 (17 bits)
```

Standard 16-bit representation = 0x8005

CRCXORH = 0b10000000 CRCXORL = 0b0000010- (1)

Data Sequence: 0x55, 0x66, 0x77, 0x88

DLEN = 0b0111 PLEN = 0b1111

Data entered into the CRC: SHIFTM = 0:

01010101 01100110 01110111 10001000

SHIFTM = 1: 10101010 01100110 11101110 00010001

Check Value (ACCM = 1):

SHIFTM = 0: 0x32D6 CRCACCH = 0b00110010 CRCACCL = 0b11010110

SHIFTM = 1: 0x6BA2 CRCACCH = 0b01101011 CRCACCL = 0b10100010

Note 1: Bit 0 is unimplemented. The LSb of any CRC polynomial is always '1' and will always be treated as a '1' by the CRC for calculating the CRC check value. This bit will be read in software as a '0'.

11.3 CRC Polynomial Implementation

Any standard polynomial up to 17 bits can be used. The PLEN<3:0> bits are used to specify how long the polynomial used will be. For an x^n polynomial, PLEN = n-2. In an n-bit polynomial the x^n bit and the LSb will be used as a '1' in the CRC calculation because the MSb and LSb must always be a '1' for a CRC polynomial. For example, if using CRC-16-ANSI, the polynomial will look like 0x8005. This will be implemented into the CRCXOR<15:1> registers, as shown in Example 11-1.

11.10.1 BURST MODE

When MODE = 01, the scanner is in Burst mode. In Burst mode, CPU operation is stalled beginning with the operation after the one that sets the SCANGO bit, and the scan begins, using the instruction clock to execute. The CPU is held until the scan stops. Note that because the CPU is not executing instructions, the SCANGO bit cannot be cleared in software, so the CPU will remain stalled until one of the hardware end-conditions occurs. Burst mode has the highest throughput for the scanner, but has the cost of stalling other execution while it occurs.

11.10.2 CONCURRENT MODE

When MODE = 00, the scanner is in Concurrent mode. Concurrent mode, like Burst mode, stalls the CPU while performing accesses of memory. However, while Burst mode stalls until all accesses are complete, Concurrent mode allows the CPU to execute in between access cycles.

11.10.3 TRIGGERED MODE

When MODE = 11, the scanner is in Triggered mode. Triggered mode behaves identically to Concurrent mode, except instead of beginning the scan immediately upon the SCANGO bit being set, it waits for a rising edge from a separate trigger clock, the source of which is determined by the SCANTRIG register.

11.10.4 PEEK MODE

When MODE = 10, the scanner is in Peek mode. Peek mode waits for an instruction cycle in which the CPU does not need to access the NVM (such as a branch instruction) and uses that cycle to do its own NVM access. This results in the lowest throughput for the NVM access (and can take a much longer time to complete a scan than the other modes), but does so without any impact on execution times, unlike the other modes.

MODE<1:0>		Description								
		First Scan Access	CPU	CPU Operation						
11	Triggered	As soon as possible following a trigger	Stalled during NVM access	CPU resumes execution following each access						
10	Peek	At the first dead cycle	Timing is unaffected	CPU continues execution following each access						
01	Burst		Stalled during NV/M appage	CPU suspended until scan completes						
00	Concurrent	As soon as possible		CPU resumes execution following each access						

TABLE 11-1: SUMMARY OF SCANNER MODES

11.10.5 INTERRUPT INTERACTION

The INTM bit of the SCANCON0 register controls the scanner's response to interrupts depending on which mode the NVM scanner is in, as described in Table 11-2.

TABLE 11-2: SCAN INTERRUPT MODES

INITM	MODE<1:0>				
	MODE == Burst	MODE != Burst			
1	Interrupt overrides SCANGO to pause the burst and the interrupt handler executes at full speed; Scanner Burst resumes when interrupt completes.	Scanner suspended during interrupt response; interrupt executes at full speed and scan resumes when the interrupt is complete.			
0	Interrupts do not override SCANGO, and the scan (burst) operation will continue; interrupt response will be delayed until scan completes (latency will be increased).	Scanner accesses NVM during interrupt response. If MODE != Peak the interrupt handler execution speed will be affected.			

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRD7 | SLRD6 | SLRD5 | SLRD4 | SLRD3 | SLRD2 | SLRD1 | SLRD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 12-38: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRD<7:0>:** PORTD Slew Rate Enable bits For RD<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 12-39: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.

18.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

22.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- I/O pins
- Internal clocks
- Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

The CLC modules available are shown in Table 22-1.

TABLE 22-1: AVAILABLE CLC MODULES

Device	CLC1	CLC2	CLC3	CLC4
PIC16(L)F18855/75	•	•	٠	٠

Note: The CLC1, CLC2, CLC3 and CLC4 are four separate module instances of the same CLC module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the CLC number (which should be substituted with 1, 2, 3, or 4 during code development). For example, the control register is generically described in this chapter as CLCxCON, but the actual device registers are CLC1CON, CLC2CON, CLC3CON and CLC4CON. Similarly, the LCxEN bit represents the LC1EN, LC2EN, LC3EN and LC4EN bits. Refer to Figure 22-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

22.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

22.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

22.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

22.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

22.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 22-2).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

REGISTER 23-24: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

				B # 1 /	B # 1 /	B a b <i>i</i> i	-
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADSTF	'T<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkne	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 **ADSTPT<15:8>**: ADC Threshold Setpoint MSB. Most Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-25: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADSTP | T<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADSTPT<7:0>**: ADC Threshold Setpoint LSB. Least Significant Byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 21-1 for more details.

REGISTER 23-26: ADERRH: ADC CALCULATION ERROR REGISTER HIGH

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
ADERR<15:8>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADERR<15:8>**: ADC Calculation Error MSB. Most Significant Byte of ADC Calculation Error. Calculation is determined by ADCALC bits of ADCON3, see Register 21-1 for more details.

[\]

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 28-3: TIMER1 GATE ENABLE MODE

FIGURE 31-7: SPI DAISY-CHAIN CONNECTION

35.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F1783XX Memory Programming Specification" (DS400001738).

35.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

35.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See **Section 5.4 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

35.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 35-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 35-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 35-3 for more information.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch						
Syntax:	[<i>label</i>] GOTO k						
Operands:	$0 \leq k \leq 2047$						
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>						
Status Affected:	None						
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.						

INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCFSZ f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.			
IORLW	Inclusive OR literal with W			

_	
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f					
Syntax:	[<i>label</i>] INCF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

FIGURE 37-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 37-18: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	H TOCKI High Pulse Width No Prescaler With Prescaler		ulse Width No Prescaler		—	_	ns	
				10	—	_	ns		
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
		With Prescaler		10	—	_	ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, N	lo Prescaler	0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous		60		_	ns	
48	FT1	Secondary Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.