

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16F18855 PINOUT DESCRIPTION (CONTINUED)
------------	--

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾	CWG3C	—	CMOS/OD	Complementary Waveform Generator 3 output C.
	CWG3D	—	CMOS/OD	Complementary Waveform Generator 3 output D.
	CLC1OUT	—	CMOS/OD	Configurable Logic Cell 1 output.
	CLC2OUT	—	CMOS/OD	Configurable Logic Cell 2 output.
	CLC3OUT — CMOS/OD Configurable Logic Cell 3 output.			Configurable Logic Cell 3 output.
	CLC4OUT	—	CMOS/OD	Configurable Logic Cell 4 output.
	NCO1	—	CMOS/OD	Numerically Controller Oscillator output.
	CLKR	—	CMOS/OD	Clock Reference module output.
Legend: AN = Analog input or outp	out CMOS =	CMOS col	mpatible input or	output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Vietnes

= Schmitt Trigger input with I²C

HV = High Voltage XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾	CCP3	_	CMOS/OD	Capture/Compare/PWM3 output (compare/PWM functions).
	CCP4	-	CMOS/OD	Capture/Compare/PWM4 output (compare/PWM functions).
	CCP5	_	CMOS/OD	Capture/Compare/PWM5 output (compare/PWM functions).
	PWM6OUT	-	CMOS/OD	PWM6 output.
	PWM7OUT	-	CMOS/OD	PWM7 output.
	CWG1A	-	CMOS/OD	Complementary Waveform Generator 1 output A.
	CWG1B	_	CMOS/OD	Complementary Waveform Generator 1 output B.
	CWG1C	-	CMOS/OD	Complementary Waveform Generator 1 output C.
	CWG1D	-	CMOS/OD	Complementary Waveform Generator 1 output D.
	CWG2A	-	CMOS/OD	Complementary Waveform Generator 2 output A.
	CWG2B	_	CMOS/OD	Complementary Waveform Generator 2 output B.
	CWG2C	-	CMOS/OD	Complementary Waveform Generator 2 output C.
	CWG2D	-	CMOS/OD	Complementary Waveform Generator 2 output D.
	CWG3A	—	CMOS/OD	Complementary Waveform Generator 3 output A.
	CWG3B	—	CMOS/OD	Complementary Waveform Generator 3 output B.
	CWG3C	_	CMOS/OD	Complementary Waveform Generator 3 output C.
	CWG3D	_	CMOS/OD	Complementary Waveform Generator 3 output D.
	CLC1OUT	—	CMOS/OD	Configurable Logic Cell 1 output.
	CLC2OUT	—	CMOS/OD	Configurable Logic Cell 2 output.
	CLC3OUT	—	CMOS/OD	Configurable Logic Cell 3 output.
	CLC4OUT	_	CMOS/OD	Configurable Logic Cell 4 output.
	NCO	—	CMOS/OD	Numerically Controller Oscillator output.
	CLKR	—	CMOS/OD	Clock Reference module output.
Legend: AN = Analog input or ou	tput CMOS =	CMOS compa	tible input or out	put OD = Open-Drain

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²CHV=

 High Voltage XTAL= Crystal levels
 Voltage XTAL= Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Address	Name	PIC16(L)F18855 PIC16(I)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)	_										
F6Bh	IOCEF		-	—	—	-	IOCEF3	—	-	_	0	0
F6Ch	CCDNE	— ×	—	—	—	_	_	CCDNE2	CCDNE1	CCDNE0	000	000
		X —		Unimplemented								
F6Dh	CCDPE	— X	—	—	—	—	—	CCDPE2	CCDPE1	CCDPE0	000	000
		x —		Unimplemented								
F6Eh	_	_		Unimplemented							—	—
F6Fh	—	_				U	nimplemented				_	-

PIC16(L)F18855/75

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

IABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)												
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 31												
	CPU CORE REGISTERS; see Table 3-2 for specifics											
F8Ch — FE3h		_	Unimplemente	d							—	_
FE4h	STATUS_SHAD		_	—	_	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_SHAD					V	VREG_SHAD				xxxx xxxx	uuuu uuuu
FE6h	BSR_SHAD		—	—				BSR_SHAD			x xxxx	u uuuu
FE7h	PCLATH_SHAD		—	PCLATH_SHAD						-xxx xxxx	-uuu uuuu	
FE8h	FSR0L_SHAD			FSR0L_SHAD							xxxx xxxx	uuuu uuuu
FE9h	FSR0H_SHAD			FSR0H_SHAD							xxxx xxxx	uuuu uuuu
FEAh	FSR1L_SHAD			FSR1L_SHAD							xxxx xxxx	uuuu uuuu
FEBh	FSR1H_SHAD			FSR1H_SHAD							xxxx xxxx	uuuu uuuu
FECh	_	—	Unimplemente	Inimplemented						—		
FEDh	STKPTR		—	_	_			STKPTR<4;0>			1 1111	1 1111
FEEh	TOSL						TOSL<7:0>				xxxx xxxx	xxxx xxxx
FEFh	TOSH		—				TOSH<6:0	>			-xxx xxxx	-xxx xxxx

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

3.4 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 3-4 through Figure 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.4.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

	Rev. 10.000013A 700/0013
TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled
0x0E	
0x0D	
0x0C	
0x0B	Initial Stack Configuration:
0x0A	
0x09	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x08	Pointer is pointing at 0x1F. If the Stack
0x07	Overflow/Underflow Reset is enabled, the TOSH/TOSL register will return '0' If the
0x06	Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL register will return the contents of stack address
0x04	0x0F.
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F	0x0000 STKPTR = 0x1F (STVREN = 1)
N	N , , , , ,

FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1

12.12 PORTE Registers (PIC16(L)F18855)

12.12.1 DATA REGISTER

PORTE is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISE (Register 12-42). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize PORTE.

Reading the PORTE register (Register 12-42) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

12.12.2 INPUT THRESHOLD CONTROL

The INLVLE register (Register 12-44) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

12.12.3 WEAK PULL-UP CONTROL

The WPUE register (Register 12-43) controls the individual weak pull-ups for each port pin.

12.12.4 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

12.12.5 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

REGISTER 20-3: CWGxDBR: CWGx RISING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u					
—	—		DBR<5:0>									
bit 7							bit 0					
Legend:												

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBR<5:0>: Rising Event Dead-Band Value for Counter bits

REGISTER 20-4: CWGxDBF: CWGx FALLING DEAD-BAND COUNTER REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u					
_			DBF<5:0>									
bit 7							bit 0					

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 DBF<5:0>: Falling Event Dead-Band Value for Counter bits

22.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

22.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

22.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

22.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

22.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 22-2).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

REGISTER 23-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
ADPPOL	ADIPEN	ADGPOL	—	—	—	—	ADDSEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 ADDPOL: Precharge Polarity bit If ADPRE>0x00:

ADPPOL	Action During 1st Precharge Stage							
	External (selected analog I/O pin)	Internal (AD sampling capacitor)						
1	Shorted to AVDD	C _{HOLD} shorted to Vss						
0	Shorted to Vss	C _{HOLD} shorted to AVDD						

	<u>Otherwise</u>
	The bit is ignored
bit 6	ADIPEN: A/D Inverted Precharge Enable bit
	If ADDSEN = 1:
	1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
	0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL
	<u>Otherwise</u> :
	The bit is ignored
bit 5	ADGPOL: Guard Ring Polarity Selection bit
	1 = ADC guard ring outputs start as digital high during precharge stage
	0 = ADC guard ring outputs start as digital low during precharge stage
bit 4-1	Unimplemented: Read as '0'
bit 0	ADDSEN: Double-Sample Enable bit
	1 = See Table 23-5.
	0 = One conversion is performed for each trigger

TABLE 23-5: EXAMPLE OF REGISTER VALUES FOR ACCUMULATE AND AVERAGE MODES

Trig ADC	lger ONT	Sample	ADRES	ADI AD	PREV PSIS	ADACC
0	1			0	1	
T1	T1	1	S(n)	S(n-1)	ADFLTR(n-1)	ADACC(n-1)-S(n-1)
T2		2	S(n)	S(n-1)	ADFLTR(n-2)	ADACC(n-1)+S(n-1)
Т3	T2	3	S(n)	S(n-1)	ADFLTR(n-1)	ADACC(n-1)-S(n-1)
T4		4	S(n)	S(n-1)	ADFLTR(n-2)	ADACC(n-1)+S(n-1)
T5	Т3	5	S(n)	S(n-1)	ADFLTR(n-1)	ADACC(n-1)-S(n-1)
Т6	_	6	S(n)	S(n-1)	ADFLTR(n-2)	ADACC(n-1)+S(n-1)

TABLE 29-1:	TIMER2 OPERATING MODES
-------------	-------------------------------

MODE<4:0>		Output	Oneration	Timer Control						
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop			
		000		Software gate (Figure 29-4)	ON = 1		ON = 0			
		001	Period Pulse	Hardware gate, active-high (Figure 29-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0			
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1			
Free	0.0	011		Rising or falling edge Reset		TMRx_ers				
Period	00	100	Period	Rising edge Reset (Figure 29-6)		TMRx_ers ↑	ON = 0			
		101	Pulse	Falling edge Reset		TMRx_ers ↓				
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0			
		111	Reset	High level Reset (Figure 29-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1			
		000	One-shot	Software start (Figure 29-8)	ON = 1	_				
		001	Edge	Rising edge start (Figure 29-9)	ON = 1 and TMRx_ers ↑	-				
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—				
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or			
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 29-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx			
		101	triggered start and hardware Reset	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)			
		110		Rising edge start and Low level Reset (Figure 29-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0				
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1				
		000		Rese						
		001	Edge	Rising edge start (Figure 29-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or			
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)			
Reserved	10	100		Reser			•			
Reserved		101		Rese	rved					
		110	Level triggered	High level start and Low level Reset (Figure 29-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or			
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)			
Reserved	11	xxx	Reserved							

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

29.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)

FIGURE 29-12:

• Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

PIC16(L)F18855/75

Rev. 10-000203A 4/7/2016 MODE 0b10001 TMRx_clk PRx 5 Instruction⁽¹⁾ BSF (BCF) BSF BSF BCF ON TMRx_ers ، 3 1 2 3 4 5 5 0 2 3 5 TMRx 0 1 2 4 0 1) 4 0 TMRx_postscaled PWM Duty 3 Cycle **PWM Output**

RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

Note 1: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

29.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

• Low Reset level (MODE<4:0> = 10110)

High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

FIGURE 29-13: LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 10110)

FIGURE 31-9.	JELW						TIONE	- 0)			
SS Children											
				· · · · · · · · · · · · · · · · · · · ·							: : : :
- 1992 (1997) - SECX - (CXF = 2 - CXF = 2)				· ·)) ,			: ; ; ;			3
990 000 000 5589 26859 75885		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * * * * * *	, ; ; ; , , , , , , , , , , , , , , , ,	s s s ss y y y, ∕ s, ss y		, , , , , , , , , , , , , , , , , , ,	e e s ss N			· · · ·
		19. <u>1</u> 11. i		 _			 ; ; ;	:/~			·······
imput Securite	:	1985 V 	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · · ·	· · · ·	. //p.	, , , , , , , , , , , , , , , , , , ,	: : : : : :		(8) x	
SSPAII Internații	· · ·		e 6 9 9 9	e 6 6 9 9	> ? ? ? ?		9 9 9 9 9	, , , , ,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
- 1729 - 959258145 - 59925809	· · · · · · · · · · · · · · · · · · ·		2 2 2	; ; ;	s s s		2 2 2	s 5 7	6 5 6 5 6 5	1p.	
Verite Continue		•	, 	,	5 1940-000-000-000-000-000-000-000-000-000-		, 	,	ч. у Уластики С		
detection active											

FIGURE 31-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 31-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

31.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

31.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 31.7 "Baud Rate Generator"** for more detail.

33.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 33-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 33-1. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see Section 33.3.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 33-1: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

0000h XXXXh 001Ch **BRG** Value Edge #5 Edge #1 Edge #2 Edge #3 Edge #4 bit 0 bit 1 bit 2 bit 3 bit 5 bit 6 bit 7 RX pin Start bit 4 Stop bit Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRGL XXh 1Ch XXh 00h SPBRGH Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

FIGURE 33-6: AUTOMATIC BAUD RATE CALIBRATION

33.6 Register Definitions: EUSART Control

REGISTER 33-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0	
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared					
bit 7	CSRC : Clock <u>Asynchronou</u> Unused in thi <u>Synchronous</u> 1 = Master r 0 = Slave m	s Source Select <u>s mode</u> : s mode – value <u>mode</u> : mode (clock ge ode (clock fron	t bit e ignored nerated interr n external sou	nally from BRG rce))			
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion ion					
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ : enabled : disabled	1)					
bit 4	SYNC: EUSA 1 = Synchron 0 = Asynchron	ART Mode Sele nous mode onous mode	ect bit					
bit 3	SENDB: Sen Asynchronou 1 = Send SY cleared t 0 = SYNCH Synchronous Unused in thi	d Break Chara <u>s mode</u> : NCH BREAK c by hardware up BREAK transm <u>mode</u> : s mode – value	cter bit on next transm oon completior nission disable e ignored	ission – start b າ d or completed	it, followed by 12	2 '0' bits, follow	ved by Stop bit;	
bit 2	2 BRGH: High Baud Rate Select bit <u>Asynchronous mode</u> : 1 = High speed 0 = Low speed <u>Synchronous mode</u> : Unused in this mode – value ignored							
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	mit Shift Regist pty	ter Status bit					
bit 0	TX9D: Ninth Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.					
Note 1:	SREN/CREN over	rides TXEN in	Sync mode.					

REGISTER 3	4-2: CLKR	CLK: CLOCK	REFERENC	CE CLOCK SI	ELECTION R	EGISTER	
U-0	U-0	U-0	U-0	R/W-0/0 R/W-0/0		R/W-0/0	R/W-0/0
_	_	—	—		CLKRC	_K<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3-0	CLKRCLK<3	:0>: CLKR Inp	ut bits				
	Clock Selection	on					
	1111 = Reser	rved					
	•						
	•						
	1010 = Rese r	rved					
	1001 = LC4_0	out					
	1000 = LC3_	out					
	0111 = LC2_0	out					
	0110 = LC1_0	out					
	0101 = NCO						
	0100 = 3030	TOSC					
	0010 = LFINT	TOSC					
	0001 = HFIN	TOSC					
	0000 = FOSC)					

TABLE 34-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH CL	_OCK REFERENCE OUTPUT
-------------	----------------------	---------------------------	------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CLKRCON	CLKREN			CLKRD	C<1:0>	<1:0> CLKRDIV<2:0>				
CLKRCLK	—	_		_		CLKRCLK<3:0>				
CLCxSELy	—	—	_		329					
MDCARH	—	—	—	_	MDCHS<3:0>				400	
MDCARL	—	—	_	_		MDCLS<3:0>			401	
RxyPPS	_	_		RxyPPS<4:0>						

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

TABLE 36-3: GENERAL FORMAT FOR INSTRUCTIONS

13	8	7	6			0
OPCODE		d			f (FILE #))
d = 0 for des d = 1 for des f = 7-bit file r	tinati tinati egist	ion W ion f er ado	dre	ss		
Bit-oriented file n 13	egist 10	ter op 9	era 7	atio 6	ns	0
OPCODE		b (Bl	Т #	[‡])	f (FILE ;	#)
b = 3-bit bit a f = 7-bit file r	ıddre egist	ess er ado	dre	ss		
iteral and contro	ol op	eratio	ons	5		
General			_			
		8	1		k (literal)	0
	adia	to vol			K (incidit)	
K = 0-DIL IIIII	leula	te vai	ue			
ALL and GOTO in	struc	tions	onl	у		•
	10		k	/lit	eral)	0
k = 11 bit im	nodi	ato va		<u>, (iit</u>	ciui)	
K – TT-DILIIII	neula	ale va	lue	;		
10VLP instruction	only		7	6		0
OPCODE				-	k (literal)	
k = 7-bit imm	edia	te valı	Je			
10VLB instruction	only			5	4	0
OPCODE					k (litera	al)
k = 5-bit imm	edia	te valı	Je			
BRA instruction on	ly					
13	-	98	}			0
OPCODE					k (literal)	
k = 9-bit imm	nedia	ite val	ue			
SR Offset instruc	tions	3 7	6	5		0
OPCODE			n		k (litera	al)
n = appropri k = 6-bit imn	ate F nedia	'SR ate val	ue			
FSR Increment ins	tructi	ions			321	0
					n m (mode
OPCODE						
n = appropri m = 2-bit mc	ate F de v	'SR alue				
n = appropri m = 2-bit mc	ate F ode v	'SR alue				٥

TABLE 37-23: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions		
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*TCY		—	ns			
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20			ns			
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	_		ns			
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100		_	ns			
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100		_	ns			
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
			_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
SP76*	TDOF	SDO data output fall time	_	10	25	ns			
SP77*	TssH2doZ	SS [↑] to SDO output high-impedance	10	_	50	ns			
SP78*	TscR	SCK output rise time	_	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
		(Master mode)		25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
SP79*	TscF	SCK output fall time (Master mode)	_	10	25	ns			
SP80*	TscH2doV, TscL2doV	V, SDO data output valid after SCK edge		_	50	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
				_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy		—	ns			
SP82*	TssL2DoV	SDO data output valid after $\overline{\text{SS}}\downarrow$ edge	—	—	50	ns			
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	_	—	ns			

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.