

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 25                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 24x10b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-VQFN Exposed Pad                                                         |
| Supplier Device Package    | 28-QFN (6x6)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855-i-ml |
|                            |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

# 4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as shown in Table 4-1.

# TABLE 4-1:CONFIGURATION WORD<br/>LOCATIONS

| Configuration Word | Location |
|--------------------|----------|
| CONFIG1            | 8007h    |
| CONFIG2            | 8008h    |
| CONFIG3            | 8009h    |
| CONFIG4            | 800Ah    |
| CONFIG5            | 800Bh    |

| Note: | The DEBUG bit in Configuration Words is     |  |  |  |  |  |  |  |
|-------|---------------------------------------------|--|--|--|--|--|--|--|
|       | managed automatically by device             |  |  |  |  |  |  |  |
|       | development tools including debuggers       |  |  |  |  |  |  |  |
|       | and programmers. For normal device          |  |  |  |  |  |  |  |
|       | operation, this bit should be maintained as |  |  |  |  |  |  |  |
|       | a '1'.                                      |  |  |  |  |  |  |  |

# 4.2 Register Definitions: Configuration Words

| REGISTER                                                                   | 4-1: CONF                     | IG1: CONFIG                        | URATION        | WORD 1: OS                     | CILLATOR        | S                 |                |  |  |
|----------------------------------------------------------------------------|-------------------------------|------------------------------------|----------------|--------------------------------|-----------------|-------------------|----------------|--|--|
|                                                                            |                               | R/P-1                              | U-1            | R/P-1                          | U-1             | U-1               | R/P-1          |  |  |
|                                                                            |                               | FCMEN                              | —              | CSWEN                          | —               | —                 | CLKOUTEN       |  |  |
|                                                                            |                               | bit 13                             |                |                                |                 |                   | bit 8          |  |  |
| U-1                                                                        | R/P-1                         | R/P-1                              | R/P-1          | U-1                            | R/P-1           | R/P-1             | R/P-1          |  |  |
| 0-1                                                                        |                               | RSTOSC<2:0>                        | F/F-1          | 0-1                            | N/F-1           | FEXTOSC<2:0       |                |  |  |
| <br>bit 7                                                                  |                               | K3103C<2.02                        |                |                                |                 | FEXT030~2.0       | bit 0          |  |  |
|                                                                            |                               |                                    |                |                                |                 |                   | bit o          |  |  |
| Legend:                                                                    |                               |                                    |                |                                |                 |                   |                |  |  |
| R = Readabl                                                                | e bit                         | P = Programm                       | nable bit      | U = Unimpler                   | mented bit, rea | ad as '1'         |                |  |  |
| '0' = Bit is cleared '1' = Bit is n = Value when blank or after Bulk Erase |                               |                                    |                |                                |                 |                   |                |  |  |
|                                                                            |                               | set                                |                |                                |                 |                   |                |  |  |
| bit 13                                                                     | ECMEN: Eail                   | Safe Clock Mo                      | aitor Enabla   | hit                            |                 |                   |                |  |  |
| DIL 15                                                                     |                               | SCM timer enab                     |                | UIL                            |                 |                   |                |  |  |
|                                                                            | 0 = OFF <b>F</b> \$           | SCM timer disal                    | bled           |                                |                 |                   |                |  |  |
| bit 12                                                                     | Unimplemen                    | ted: Read as '1                    | ,              |                                |                 |                   |                |  |  |
| bit 11                                                                     |                               | ck Switch Enab                     |                |                                |                 |                   |                |  |  |
|                                                                            |                               | riting to NOSC<br>ne NOSC and N    |                |                                | by user soft    | ware              |                |  |  |
| bit 10-9                                                                   | Unimplemented: Read as '1'    |                                    |                |                                |                 |                   |                |  |  |
| bit 8                                                                      | CLKOUTEN:                     | Clock Out Enal                     | ole bit        |                                |                 |                   |                |  |  |
|                                                                            |                               | EC (high, mid                      |                |                                | <b>.</b>        |                   |                |  |  |
|                                                                            |                               | LKOUT functior                     |                |                                |                 |                   |                |  |  |
|                                                                            | <u>Otherwise</u>              |                                    | no chabicu,    |                                | ppcars at 00    | 02                |                |  |  |
|                                                                            | This bit is igno              | ored.                              |                |                                |                 |                   |                |  |  |
| bit 7                                                                      | Unimplemen                    | ted: Read as '1                    | 3              |                                |                 |                   |                |  |  |
| bit 6-4                                                                    |                               | >: Power-up D                      |                |                                |                 |                   | -              |  |  |
|                                                                            | This value is t<br>111 = EXT1 |                                    |                | OSC, and sele<br>oer FEXTOSC b |                 | tor first used by | user software  |  |  |
|                                                                            | 110 = HFIN                    |                                    | SC (1 MHz)     |                                | 0113            |                   |                |  |  |
|                                                                            | 101 = LFIN                    | T LFINTO                           |                |                                |                 |                   |                |  |  |
|                                                                            | 100 = SOSC                    |                                    |                |                                |                 |                   |                |  |  |
|                                                                            | 011 = Rese<br>010 = EXT4      |                                    | C with 4x PI I | with EXTOS                     | Conerating of   | er FEXTOSC bit    | \$             |  |  |
|                                                                            |                               |                                    |                |                                |                 |                   | Fosc = 32 MHz) |  |  |
|                                                                            | 000 = HFIN                    | T32 HFINTO                         | SC with OS     | CFRQ= 32 MHz                   | and CDIV =      | 1:1               |                |  |  |
| bit 3                                                                      | Unimplemen                    | ted: Read as '1                    | 3              |                                |                 |                   |                |  |  |
| bit 2-0                                                                    |                               | 0>: FEXTOSC                        |                | cillator mode Se               | election bits   |                   |                |  |  |
|                                                                            |                               | EC (External C<br>EC (External C   |                |                                |                 |                   |                |  |  |
|                                                                            |                               | EC (External C                     |                |                                |                 |                   |                |  |  |
|                                                                            |                               |                                    |                | ed. RA7 is avai                | lable as a ger  | neral purpose I/C | D.             |  |  |
|                                                                            | 011 = <b>Rese</b>             |                                    |                |                                |                 |                   |                |  |  |
|                                                                            |                               | HS (Crystal oso<br>XT (Crystal oso |                |                                |                 |                   |                |  |  |
|                                                                            |                               | LP (Crystal osc                    |                |                                |                 |                   |                |  |  |
|                                                                            |                               |                                    | ,              |                                |                 |                   |                |  |  |
|                                                                            |                               |                                    |                |                                |                 |                   |                |  |  |

| Name    | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3     | Bit 2  | Bit 1     | Bit 0    | Register<br>on Page |
|---------|--------|--------|--------|--------|-----------|--------|-----------|----------|---------------------|
| INTCON  | GIE    | PEIE   | —      |        | —         | —      | —         | INTEDG   | 134                 |
| PIE0    |        | _      | TMR0IE | IOCIE  | —         | —      | —         | INTE     | 135                 |
| PIE1    | OSFIE  | CSWIE  |        | _      |           |        | ADTIE     | ADIE     | 136                 |
| PIE2    |        | ZCDIE  |        | _      |           |        | C2IE      | C1IE     | 137                 |
| PIE3    |        | _      | RCIE   | TXIE   | BCL2IE    | SSP2IE | BCL1IE    | SSP1IE   | 138                 |
| PIE4    |        | _      | TMR6IE | TMR5IE | TMR4IE    | TMR3IE | TMR2IE    | TMR1IE   | 139                 |
| PIR0    | _      | _      | TMR0IF | IOCIF  | _         | _      | —         | INTF     | 144                 |
| PIR1    | OSFIF  | CSWIF  |        | _      |           |        | ADTIF     | ADIF     | 145                 |
| PIR2    |        | ZCDIF  |        | _      |           |        | C2IF      | C1IF     | 146                 |
| PIR3    |        | _      | RCIF   | TXIF   | BCL2IF    | SSP2IF | BCL1IF    | SSP1IF   | 147                 |
| PIR4    |        | _      | TMR6IF | TMR5IF | TMR4IF    | TMR3IF | TMR2IF    | TMR1IF   | 148                 |
| IOCAP   | IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3    | IOCAP2 | IOCAP1    | IOCAP0   | 262                 |
| IOCAN   | IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3    | IOCAN2 | IOCAN1    | IOCAN0   | 262                 |
| IOCAF   | IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3    | IOCAF2 | IOCAF1    | IOCAF0   | 262                 |
| IOCCP   | IOCCP7 | IOCCP6 | IOCCP5 | IOCCP4 | IOCCP3    | IOCCP2 | IOCCP1    | IOCCP0   | 264                 |
| IOCBP   | IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3    | IOCBP2 | IOCBP1    | IOCBP0   | 263                 |
| IOCBN   | IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3    | IOCBN2 | IOCBN1    | IOCBN0   | 263                 |
| IOCBF   | IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3    | IOCBF2 | IOCBF1    | IOCBF0   | 263                 |
| IOCCN   | IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3    | IOCCN2 | IOCCN1    | IOCCN0   | 264                 |
| IOCCF   | IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3    | IOCCF2 | IOCCF1    | IOCCF0   | 264                 |
| IOCEP   |        | _      |        | _      | IOCEP3    |        |           | _        | 265                 |
| IOCEN   |        | _      |        |        | IOCEN3    |        |           | _        | 265                 |
| IOCEF   |        | _      |        |        | IOCEF3    |        |           | _        | 266                 |
| STATUS  |        | _      |        | TO     | PD        | Z      | DC        | С        | 38                  |
| VREGCON |        | _      |        | _      |           |        | VREGPM    | Reserved | 159                 |
| CPUDOZE | IDLEN  | DOZEN  | ROI    | DOE    |           |        | DOZE<2:0> |          | 160                 |
| WDTCON0 | _      | —      |        | V      | VDTPS<4:0 | >      |           | SWDTEN   | 166                 |
| IOCEP   | —      | —      | —      | —      | IOCEP3    | —      | —         | —        | 265                 |
| IOCEN   | _      | —      | —      | —      | IOCEN3    | —      | —         | —        | 265                 |
| IOCEF   | _      | _      | —      | _      | IOCEF3    | —      | —         | —        | 266                 |

# TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

# 11.7 Configuring the CRC

The following steps illustrate how to properly configure the CRC.

- Determine if the automatic Program Memory scan will be used with the scanner or manual calculation through the SFR interface and perform the actions specified in Section 11.4 "CRC Data Sources", depending on which decision was made.
- 2. If desired, seed a starting CRC value into the CRCACCH/L registers.
- 3. Program the CRCXORH/L registers with the desired generator polynomial.
- Program the DLEN<3:0> bits of the CRCCON1 register with the length of the data word – 1 (refer to Example 11-1). This determines how many times the shifter will shift into the accumulator for each data word.
- Program the PLEN<3:0> bits of the CRCCON1 register with the length of the polynomial – 2 (refer to Example 11-1).
- Determine whether shifting in trailing zeros is desired and set the ACCM bit of CRCCON0 register appropriately.
- 7. Likewise, determine whether the MSb or LSb should be shifted first and write the SHIFTM bit of CRCCON0 register appropriately.
- 8. Write the CRCGO bit of the CRCCON0 register to begin the shifting process.
- 9a. If manual SFR entry is used, monitor the FULL bit of CRCCON0 register. When FULL = 0, another word of data can be written to the CRCDATH/L registers, keeping in mind that CRCDATH should be written first if the data has >8 bits, as the shifter will begin upon the CRCDATL register being written.
- 9b. If the scanner is used, the scanner will automatically stuff words into the CRCDATH/L registers as needed, as long as the SCANGO bit is set.
- 10a. If using the Flash memory scanner, monitor the SCANIF (or the SCANGO bit) for the scanner to finish pushing information into the CRCDATA registers. After the scanner is completed, monitor the CRCIF (or the BUSY bit) to determine that the CRC has been completed and the check value can be read from the CRCACC registers. If both the interrupt flags are set (or both BUSY and SCANGO bits are cleared), the completed CRC calculation can be read from the CRCACCH/L registers.
- 10b.If manual entry is used, monitor the CRCIF (or BUSY bit) to determine when the CRCACC registers will hold the check value.

# 11.8 Program Memory Scan Configuration

If desired, the Program Memory Scan module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory addresses. In order to set up the Scanner to work with the CRC you need to perform the following steps:

- Set the EN bit to enable the module. This can be performed at any point preceding the setting of the SCANGO bit, but if it gets disabled, all internal states of the Scanner are reset (registers are unaffected).
- Choose which memory access mode is to be used (see Section 11.10 "Scanning Modes") and set the MODE bits of the SCANCON0 register appropriately.
- 3. Based on the memory access mode, set the INTM bits of the SCANCON0 register to the appropriate interrupt mode (see Section 11.10.5 "Interrupt Interaction")
- 4. Set the SCANLADRL/H and SCANHADRL/H registers with the beginning and ending locations in memory that are to be scanned.
- 5. Begin the scan by setting the SCANGO bit in the SCANCON0 register. The scanner will wait (CRCGO must be set) for the signal from the CRC that it is ready for the first Flash memory location, then begin loading data into the CRC. It will continue to do so until it either hits the configured end address or an address that is unimplemented on the device, at which point the SCANGO bit will clear, Scanner functions will cease, and the SCANIF interrupt will be triggered. Alternately, the SCANGO bit can be cleared in software if desired.

# 11.9 Scanner Interrupt

The scanner will trigger an interrupt when the SCANGO bit transitions from '1' to '0'. The SCANIF interrupt flag of PIR7 is set when the last memory location is reached and the data is entered into the CRCDATA registers. The SCANIF bit can only be cleared in software. The SCAN interrupt enable is the SCANIE bit of the PIE7 register.

# 11.10 Scanning Modes

The memory scanner can scan in four modes: Burst, Peek, Concurrent, and Triggered. These modes are controlled by the MODE bits of the SCANCON0 register. The four modes are summarized in Table 11-1.

| R/W-1/1  | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 |
|----------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7    | SLRB6   | SLRB5   | SLRB4   | SLRB3   | SLRB2   | SLRB1   | SLRB0   |
| bit 7    |         |         |         |         |         |         | bit 0   |
|          |         |         |         |         |         |         |         |
| l egend: |         |         |         |         |         |         |         |

| Legena:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 **SLRB<7:0>:** PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

## REGISTER 12-19: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

# 18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-14 for more information.

# 18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 28.7 "Timer Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

#### 18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 28-1) for more information.

## 18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

**Note:** Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

# 18.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN0+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 16.0 "Fixed Voltage Reference (FVR)"** for more information on the Fixed Voltage Reference module.

See Section 25.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

# 18.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- · CxIN- pin
- FVR (Fixed Voltage Reference)
- · Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

#### 19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

#### 19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

#### TABLE 19-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

| PWM Frequency             | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz |
|---------------------------|----------|----------|-----------|-----------|-----------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1         | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F      | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7         | 6.6       |

#### TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

| PWM Frequency             | 1.22 kHz | 4.90 kHz | 19.61 kHz | 76.92 kHz | 153.85 kHz | 200.0 kHz |
|---------------------------|----------|----------|-----------|-----------|------------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1          | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F       | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7          | 6.6       |

#### 19.1.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 19-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 19-2.
- 5. Configure and start Timer2:
  - Clear the TMR2IF interrupt flag bit of the PIR1 register.
  - Select the Timer2 prescale value by configuring the T2CKPS<1:0> bits of the T2CON register.
  - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
  - Clear the associated TRIS bit(s) to enable the output driver.

- Route the signal to the desired pin by configuring the RxyPPS register.
- Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

## 20.1.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 20-2. This alternation creates the push-pull effect required for driving some transformer-based power supply designs.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

#### 20.1.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. In Forward Full-Bridge mode, CWGxA is driven to its active state, CWGxB and CWGxC are driven to their inactive state, and CWGxD is modulated by the input signal. In Reverse Full-Bridge mode, CWGxC is driven to its active state, CWGxA and CWGxD are driven to their inactive states, and CWGxB is modulated by the input signal. In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or vice-versa. This dead-band control is described in Section 20.5 "Dead-Band Control", with additional details in Section 20.6 "Rising Edge and Reverse Dead Band" and Section 20.7 "Falling Edge and Forward Dead Band".

The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module.

| Name     | Bit 7    | Bit 6    | Bit 5    | Bit 4       | Bit 3    | Bit 2    | Bit 1        | Bit 0    | Register<br>on Page |
|----------|----------|----------|----------|-------------|----------|----------|--------------|----------|---------------------|
| INTCON   | GIE      | PEIE     |          | _           | _        | _        |              | INTEDG   | 134                 |
| PIR5     | CLC4IF   | CLC3IF   | CLC2IF   | CLC1IF      | _        | TMR5GIF  | TMR3GIF      | TMR1GIF  | 149                 |
| PIE5     | CLC4IE   | CLC4IE   | CLC2IE   | CLC1IE      | —        | TMR5GIE  | TMR3GIE      | TMR1GIE  | 140                 |
| CLC1CON  | LC1EN    | _        | LC10UT   | LC1INTP     | LC1INTN  |          | LC1MODE<2:02 | >        | 327                 |
| CLC1POL  | LC1POL   | _        | _        | _           | LC1G4POL | LC1G3POL | LC1G2POL     | LC1G1POL | 328                 |
| CLC1SEL0 | _        | _        |          |             | LC1D     | 1S<5:0>  | 1            | 1        | 329                 |
| CLC1SEL1 | _        | _        |          |             | LC1D     | 2S<5:0>  |              |          | 329                 |
| CLC1SEL2 | _        | _        |          |             | LC1D     | 3S<5:0>  |              |          | 329                 |
| CLC1SEL3 | _        | _        |          |             | LC1D     | 4S<5:0>  |              |          | 329                 |
| CLC1GLS0 | LC1G1D4T | LC1G1D4N | LC1G1D3T | LC1G1D3N    | LC1G1D2T | LC1G1D2N | LC1G1D1T     | LC1G1D1N | 330                 |
| CLC1GLS1 | LC1G2D4T | LC1G2D4N | LC1G2D3T | LC1G2D3N    | LC1G2D2T | LC1G2D2N | LC1G2D1T     | LC1G2D1N | 331                 |
| CLC1GLS2 | LC1G3D4T | LC1G3D4N | LC1G3D3T | LC1G3D3N    | LC1G3D2T | LC1G3D2N | LC1G3D1T     | LC1G3D1N | 332                 |
| CLC1GLS3 | LC1G4D4T | LC1G4D4N | LC1G4D3T | LC1G4D3N    | LC1G4D2T | LC1G4D2N | LC1G4D1T     | LC1G4D1N | 333                 |
| CLC2CON  | LC2EN    | _        | LC2OUT   | LC2INTP     | LC2INTN  |          | LC2MODE<2:0  | >        | 327                 |
| CLC2POL  | LC2POL   | _        | _        | —           | LC2G4POL | LC2G3POL | LC2G2POL     | LC2G1POL | 328                 |
| CLC2SEL0 | _        | _        |          | LC2D1S<5:0> |          |          |              |          |                     |
| CLC2SEL1 | _        | _        |          | LC2D2S<5:0> |          |          |              |          |                     |
| CLC2SEL2 | _        | _        |          | LC2D3S<5:0> |          |          |              |          |                     |
| CLC2SEL3 | _        | _        |          |             | LC2D     | 4S<5:0>  |              |          | 329                 |
| CLC2GLS0 | LC2G1D4T | LC2G1D4N | LC2G1D3T | LC2G1D3N    | LC2G1D2T | LC2G1D2N | LC2G1D1T     | LC2G1D1N | 330                 |
| CLC2GLS1 | LC2G2D4T | LC2G2D4N | LC2G2D3T | LC2G2D3N    | LC2G2D2T | LC2G2D2N | LC2G2D1T     | LC2G2D1N | 331                 |
| CLC2GLS2 | LC2G3D4T | LC2G3D4N | LC2G3D3T | LC2G3D3N    | LC2G3D2T | LC2G3D2N | LC2G3D1T     | LC2G3D1N | 332                 |
| CLC2GLS3 | LC2G4D4T | LC2G4D4N | LC2G4D3T | LC2G4D3N    | LC2G4D2T | LC2G4D2N | LC2G4D1T     | LC2G4D1N | 333                 |
| CLC3CON  | LC3EN    | _        | LC3OUT   | LC3INTP     | LC3INTN  |          | LC3MODE<2:0  | >        | 327                 |
| CLC3POL  | LC3POL   | _        | _        | —           | LC3G4POL | LC3G3POL | LC3G2POL     | LC3G1POL | 328                 |
| CLC3SEL0 | _        | _        |          | L           | LC3D     | 1S<5:0>  | 1            |          | 329                 |
| CLC3SEL1 | _        | _        |          |             | LC3D     | 2S<5:0>  |              |          | 329                 |
| CLC3SEL2 | _        | _        |          |             | LC3D     | 3S<5:0>  |              |          | 329                 |
| CLC3SEL3 | _        | _        |          |             | LC3D     | 4S<5:0>  |              |          | 329                 |
| CLC3GLS0 | LC3G1D4T | LC3G1D4N | LC3G1D3T | LC3G1D3N    | LC3G1D2T | LC3G1D2N | LC3G1D1T     | LC3G1D1N | 330                 |
| CLC3GLS1 | LC3G2D4T | LC3G2D4N | LC3G2D3T | LC3G2D3N    | LC3G2D2T | LC3G2D2N | LC3G2D1T     | LC3G2D1N | 331                 |
| CLC3GLS2 | LC3G3D4T | LC3G3D4N | LC3G3D3T | LC3G3D3N    | LC3G3D2T | LC3G3D2N | LC3G3D1T     | LC3G3D1N | 332                 |
| CLC3GLS3 | LC3G4D4T | LC3G4D4N | LC3G4D3T | LC3G4D3N    | LC3G4D2T | LC3G4D2N | LC3G4D1T     | LC3G4D1N | 333                 |
| CLC4CON  | LC4EN    | _        | LC4OUT   | LC4INTP     | LC4INTN  |          | LC4MODE<2:02 | >        | 327                 |
| CLC4POL  | LC4POL   | _        | —        | —           | LC4G4POL | LC4G3POL | LC4G2POL     | LC4G1POL | 328                 |
| CLC4SEL0 | _        | _        |          |             | LC4D     | 1S<5:0>  |              |          | 329                 |
| CLC4SEL1 | _        | _        |          |             | LC4D     | 2S<5:0>  |              |          | 329                 |
| CLC4SEL2 | _        |          |          |             | LC4D     | 3S<5:0>  |              |          | 329                 |
| CLC4SEL3 | _        | _        |          |             | LC4D     | 4S<5:0>  |              |          | 329                 |
| CLC4GLS0 | LC4G1D4T | LC4G1D4N | LC4G1D3T | LC4G1D3N    | LC4G1D2T | LC4G1D2N | LC4G1D1T     | LC4G1D1N | 330                 |

### TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

# 23.5.8 CONTINUOUS SAMPLING MODE

Setting the ADCONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. That means the ADGO bit is set to generate automatic retriggering, until the device Reset occurs or the A/D Stop-on-interrupt bit (ADSOI in the ADCON3 register) is set (correct logic).

# 23.5.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ADERR or trigger ADTIF. When the second conversion completes, the first value is transferred to ADPREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ADERR calculated and ADTIF triggered (depending on the value of ADCALC).

| R/W-x/u                                                              | R/W-x/u | R/W-x/u           | R/W-x/u                                         | R/W-x/u | R/W-x/u | R/W-x/u      | R/W-x/u |
|----------------------------------------------------------------------|---------|-------------------|-------------------------------------------------|---------|---------|--------------|---------|
|                                                                      |         |                   | ADCN                                            | T<7:0>  |         |              |         |
| bit 7                                                                |         |                   |                                                 |         |         |              | bit 0   |
|                                                                      |         |                   |                                                 |         |         |              |         |
| Legend:                                                              |         |                   |                                                 |         |         |              |         |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |         |                   |                                                 |         |         |              |         |
| u = Bit is unch                                                      | anged   | x = Bit is unkn   | own -n/n = Value at POR and BOR/Value at all ot |         |         | other Resets |         |
| '1' = Bit is set                                                     |         | '0' = Bit is clea | ared                                            |         |         |              |         |

#### **REGISTER 23-13: ADCNT: ADC CONVERSION COUNTER REGISTER**

bit 7-0 ADCNT<7:0>: ADC Conversion Counter

Counts the number of times that the ADC is triggered. Determines when the threshold is checked for the Low-Pass Filter, Burst Average, and Average Computation modes. Count saturates at 0xFF and does not roll-over to 0x00.

#### REGISTER 23-14: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

| R-x          | R-x | R-x | R-x | R-x | R-x | R-x | R-x   |
|--------------|-----|-----|-----|-----|-----|-----|-------|
| ADFLTR<15:8> |     |     |     |     |     |     |       |
| bit 7        |     |     |     |     |     |     | bit 0 |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 ADFLTR<15:8>: ADC Filter Output Most Significant bits and Sign bit In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Lowpass Filter.

#### REGISTER 23-15: ADFLTRL: ADC FILTER LOW BYTE REGISTER

| R-x     | R-x | R-x | R-x   | R-x    | R-x | R-x | R-x   |
|---------|-----|-----|-------|--------|-----|-----|-------|
|         |     |     | ADFLT | R<7:0> |     |     |       |
| bit 7   |     |     |       |        |     |     | bit 0 |
|         |     |     |       |        |     |     |       |
| Legend: |     |     |       |        |     |     |       |
|         |     |     |       |        |     |     |       |

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 **ADFLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Lowpass Filter.

| U-0              | U-0         | U-0                                                                                    | U-0           | R/W-x/u           | R/W-x/u          | R/W-x/u               | R/W-x/u      |  |  |  |
|------------------|-------------|----------------------------------------------------------------------------------------|---------------|-------------------|------------------|-----------------------|--------------|--|--|--|
| —                | —           |                                                                                        |               |                   | MDCHS            | S<3:0> <sup>(1)</sup> |              |  |  |  |
| bit 7            |             |                                                                                        |               |                   |                  |                       | bit 0        |  |  |  |
| Legend:          |             |                                                                                        |               |                   |                  |                       |              |  |  |  |
| R = Readable     | e hit       | W = Writable                                                                           | hit           | II – Unimpler     | nented bit, read | 1 26 (0)              |              |  |  |  |
|                  |             |                                                                                        |               |                   | ,                |                       |              |  |  |  |
| u = Bit is unc   | •           | x = Bit is unkr                                                                        | iown          | -n/n = Value a    | at POR and BO    | R/Value at all c      | other Resets |  |  |  |
| '1' = Bit is set | t           | '0' = Bit is clea                                                                      | ared          |                   |                  |                       |              |  |  |  |
|                  |             |                                                                                        |               |                   |                  |                       |              |  |  |  |
| bit 7-4          | Unimplemen  | ted: Read as '                                                                         | o'            |                   |                  |                       |              |  |  |  |
| bit 3-0          | MDCHS<3:0>  | Modulator Da                                                                           | ta High Carri | er Selection bits | <sub>S</sub> (1) |                       |              |  |  |  |
|                  | 1111 = LC4  |                                                                                        |               |                   | -                |                       |              |  |  |  |
|                  | 1110 = LC3  | out                                                                                    |               |                   |                  |                       |              |  |  |  |
|                  | 1101 = LC2  | out                                                                                    |               |                   |                  |                       |              |  |  |  |
|                  | 1100 = LC1  | _out                                                                                   |               |                   |                  |                       |              |  |  |  |
|                  | 1011 = NCC  |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  | 1010 = PWN  |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  | 1001 = PWN  |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  |             | 1000 = CCP5 output (PWM Output mode only)                                              |               |                   |                  |                       |              |  |  |  |
|                  |             | 0111 = CCP4 output (PWM Output mode only)                                              |               |                   |                  |                       |              |  |  |  |
|                  |             | 0110 = CCP3 output (PWM Output mode only)<br>0101 = CCP2 output (PWM Output mode only) |               |                   |                  |                       |              |  |  |  |
|                  | 0100 = CCP  |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  |             | rence clock mo                                                                         |               |                   |                  |                       |              |  |  |  |
|                  | 0010 = HEIN |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  | 0001 = Fost |                                                                                        |               |                   |                  |                       |              |  |  |  |
|                  |             | elected by MD                                                                          | CARHPPS       |                   |                  |                       |              |  |  |  |

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

| R/W/HC-0/0        | R/W-0/0                                                                                                    | R/W-0/0           | R/W-0/0 | R/W-0/0      | R/W-0/0          | R/W-0/0  | R/W-0/0      |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------|-------------------|---------|--------------|------------------|----------|--------------|--|--|
| ON <sup>(1)</sup> | CKPS<2:0>                                                                                                  |                   |         | OUTPS<3:0>   |                  |          |              |  |  |
| bit 7             |                                                                                                            |                   |         |              |                  |          | bit 0        |  |  |
| Legend:           |                                                                                                            |                   |         |              |                  |          |              |  |  |
| R = Readable      | bit                                                                                                        | W = Writable      | bit     | U = Unimplen | nented bit, read | d as '0' |              |  |  |
| u = Bit is unch   |                                                                                                            | x = Bit is unkr   |         | •            | at POR and BC    |          | other Resets |  |  |
| '1' = Bit is set  | -                                                                                                          | '0' = Bit is clea | ared    |              | eared by hardv   |          |              |  |  |
| hit 7             | ON: Timerx                                                                                                 | On hit            |         |              |                  |          |              |  |  |
| bit 7             |                                                                                                            |                   |         |              |                  |          |              |  |  |
|                   | <ul> <li>1 = Timerx is on</li> <li>0 = Timerx is off: all counters and state machines are reset</li> </ul> |                   |         |              |                  |          |              |  |  |
| bit 6-4           |                                                                                                            | : Timer2-type Cl  |         |              |                  |          |              |  |  |
|                   | 111 = 1:128                                                                                                | • •               |         |              |                  |          |              |  |  |
|                   | 110 = 1.64 Prescaler                                                                                       |                   |         |              |                  |          |              |  |  |
|                   | 101 = 1:32 Prescaler                                                                                       |                   |         |              |                  |          |              |  |  |
|                   | 100 = 1:16 Prescaler                                                                                       |                   |         |              |                  |          |              |  |  |
|                   | 011 = 1:8 Prescaler                                                                                        |                   |         |              |                  |          |              |  |  |
|                   | 010 = 1:4 P                                                                                                | rescaler          |         |              |                  |          |              |  |  |
|                   | 001 = 1:2 P                                                                                                |                   |         |              |                  |          |              |  |  |
|                   | 000 = 1:1 P                                                                                                | rescaler          |         |              |                  |          |              |  |  |
| bit 3-0           | OUTPS<3:0>: Timerx Output Postscaler Select bits                                                           |                   |         |              |                  |          |              |  |  |
|                   | 1111 = 1:16 Postscaler                                                                                     |                   |         |              |                  |          |              |  |  |
|                   | 1110 = 1:15 Postscaler                                                                                     |                   |         |              |                  |          |              |  |  |
|                   | 1101 = 1:14 Postscaler                                                                                     |                   |         |              |                  |          |              |  |  |
|                   | 1100 = 1:13 Postscaler                                                                                     |                   |         |              |                  |          |              |  |  |
|                   | 1011 = 1:12  Postscaler                                                                                    |                   |         |              |                  |          |              |  |  |
|                   | 1010 = 1:11 Postscaler<br>1001 = 1:10 Postscaler                                                           |                   |         |              |                  |          |              |  |  |
|                   | 1001 = 1.10 Postscaler<br>1000 = 1.9 Postscaler                                                            |                   |         |              |                  |          |              |  |  |
|                   | 0111 = 1:8  Postscaler                                                                                     |                   |         |              |                  |          |              |  |  |
|                   | 0110 = 1.7 Postscaler                                                                                      |                   |         |              |                  |          |              |  |  |
|                   | 0101 = 1:6 F                                                                                               |                   |         |              |                  |          |              |  |  |
|                   | 0100 = 1:5 F                                                                                               |                   |         |              |                  |          |              |  |  |
|                   | 0011 = 1:4 F                                                                                               |                   |         |              |                  |          |              |  |  |
|                   | 0010 = 1:3 F                                                                                               | Postscaler        |         |              |                  |          |              |  |  |
|                   | 0001 = 1:2 F                                                                                               | Postscaler        |         |              |                  |          |              |  |  |
|                   | 0000 = 1:1 F                                                                                               | Postscaler        |         |              |                  |          |              |  |  |

## REGISTER 29-2: TxCON: TIMER2/4/6 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 29.5 "Operation Examples".

#### 31.5.2 SLAVE RECEPTION

When the  $R/\overline{W}$  bit of a matching received address byte is clear, the  $R/\overline{W}$  bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 31-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 31.5.6.2 "10-bit Addressing Mode"** for more detail.

#### 31.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an  $I^2C$  slave in 7-bit Addressing mode. Figure 31-14 and Figure 31-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish  $I^2C$  communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with  $R/\overline{W}$  bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

#### 31.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus<sup>™</sup> that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for  $I^2C$  communication. Figure 31-16 displays a module using both address and data holding. Figure 31-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.

10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPxSTAT register.

# 32.0 SIGNAL MEASUREMENT TIMER (SMT)

The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals.

Features of the SMT include:

- · 24-bit timer/counter
  - Three 8-bit registers (SMTxL/H/U)
  - Readable and writable
  - Optional 16-bit operating mode
- · Two 24-bit measurement capture registers
- One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- · Interrupt on period match
- · Multiple clock, gate and signal sources
- Interrupt on acquisition complete
- · Ability to read current input values

Note: These devices implement two SMT modules. All references to SMTx apply to SMT1 and SMT2.

# 32.6.8 CAPTURE MODE

This mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the SMTxGO bit being set, and updates the value of the SMTxCPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 32-16 and Figure 32-17.

# 32.7 Interrupts

The SMT can trigger an interrupt under three different conditions:

- PW Acquisition Complete
- PR Acquisition Complete
- Counter Period Match

The interrupts are controlled by the PIR and PIE registers of the device.

# 32.7.1 PW AND PR ACQUISITION INTERRUPTS

The SMT can trigger interrupts whenever it updates the SMTxCPW and SMTxCPR registers, the circumstances for which are dependent on the SMT mode, and are discussed in each mode's specific section. The SMTxCPW interrupt is controlled by SMTxPWAIF and SMTxPWAIE bits in registers PIR8 and PIE8, respectively. The SMTxCPR interrupt is controlled by the SMTxPRAIF and SMTxPRAIE bits, also located in registers PIR8 and PIE8, respectively.

In synchronous SMT modes, the interrupt trigger is synchronized to the SMTxCLK. In Asynchronous modes, the interrupt trigger is asynchronous. In either mode, once triggered, the interrupt will be synchronized to the CPU clock.

### 32.7.2 COUNTER PERIOD MATCH INTERRUPT

As described in Section 32.1.2 "Period Match interrupt", the SMT will also interrupt upon SMTxTMR, matching SMTxPR with its period match limit functionality described in Section 32.3 "Halt Operation". The period match interrupt is controlled by SMTxIF and SMTxIE, located in registers PIR8 and PIE8, respectively.

| U-0             | U-0                                      | U-0                                                      | R/W-0/0 | R/W-0/0       | R/W-0/0          | R/W-0/0 | R/W-0/0      |  |  |  |
|-----------------|------------------------------------------|----------------------------------------------------------|---------|---------------|------------------|---------|--------------|--|--|--|
|                 |                                          | —                                                        |         |               | SSEL<4:0>        |         |              |  |  |  |
| bit 7           |                                          |                                                          |         |               |                  |         | bit (        |  |  |  |
|                 |                                          |                                                          |         |               |                  |         |              |  |  |  |
| Legend:         |                                          |                                                          |         |               |                  |         |              |  |  |  |
| R = Readab      |                                          | W = Writable                                             |         | •             | nented bit, read |         |              |  |  |  |
| u = Bit is un   | •                                        | x = Bit is unk                                           |         |               | at POR and BC    |         | other Resets |  |  |  |
| '1' = Bit is se | et                                       | '0' = Bit is cle                                         | eared   | q = Value dep | ends on condi    | tion    |              |  |  |  |
| bit 7-5         | Unimpleme                                | ented: Read as                                           | '0'     |               |                  |         |              |  |  |  |
| bit 4-0         |                                          |                                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | <b>4:0&gt;:</b> SMTx Signal Selection bits<br>= Reserved |         |               |                  |         |              |  |  |  |
|                 | •                                        |                                                          |         |               |                  |         |              |  |  |  |
|                 | •                                        |                                                          |         |               |                  |         |              |  |  |  |
|                 | •<br>11000 = LC4 out                     |                                                          |         |               |                  |         |              |  |  |  |
|                 | 10000 = LC<br>10111 = LC                 | _                                                        |         |               |                  |         |              |  |  |  |
|                 | 10110 = LC                               |                                                          |         |               |                  |         |              |  |  |  |
|                 | 10101 = LC                               |                                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | CD1_output                                               |         |               |                  |         |              |  |  |  |
|                 |                                          | 2OUT_sync                                                |         |               |                  |         |              |  |  |  |
|                 |                                          | 10UT_sync                                                |         |               |                  |         |              |  |  |  |
|                 | 10001 = N                                |                                                          |         |               |                  |         |              |  |  |  |
|                 | 10000 = P\<br>01111 = P\                 |                                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | _                                                        |         |               |                  |         |              |  |  |  |
|                 | 01110 = CCP5_out<br>01101 = CCP4 out     |                                                          |         |               |                  |         |              |  |  |  |
|                 | $01101 = CCP4_0ut$<br>$01100 = CCP3_out$ |                                                          |         |               |                  |         |              |  |  |  |
|                 | 01011 <b>= C</b>                         | _                                                        |         |               |                  |         |              |  |  |  |
|                 | 01010 = CCP1_out                         |                                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | MT2_match <sup>(1)</sup>                                 |         |               |                  |         |              |  |  |  |
|                 |                                          | MT1_match <sup>(1)</sup>                                 |         |               |                  |         |              |  |  |  |
|                 |                                          | VR6_postscaled<br>VR5_postscaled                         |         |               |                  |         |              |  |  |  |
|                 |                                          | VIR5_postscaled                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | VIR3_postscaled                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | VIR2_postscaled                                          |         |               |                  |         |              |  |  |  |
|                 |                                          | MR1_postscaled                                           |         |               |                  |         |              |  |  |  |
|                 | 00001 = TM                               | MR0_overflow                                             |         |               |                  |         |              |  |  |  |
|                 | 00000 = SI                               |                                                          |         |               |                  |         |              |  |  |  |

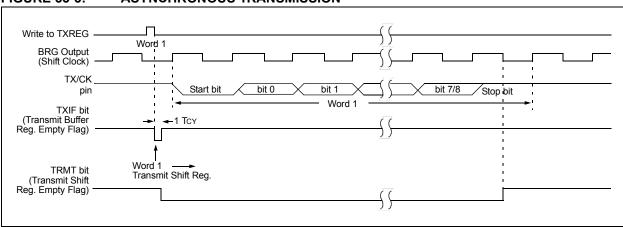
# REGISTER 32-6: SMTxSIG: SMT1 SIGNAL INPUT SELECT REGISTER

Note 1: The SMT\_match corresponding to the SMT selected becomes reserved.

## 33.1.1.5 TSR Status

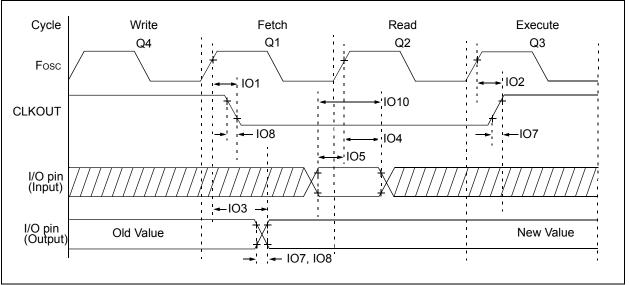
The TRMT bit of the TX1STA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

| Note: | The TSR register is not mapped in data      |
|-------|---------------------------------------------|
|       | memory, so it is not available to the user. |


#### 33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TX1STA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TX1STA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.


#### 33.1.1.7 Asynchronous Transmission Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.



#### FIGURE 33-3: ASYNCHRONOUS TRANSMISSION





| Param.<br>No. | Sym.                    | Characteristic                                                                  | Min. | Тур† | Max. | Units | Conditions |
|---------------|-------------------------|---------------------------------------------------------------------------------|------|------|------|-------|------------|
| IO1*          | T <sub>CLKOUTH</sub>    | CLKOUT rising edge delay (rising edge<br>Fosc (Q1 cycle) to falling edge CLKOUT | —    | —    | 70   | ns    |            |
| 102*          | T <sub>CLKOUTL</sub>    | CLKOUT falling edge delay (rising edge<br>Fosc (Q3 cycle) to rising edge CLKOUT | _    | —    | 72   | ns    |            |
| IO3*          | T <sub>IO_VALID</sub>   | Port output valid time (rising edge Fosc<br>(Q1 cycle) to port valid)           | —    | 50   | 70   | ns    |            |
| IO4*          | T <sub>IO_SETUP</sub>   | Port input setup time (Setup time before rising edge Fosc – Q2 cycle)           | 20   | —    | —    | ns    |            |
| 105*          | T <sub>IO_HOLD</sub>    | Port input hold time (Hold time after rising edge Fosc – Q2 cycle)              | 50   | —    | —    | ns    |            |
| 106*          | T <sub>IOR_SLREN</sub>  | Port I/O rise time, slew rate enabled                                           |      | 25   |      | ns    | VDD = 3.0V |
| 107*          | T <sub>IOR_SLRDIS</sub> | Port I/O rise time, slew rate disabled                                          | —    | 5    | —    | ns    | VDD = 3.0V |
| 108*          | T <sub>IOF_SLREN</sub>  | Port I/O fall time, slew rate enabled                                           | —    | 25   | —    | ns    | VDD = 3.0V |
| IO9*          | T <sub>IOF_SLRDIS</sub> | Port I/O fall time, slew rate disabled                                          | —    | 5    | —    | ns    | VDD = 3.0V |
| IO10*         | T <sub>INT</sub>        | INT pin high or low time to trigger an interrupt                                | 25   | -    | —    | ns    |            |
| IO11*         | T <sub>IOC</sub>        | Interrupt-on-Change minimum high or low time to trigger interrupt               | 25   | —    | —    | ns    |            |

| Standard | Operating | Conditions | (unless | otherwise stated) |  |
|----------|-----------|------------|---------|-------------------|--|