

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18855t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA5/ANA5/SS1 ⁽¹⁾ /MDSRC ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	MDSRC ⁽¹⁾	TTL/ST	_	Modulator Source input.
	IOCA5	TTL/ST	-	Interrupt-on-change input.
RA6/ANA6/OSC2/CLKOUT/IOCA6	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	-	ADC Channel A6 input.
	OSC2	_	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver out- put.
	CLKOUT	—	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	-	Interrupt-on-change input.
RA7/ANA7/OSC1/CLKIN/IOCA7	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	_	ADC Channel A7 input.
	OSC1	XTAL	_	External Crystal/Resonator (LP, XT, HS modes) driver input.
	CLKIN	TTL/ST	_	External digital clock input.
	IOCA7	TTL/ST	_	Interrupt-on-change input.
RB0/ANB0/C2IN1+/ZCD/SS2 ⁽¹⁾ / CCP4 ⁽¹⁾ /CWG1IN ⁽¹⁾ /INT ⁽¹⁾ /IOCB0	RB0	TTL/ST	CMOS/OD	General purpose I/O.
CCP4 ⁽¹⁾ /CWG1IN ⁽¹⁾ /INT ⁽¹⁾ /IOCB0	ANB0	AN	_	ADC Channel B0 input.
	C2IN1+	AN	_	Comparator positive input.
	ZCD	AN	AN	Zero-cross detect input pin (with constant current sink/ source).
	SS2 ⁽¹⁾	TTL/ST	-	MSSP2 SPI slave select input.
	CCP4 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM4 (default input location for capture function).
	CWG1IN ⁽¹⁾	TTL/ST	-	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	-	External interrupt request input.
	IOCB0	TTL/ST	-	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/SCL2 ^(3,4) / SCK2 ⁽¹⁾ /CWG2IN ⁽¹⁾ /IOCB1	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SCK2 ⁽¹⁾ /CWG2IN ⁽¹⁾ /IOCB1	ANB1	AN	_	ADC Channel B1 input.
	C1IN3-	AN	_	Comparator negative input.
	C2IN3-	AN	_	Comparator negative input.
	SCL2 ^(3,4)	I ² C/SMBus	OD	MSSP2 I ² C clock input/output.
	SCK2 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP2 SPI serial clock (default input location, SCK2 is a PPS remappable input and output).
	CWG2IN ⁽¹⁾	TTL/ST	_	Complementary Waveform Generator 2 input.
	IOCB1	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16F18875 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN
 = Analog input or output TTL
 CMOS
 = CMOS compatible input or output ST
 OD
 = Open-Drain

 TTL
 TTL compatible input High Voltage XTAL= Crystal levels
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²CHV=

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 3-8: PIC16(L)F18855/75 MEMORY MAP, BANK 28

	Bank 28
E0Ch	—
E0Dh	—
E0Eh	_
E0Fh	CLCDATA
E10h	CLC1CON
E11h	CLC1POL
E12h	CLC1SEL0
E13h	CLC1SEL1
E14h	CLC1SEL2
E15h	CLC1SEL3
E16h	CLC1GLS0
E17h	CLC1GLS1
E18h	CLC1GLS2
E19h	CLC1GLS3
E1Ah	CLC2CON
E1Bh	CLC2POL
E1Ch	CLC2SEL0
E1Dh	CLC2SEL1
E1Eh	CLC2SEL2
E1Fh	CLC2SEL3
E20h	CLC2GLS0
E21h	CLC2GLS1
E22h	CLC2GLS2
E23h	CLC2GLS3
E24h	CLC3CON
E25h	CLC3POL
E26h	CLC3SEL0
E27h	CLC3SEL1
E28h	CLC3SEL2
E29h	CLC3SEL3
E2Ah	CLC3GLS0
E2Bh	CLC3GLS1
E2Ch	CLC3GLS2
E2Dh	CLC3GLS3

	Bank 28
E2Eh	CLC4CON
E2Fh	CLC4POL
E30h	CLC4SEL0
E31h	CLC4SEL1
E32h	CLC4SEL2
E33h	CLC4SEL3
E34h	CLC4GLS0
E35h	CLC4GLS1
E36h	CLC4GLS2
E37h	CLC4GLS3
E38h	
	_
E6Fh	

Legend:

= Unimplemented data memory locations, read as '0'.

						BLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)						
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 9												
	CPU CORE REGISTERS; see Table 3-2 for specifics											
48Ch \$	SMT1TMRL			TMR<7:0>							0000 0000	0000 0000
48Dh \$	SMT1TMRH						TMR<15:8>				0000 0000	0000 0000
48Eh \$	SMT1TMRU					-	[MR<23:16>				0000 0000	0000 0000
48Fh \$	SMT1CPRL			CPR<7:0>								uuuu uuuu
490h \$	SMT1CPRH			CPR<15:8>								uuuu uuuu
491h \$	SMT1CPRU			CPR<23:16>								uuuu uuuu
492h \$	SMT1CPWL			CPW<7:0>							xxxx xxxx	uuuu uuuu
493h \$	SMT1CPWH						CPW<15:8>				xxxx xxxx	uuuu uuuu
494h \$	SMT1CPWU					(CPW<23:16>				xxxx xxxx	uuuu uuuu
495h \$	SMT1PRL						PR<7:0>				1111 1111	1111 1111
496h \$	SMT1PRH						PR<15:8>				1111 1111	1111 1111
497h \$	SMT1PRU						PR<23:16>				1111 1111	1111 1111
498h \$	SMT1CON0		EN	_	STP	WPOL	SPOL	CPOL	SMT1F	PS<1:0>	0-00 0000	0-00 0000
499h \$	SMT1CON1		SMT1GO	SMT1GO REPEAT MODE<3:0>							00 0000	00 0000
49Ah \$	SMT1STAT		CPRUP CPWUP RST — — TS WS AS						000000	000000		
49Bh \$	SMT1CLK		CSEL<2:0>						000	000		
49Ch \$	SMT1SIG								0 0000	0 0000		
49Dh \$	SMT1WIN		— — — WSEL<4:0>						0 0000	0 0000		
49Eh	_	—		Unimplemented							—	—
49Fh	_	—				U	nimplemented				—	_

CIGTED SUMMADY DANKS 0.24 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 28 (0	Bank 28 (Continued)											
E22h	CLC2GLS2		LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
E23h	CLC2GLS3		LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuuu
E24h	CLC3CON		LC3EN	—	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0>		0-x0 0000	0-x0 0000
E25h	CLC3POL		LC3POL	—	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
E26h	CLC3SEL0		—	_			LC3	D1S<5:0>			xx xxxx	uu uuuu
E27h	CLC3SEL1		—	—			LC3	D2S<5:0>			xx xxxx	uu uuuu
E28h	CLC3SEL2		—	—		LC3D3S<5:0>					xx xxxx	uu uuuu
E29h	CLC3SEL3		—	_		LC3D4S<5:0>					xx xxxx	uu uuuu
E2Ah	CLC3GLS0		LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuuu
E2Bh	CLC3GLS1		LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	xxxx xxxx	uuuu uuuu
E2Ch	CLC3GLS2		LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	xxxx xxxx	uuuu uuuu
E2Dh	CLC3GLS3		LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	xxxx xxxx	uuuu uuuu
E2Eh	CLC4CON		LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>		0-x0 0000	0-x0 0000
E2Fh	CLC4POL		LC4POL	—	—		LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
E30h	CLC4SEL0		—	—			LC4	D1S<5:0>			xx xxxx	uu uuuu
E31h	CLC4SEL1		—	—			LC4	D2S<5:0>			xx xxxx	uu uuuu
E32h	CLC4SEL2		—	—			LC4	D3S<5:0>			xx xxxx	uu uuuu
E33h	CLC4SEL3		_	—			LC4	D4S<5:0>			xx xxxx	uu uuuu
E34h	CLC4GLS0		LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	xxxx xxxx	uuuu uuuu
E35h	CLC4GLS1		LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	xxxx xxxx	uuuu uuuu
E36h	CLC4GLS2		LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	xxxx xxxx	uuuu uuuu
E37h	CLC4GLS3		LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	xxxx xxxx	uuuu uuuu
E38h to E6Fh		—				U	nimplemented				_	—

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

-													
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	Bank 30 (Continued)												
F6Bh	IOCEF			_	IOCEF3 0						0		
F6Ch	CCDNE	-	х	-	-	_	-	-	CCDNE2	CCDNE1	CCDNE0	000	000
		х	-				Uı	nimplemented					
F6Dh	CCDPE	—	х	—	—	—	—	—	CCDPE2	CCDPE1	CCDPE0	000	000
		х	—		Unimplemented								
F6Eh	_	_	-		Unimplemented — —								
F6Fh	_	-	-				Uı	nimplemented				_	_

PIC16(L)F18855/75

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

5.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON0 register bits are shown in Register 5-2.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 5-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 500 kHz)
- 2. ECM External Clock Medium Power mode (500 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these clock sources.

6.5 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-f/f ⁽¹⁾	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
_	1	NOSC<2:0> ^{(2,3}	3)		NDIV<3	:0> ^(2,3,4)	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits
	The setting requests a source oscillator and PLL combination per Table 6-1.
	POR value = RSTOSC (Register 4-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits
	The setting determines the new postscaler division ratio per Table 6-1.

Note 1: The default value (f/f) is set equal to the RSTOSC Configuration bits.

- 2: If NOSC is written with a reserved value (Table 6-1), the operation is ignored and neither NOSC nor NDIV is written.
- 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.
- 4: When NOSC = 110 (HFINTOSC 4 MHz), the NDIV bits will default to '0010' upon Reset; for all other NOSC settings the NDIV bits will default to '0000' upon Reset.

REGISTER 6-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-n/n ⁽²⁾						
—		COSC<2:0>			CDIV	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'

bit 6-4 **COSC<2:0>:** Current Oscillator Source Select bits (read-only)

Indicates the current source oscillator and PLL combination per Table 6-1.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only) Indicates the current postscaler division ratio per Table 6-1.

Note 1: The POR value is the value present when user code execution begins.

2: The reset value (n/n) is the same as the NOSC/NDIV bits.

9.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WDT has the following features:

- · Selectable clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Configurable window size from 12.5 to 100 percent of the time-out period
- Multiple Reset conditions
- Operation during Sleep

11.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- · Any standard CRC up to 16 bits can be used
- · Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for calculating CRC values not from the memory scanner

11.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using the scanner.

11.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 11-1: BASIC CRC OPERATION EXAMPLE

CRC-16-ANSI

```
x<sup>16</sup> + x<sup>15</sup> + x<sup>2</sup> + 1 (17 bits)
```

Standard 16-bit representation = 0x8005

CRCXORH = 0b10000000 CRCXORL = 0b0000010- (1)

Data Sequence: 0x55, 0x66, 0x77, 0x88

DLEN = 0b0111 PLEN = 0b1111

Data entered into the CRC: SHIFTM = 0:

01010101 01100110 01110111 10001000

SHIFTM = 1: 10101010 01100110 11101110 00010001

Check Value (ACCM = 1):

SHIFTM = 0: 0x32D6 CRCACCH = 0b00110010 CRCACCL = 0b11010110

SHIFTM = 1: 0x6BA2 CRCACCH = 0b01101011 CRCACCL = 0b10100010

Note 1: Bit 0 is unimplemented. The LSb of any CRC polynomial is always '1' and will always be treated as a '1' by the CRC for calculating the CRC check value. This bit will be read in software as a '0'.

11.3 CRC Polynomial Implementation

Any standard polynomial up to 17 bits can be used. The PLEN<3:0> bits are used to specify how long the polynomial used will be. For an x^n polynomial, PLEN = n-2. In an n-bit polynomial the x^n bit and the LSb will be used as a '1' in the CRC calculation because the MSb and LSb must always be a '1' for a CRC polynomial. For example, if using CRC-16-ANSI, the polynomial will look like 0x8005. This will be implemented into the CRCXOR<15:1> registers, as shown in Example 11-1.

21.10 Register Definitions: ZCD Control

REGISTER 21-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

EN bit 7		- · · ·			U-0	R/W-0/0	R/W-0/0		
bit 7		OUT	POL			INTP	INTN		
							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
u = Bit is uncha	anged	x = Bit is unki	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = value dep	ends on config	uration bits			
bit 7		s detect is en	abled. ZCD pir			and sink currer and TRIS contro			
bit 6	Unimplement	ted: Read as '	0'						
bit 5	$\frac{\text{POL bit} = 0}{1 = \text{ZCD pin i}}$		rent ent	t					
bit 4	POL: Zero-Cr 1 = ZCD logic 0 = ZCD logic		erted	Polarity bit					
bit 3-2	Unimplement	ted: Read as '	0'						
bit 1	1 = ZCDIF bit	INTP: Zero-Cross Positive Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCDx_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCDx output transition							
bit 0	0 = ZCDIF bit	t is set on high t is unaffected	-to-low ZCDx_ by high-to-low	t Enable bit _output transitic / ZCDx_output CIATED WITI	transition				

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3		_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
ZCDxCON	EN		OUT	POL	—	—	INTP	INTN	319

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 21-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	—	BOREN<1:0>		94
	7:0	LPBOREN		_		PWRTE	MCLRE	WRT	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

TABLE 23-3 :	COMPUTATION MODES

		Clear Canditiana			Three	hald Oneratio		Value			
	-	Clear Conditions	value after Trig	ger completion	Threshold Operations			Value at ADTIF interrupt			
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT	
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count	
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count	
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT>=ADRPT):1, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count	
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Reset and count up until ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT	
Lowpass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count	

Note 1: S, S1, and S2 are abbreviations for ADRES, ADRES(n), and ADRES(n+1), respectively. When ADDSEN = 0: S = ADRES. When ADDSEN = 1: S1 = ADPREV, and S2 = ADRES.

2: All results of divisions using the ADCRS bits are truncated, not rounded.

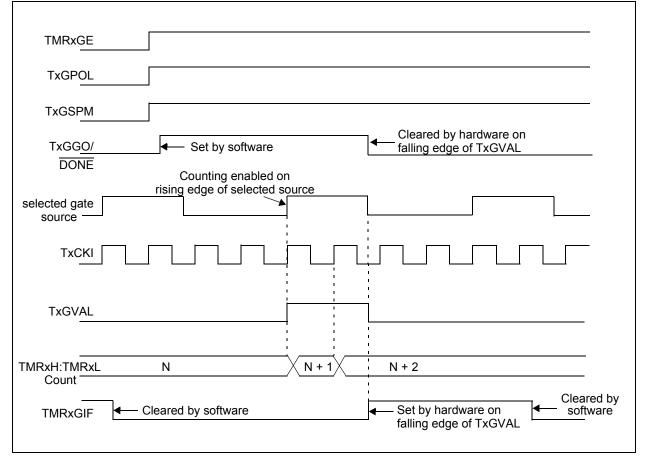
25.6 Register Definitions: DAC Control

REGISTER 25-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	_	DAC10E1	DAC10E2	DAC1F	PSS<1:0>	_	DAC1NSS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	DAC1EN: DA 1 = DAC is er 0 = DAC is di						
bit 6	Unimplement	ted: Read as '	0'				
bit 5	1 = DAC volta	AC1 Voltage C age level is als age level is dis	o an output or	the DAC1OU			
bit 4	1 = DAC volta	AC1 Voltage C age level is als age level is dis	o an output or	the DAC1OU			
bit 3-2			itive Source S	elect bits			
bit 1	Unimplement	ted: Read as '	0'				
bit 0	DAC1NSS: D 1 = VREF- pin 0 = VSS	AC1 Negative	Source Selec	t bits			

REGISTER 25-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4-0	DAC1R<4:0>: DAC1 Voltage Output Select bits
	Vout = (Vsrc+ - Vsrc-)*(DAC1R<4:0>/32) + Vsrc

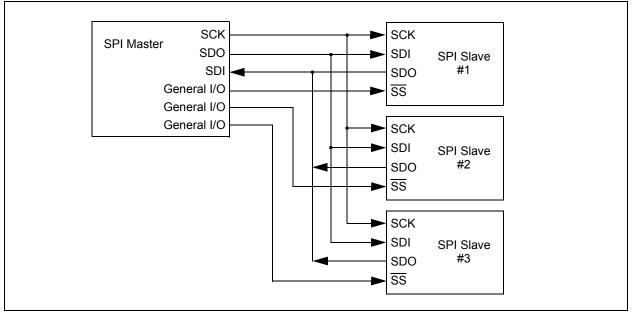

TMRxGE
TxGPOL
TxGTM
selected
TxGVAL
TMRxH: TMRxL N XN+1 XN+2 XN+3 N+4 XN+5 XN+6 XN+7 XN+8 Count

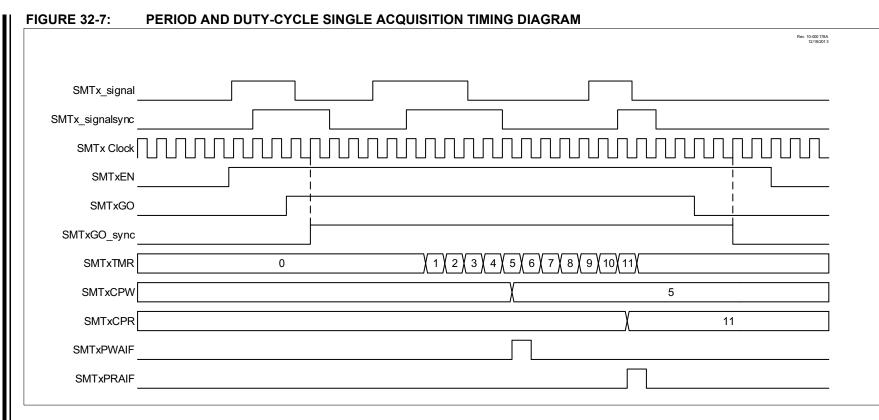
FIGURE 28-5: TIMER1 GATE SINGLE-PULSE MODE

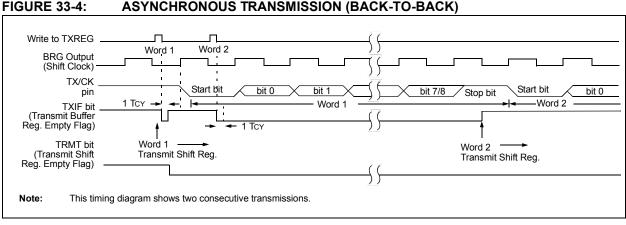
REGISTER 3	0-6: CCPTI	MRS1: CCP	TIMERS COI	NTROL 1 REG	GISTER		
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
—	—	P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	EL<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Reset
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-6 bit 5-4 bit 3-2	P7TSEL<1:0> 11 = PWM7 b 10 = PWM7 b 01 = PWM7 b 00 = Reserve P6TSEL<1:0> 11 = PWM6 b 01 = PWM6 b 01 = PWM6 b 00 = Reserve	>: PWM6 Time based on TMR based on TMR based on TMR based on TMR	r Selection 4 2 r Selection 4 2				
bit 1-0 Diff 1-0 Diff 1-0 Diff 1= CCP5 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP5 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP5 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved							

31.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)


SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.


In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 31.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

33.1.2 EUSART ASYNCHRONOUS

RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RC1STA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TX1STA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

If the RX/DT function is on an analog pin, Note: the corresponding ANSEL bit must be cleared for the receiver to function.

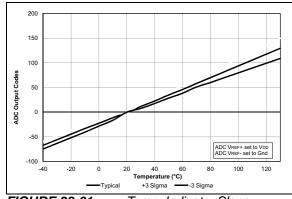
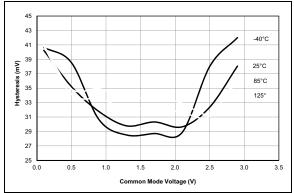
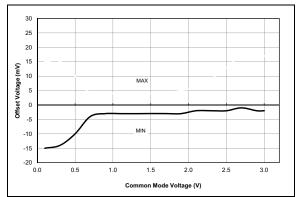
33.1.2.2 Receiving Data

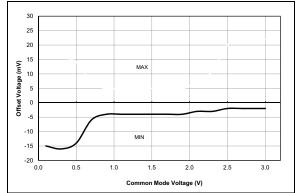
The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

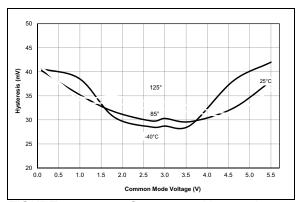
Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

If the receive FIFO is overrun, no additional Note: characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 38-61: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 2.3V.


FIGURE 38-62: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

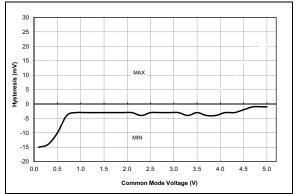
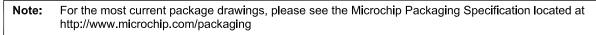

FIGURE 38-63: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25° C.

FIGURE 38-64: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values from -40°C to 125°C.



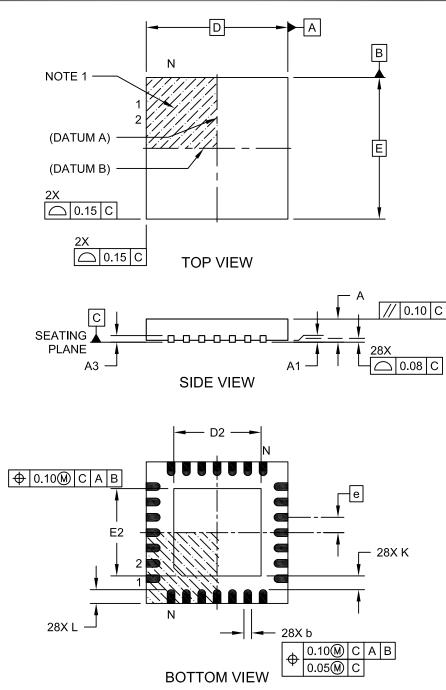

FIGURE 38-65: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F18855/75 Only.

FIGURE 38-66: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F18855/75 Only.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2