

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18875-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	_	ADC Channel C4 input.
	SDA1 ^(3,4)	l ² C/ SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	-	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	_	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	-	Timer4 external input.
	IOCC5	TTL/ST	_	Interrupt-on-change input.
RC6/ANC6/CK ⁽³⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	-	ADC Channel C6 input.
	CK ⁽³⁾	TTL/ST	CMOS/OD	EUSART synchronous mode clock input/output.
	IOCC6	TTL/ST	-	Interrupt-on-change input.
RC7/ANC7/RX ⁽¹⁾ /DT ⁽³⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	-	ADC Channel C7 input.
	RX ⁽¹⁾	TTL/ST	-	EUSART Asynchronous mode receiver data input.
	DT ⁽³⁾	TTL/ST	CMOS/OD	EUSART Synchronous mode data input/output.
	IOCC7	TTL/ST	_	Interrupt-on-change input.
RE3/IOCE3/MCLR/Vpp	RE3	TTL/ST	_	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	IOCE3	TTL/ST	_	Interrupt-on-change input.
	MCLR	ST	-	Master clear input with internal weak pull up resistor.
	Vpp	HV	-	ICSP™ High-Voltage Programming mode entry input.
Vdd	Vdd	Power	_	Positive supply voltage input.

TABLE 1-2: PIC16F18855 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Legend: AN = Analog input or output TTL = TTL compatible input ST

= Open-Drain = Schmitt Trigger input with I²C

1²C

Note

HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx This is a PPS remappable input signal. The input function may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE	ABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)												
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 1													
					CPU	CORE REGISTER	S; see Table 3-2 f	for specifics					
08Ch													
08Dh	ADRESH					A	DRESH<7:0>				0000 0000	0000 0000	
08Eh	ADPREVL					0000 0000	0000 0000						
08Fh	ADPREVH					0000 0000	0000 0000						
090h	ADACCL			ADACCL<7:0>								uuuu uuuu	
091h	ADACCH			ADACCH<7:0>								uuuu uuuu	
092h	—	—				U	nimplemented				_	_	
093h	ADCON0		ADON	ADCONT	—	ADCS	—	ADFRM0	—	ADGO	00-0 -0-0	00-0 -0-0	
094h	ADCON1		ADPPOL	ADIPEN	ADGPOL	_	—	—	_	ADDSEN	0000	0000	
095h	ADCON2		ADPSIS		ADCRS<2:0>		ADACLR		ADMD<2:0>		0000 0000	0000 0000	
096h	ADCON3		-		ADCALC<2:0	>	ADSOI		ADTMD<2:0>		-000 0000	-000 0000	
097h	ADSTAT		ADAOV	ADUTHR	ADLTHR	ADMATH	—		ADSTAT<2:0>		0000 -000	0000 -000	
098h	ADCLK		_	—			ADO	CCS<5:0>			00 0000	00 0000	
099h	ADACT		_	—	_			ADACT<4:0>			0 0000	0 0000	
09Ah	ADREF		—	—	_	ADNREF	—	—	ADPRE	F<1:0>	000	000	
09Bh	ADCAP		—	—	—			ADCAP<4:0>			0 0000	0 0000	
09Ch	ADPRE					ŀ	ADPRE<7:0>				0000 0000	0000 0000	
09Dh	ADACQ					ŀ	ADACQ<7:0>				0000 0000	0000 0000	
09Eh	ADPCH		_	— — ADPCH<5:0>						00 0000	00 0000		
09Fh	—	_				—	_						

© 2015-2017 Microchip Technology Inc.

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

TABLE	ABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)												
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 6													
					CPU	CORE REGISTER	S; see Table 3-2	for specifics					
30Ch	CCPR1L		Capture/Comp	are/PWM Regis	ter 1 (LSB)						xxxx xxxx	xxxx xxxx	
30Dh	CCPR1H		Capture/Comp	are/PWM Regis		xxxx xxxx	xxxx xxxx						
30Eh	CCP1CON		EN	—	OUT	FMT		MODE<3:0>				0-00 0000	
30Fh	CCP1CAP		—	_	—	-	_		0000	0000			
310h	CCPR2L		Capture/Compare/PWM Register 2 (LSB)									xxxx xxxx	
311h	CCPR2H		Capture/Compare/PWM Register 2 (MSB)									xxxx xxxx	
312h	CCP2CON		EN	_	OUT	FMT		MODE	0-00 0000	0-00 0000			
313h	CCP2CAP		—	—	_	-	—		CTS<2:0>		0000	0000	
314h	CCPR3L		Capture/Compa	are/PWM Regis	ter 3 (LSB)						xxxx xxxx	xxxx xxxx	
315h	CCPR3H		Capture/Comp	are/PWM Regis	ter 3 (MSB)						xxxx xxxx	xxxx xxxx	
316h	CCP3CON		EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
317h	CCP3CAP		—	—	—	-		CTS<	:3:0>		0000	0000	
318h	CCPR4L		Capture/Compa	are/PWM Regis	ter 4 (LSB)						xxxx xxxx	xxxx xxxx	
319h	CCPR4H		Capture/Compa	are/PWM Regis	ter 4 (MSB)						xxxx xxxx	xxxx xxxx	
31Ah	CCP4CON		EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
31Bh	CCP4CAP			—	_	—		CTS<	:3:0>		0000	0000	
31Ch	CCPR5L		Capture/Compa	are/PWM Regis	ter 5 (LSB)	· · · · · · · · · · · · · · · · · · ·					xxxx xxxx	xxxx xxxx	
31Dh	CCPR5H		Capture/Compa	are/PWM Regis	ter 5 (MSB)						xxxx xxxx	xxxx xxxx	
31Eh	CCP5CON		EN	—	OUT	FMT		MODE	<3:0>		0-00 0000	0-00 0000	
31Fh	CCP5CAP		—	_	—	—		CTS<	:3:0>		0000	0000	

© 2015-2017 Microchip Technology Inc.

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 28 (0	Continued)											
E22h	CLC2GLS2		LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
E23h	CLC2GLS3		LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuuu
E24h	CLC3CON		LC3EN	—	LC3OUT	LC3INTP	LC3INTN	LC3MODE<2:0>			0-x0 0000	0-x0 0000
E25h	CLC3POL		LC3POL	—	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
E26h	CLC3SEL0		—	_			LC3	D1S<5:0>			xx xxxx	uu uuuu
E27h	CLC3SEL1		—	—			LC3	D2S<5:0>			xx xxxx	uu uuuu
E28h	CLC3SEL2		—	—			LC3	D3S<5:0>			xx xxxx	uu uuuu
E29h	CLC3SEL3		—	_	LC3D4S<5:0>					xx xxxx	uu uuuu	
E2Ah	CLC3GLS0		LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuuu
E2Bh	CLC3GLS1		LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	xxxx xxxx	uuuu uuuu
E2Ch	CLC3GLS2		LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	xxxx xxxx	uuuu uuuu
E2Dh	CLC3GLS3		LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	xxxx xxxx	uuuu uuuu
E2Eh	CLC4CON		LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>		0-x0 0000	0-x0 0000
E2Fh	CLC4POL		LC4POL	—	—		LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
E30h	CLC4SEL0		—	—			LC4	D1S<5:0>			xx xxxx	uu uuuu
E31h	CLC4SEL1		—	—			LC4	D2S<5:0>			xx xxxx	uu uuuu
E32h	CLC4SEL2		—	—			LC4	D3S<5:0>			xx xxxx	uu uuuu
E33h	CLC4SEL3		_	—			LC4	D4S<5:0>			xx xxxx	uu uuuu
E34h	CLC4GLS0		LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	xxxx xxxx	uuuu uuuu
E35h	CLC4GLS1		LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	xxxx xxxx	uuuu uuuu
E36h	CLC4GLS2		LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	xxxx xxxx	uuuu uuuu
E37h	CLC4GLS3		LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	xxxx xxxx	uuuu uuuu
E38h to E6Fh		—				U	nimplemented				_	—

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

11.7 Configuring the CRC

The following steps illustrate how to properly configure the CRC.

- Determine if the automatic Program Memory scan will be used with the scanner or manual calculation through the SFR interface and perform the actions specified in Section 11.4 "CRC Data Sources", depending on which decision was made.
- 2. If desired, seed a starting CRC value into the CRCACCH/L registers.
- 3. Program the CRCXORH/L registers with the desired generator polynomial.
- Program the DLEN<3:0> bits of the CRCCON1 register with the length of the data word – 1 (refer to Example 11-1). This determines how many times the shifter will shift into the accumulator for each data word.
- Program the PLEN<3:0> bits of the CRCCON1 register with the length of the polynomial – 2 (refer to Example 11-1).
- Determine whether shifting in trailing zeros is desired and set the ACCM bit of CRCCON0 register appropriately.
- 7. Likewise, determine whether the MSb or LSb should be shifted first and write the SHIFTM bit of CRCCON0 register appropriately.
- 8. Write the CRCGO bit of the CRCCON0 register to begin the shifting process.
- 9a. If manual SFR entry is used, monitor the FULL bit of CRCCON0 register. When FULL = 0, another word of data can be written to the CRCDATH/L registers, keeping in mind that CRCDATH should be written first if the data has >8 bits, as the shifter will begin upon the CRCDATL register being written.
- 9b. If the scanner is used, the scanner will automatically stuff words into the CRCDATH/L registers as needed, as long as the SCANGO bit is set.
- 10a. If using the Flash memory scanner, monitor the SCANIF (or the SCANGO bit) for the scanner to finish pushing information into the CRCDATA registers. After the scanner is completed, monitor the CRCIF (or the BUSY bit) to determine that the CRC has been completed and the check value can be read from the CRCACC registers. If both the interrupt flags are set (or both BUSY and SCANGO bits are cleared), the completed CRC calculation can be read from the CRCACCH/L registers.
- 10b.If manual entry is used, monitor the CRCIF (or BUSY bit) to determine when the CRCACC registers will hold the check value.

11.8 Program Memory Scan Configuration

If desired, the Program Memory Scan module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory addresses. In order to set up the Scanner to work with the CRC you need to perform the following steps:

- Set the EN bit to enable the module. This can be performed at any point preceding the setting of the SCANGO bit, but if it gets disabled, all internal states of the Scanner are reset (registers are unaffected).
- Choose which memory access mode is to be used (see Section 11.10 "Scanning Modes") and set the MODE bits of the SCANCON0 register appropriately.
- 3. Based on the memory access mode, set the INTM bits of the SCANCON0 register to the appropriate interrupt mode (see Section 11.10.5 "Interrupt Interaction")
- 4. Set the SCANLADRL/H and SCANHADRL/H registers with the beginning and ending locations in memory that are to be scanned.
- 5. Begin the scan by setting the SCANGO bit in the SCANCON0 register. The scanner will wait (CRCGO must be set) for the signal from the CRC that it is ready for the first Flash memory location, then begin loading data into the CRC. It will continue to do so until it either hits the configured end address or an address that is unimplemented on the device, at which point the SCANGO bit will clear, Scanner functions will cease, and the SCANIF interrupt will be triggered. Alternately, the SCANGO bit can be cleared in software if desired.

11.9 Scanner Interrupt

The scanner will trigger an interrupt when the SCANGO bit transitions from '1' to '0'. The SCANIF interrupt flag of PIR7 is set when the last memory location is reached and the data is entered into the CRCDATA registers. The SCANIF bit can only be cleared in software. The SCAN interrupt enable is the SCANIE bit of the PIE7 register.

11.10 Scanning Modes

The memory scanner can scan in four modes: Burst, Peek, Concurrent, and Triggered. These modes are controlled by the MODE bits of the SCANCON0 register. The four modes are summarized in Table 11-1.

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSA7 | ANSA6 | ANSA5 | ANSA4 | ANSA3 | ANSA2 | ANSA1 | ANSA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSA<7:0>: Analog Select between Analog or Digital Function on pins RA<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0				
bit 7 bit											
Legend:											

REGISTER 12-8: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRA<7:0>:** PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

0 = Port pin slews at maximum rate

REGISTER 12-9: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

12.11 Register Definitions: PORTD

REGISTER 12-32: PORTD: PORTD REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RD<7:0>**: PORTD I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.

REGISTER 12-33: TRISD: PORTD TRI-STATE REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | • | • | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISD<7:0>**: TRISD I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-36: WPUD: WEAK PULL-UP PORTD REGISTER

bit 7-0 WPUD<7:0>: WPUD I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-37: ODCOND: PORTD OPEN-DRAIN CONTROL REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 |
| bit 7 | • | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCD<7:0>**: ODCD I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

16.3 Register Definitions: FVR Control

REGISTER 16-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>
bit 7							bit 0

Legend:					
R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is	set	'0' = Bit is cleared	q = Value depends on condition		
bit 7	1 = Fixed	ixed Voltage Reference Ena Voltage Reference is enable Voltage Reference is disabl	ed		
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	s ready for use		
bit 5	it 5 TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled				
bit 4	1 = VOUT	Femperature Indicator Range = VDD - 4VT (High Range) = VDD - 2VT (Low Range)	e Selection bit ⁽³⁾		
bit 3-2	11 = Com 10 = Com 01 = Com	<1:0>: Comparator FVR Buff parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	lx, (4.096V) ⁽²⁾ 2x, (2.048V) ⁽²⁾		
bit 1-0	11 = ADC 10 = ADC 01 = ADC	:0>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	96V) ⁽²⁾ 48V) ⁽²⁾		
Note 1: 2: 3:	Fixed Voltage F	vays '1' for PIC16F18855/75 Reference output cannot exc 7.0 "Temperature Indicator	•		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
PWM6CON	PWM6EN		PWM6OUT	PWM6POL	—	-	—	—	287		
PWM6DCH		PWM6DC<9:2>									
PWM6DCL	PWM6D)C<1:0>	_	_	_	_	_	_	288		
PWM7CON	PWM7EN		PWM7OUT	PWM7POL	_	_	_	_	287		
PWM7DCH				PWM7DC<	<9:2>				288		
PWM7DCL	PWM7D)C<1:0>	_	_	_	_	_	_	288		
T2CON	ON		CKPS<2:0>			OUTPS	<3:0>		441		
T4CON	ON		CKPS<2:0>			OUTPS	<3:0>		441		
T6CON	ON		CKPS<2:0>			OUTPS	<3:0>		441		
T2TMR	Holding Regi	ster for the 8-l	oit TMR2 Regist	er							
T4TMR	Holding Regi	ster for the 8-l	oit TMR4 Regist	er							
T6TMR	Holding Regi	ster for the 8-l	oit TMR6 Regist	er							
T2PR	TMR2 Period	Register									
T4PR	TMR4 Period	Register									
T6PR	TMR6 Period	Register									
RxyPPS	—	—			RxyPPS<	5:0>			250		
CWG1ISM	_	_	_	—		IS<3	:0>		312		
CWG2ISM						IS<3	:0>		312		
CWG3ISM						IS<3	:0>		312		
CLCxSELy	_	_			LCxDyS<5	5:0>			329		
MDSRC	—	— — — MDMS<4:0>							399		
MDCARH	—	— — — MDCHS<3:0>						400			
MDCARL	_		_	— — MDCLS<3:0>							
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220		

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

20.1.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 20-2. This alternation creates the push-pull effect required for driving some transformer-based power supply designs.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

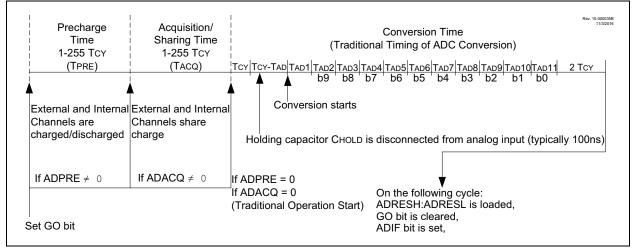
The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

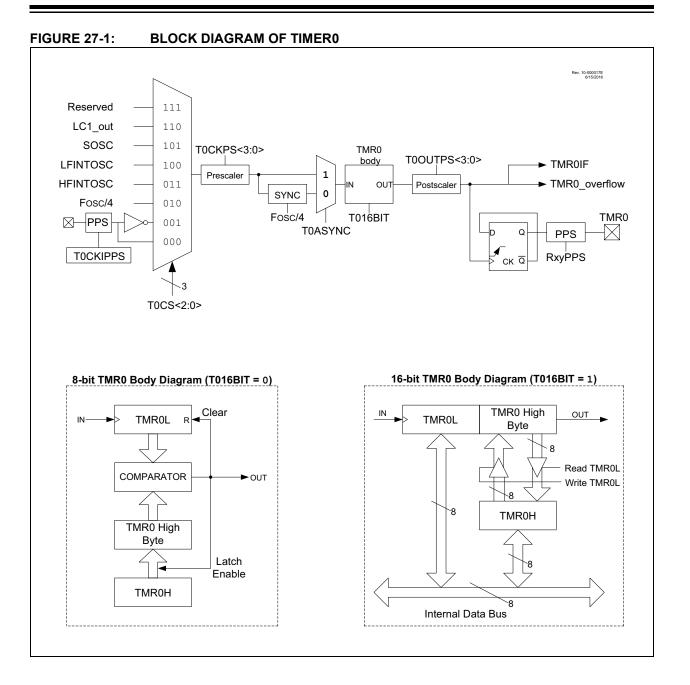
20.1.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. In Forward Full-Bridge mode, CWGxA is driven to its active state, CWGxB and CWGxC are driven to their inactive state, and CWGxD is modulated by the input signal. In Reverse Full-Bridge mode, CWGxC is driven to its active state, CWGxA and CWGxD are driven to their inactive states, and CWGxB is modulated by the input signal. In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or vice-versa. This dead-band control is described in Section 20.5 "Dead-Band Control", with additional details in Section 20.6 "Rising Edge and Reverse Dead Band" and Section 20.7 "Falling Edge and Forward Dead Band".

The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module.

TABLE 23-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES


ADC Clock	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCCS<5:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	000001	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/6	000010	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs
Fosc/8	000011	250 μs ⁽²⁾	400 ns ⁽²⁾	500 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	000111	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽²⁾
Fosc/128	111111	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾
FRC	ADCS(ADCON0 <4>)=1	1.0-6.0 μs ⁽¹⁾					


Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

- **2:** These values violate the required TAD time.
- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 23-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES (ADSC = 0)

29.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

31.6.13.2 Bus Collision During a Repeated Start Condition

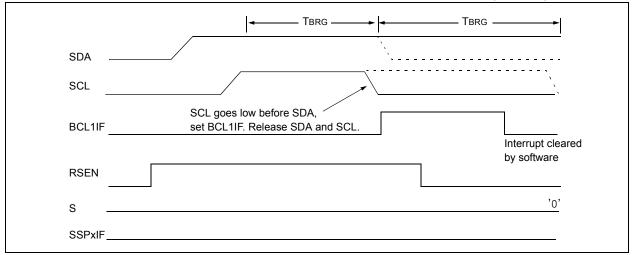
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 31-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

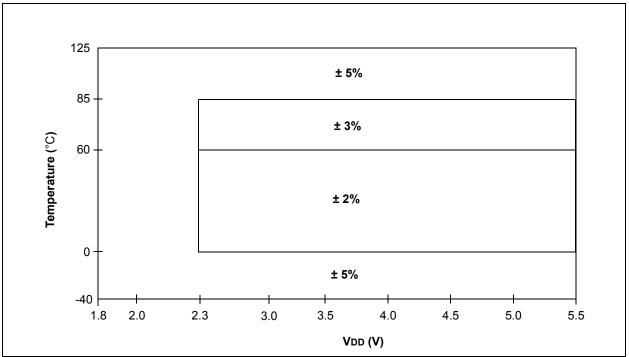

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 31-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

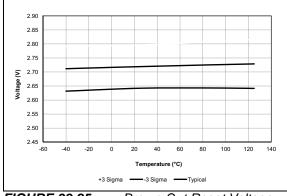
FIGURE 31-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

F

				• • - • •	
R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0
CPRUP	CPWUP	RST	_	_	TS


REGISTER 32-3: SMTxSTAT: SMT STATUS REGISTER

			•••	•••					
CPRUP	CPWUP	RST		_	TS	WS	AS		
bit 7	·						bit 0		
Legend:									
HC = Bit is cleared by hardware			HS = Bit is set by hardware						
R = Readable bit V		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unch	nanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared	q = Value depends on condition					
bit 7			d Buffer Updat						
			xPRx registers ate is complete						
bit 6		0 1	e Width Buffer						
			xCPW register						
			date is comple						
bit 5	RST: SMT Ma	anual Timer Re	eset bit						
			TMR registers						
		•	date is complet	e					
bit 4-3	•	ted: Read as '							
bit 2		Value Status b							
	1 = SMT timer is incrementing 0 = SMT timer is not incrementing								
bit 1		IN Value Status	0						
	1 = SMT wind								
	0 = SMT wind	dow is closed							
bit 0		nal Value Statu							
	•	uisition is in pro	•						
	0 = SMT acqu	uisition is not ir	n progress						

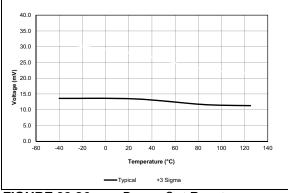
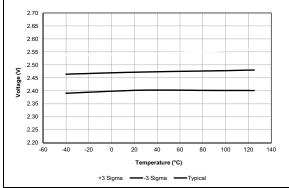
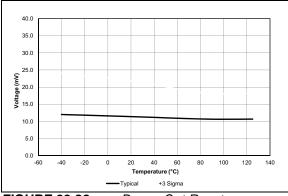

R-0/0

R-0/0

FIGURE 37-6: PRECISION CALIBRATED HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-25: Brown-Out Reset Voltage, Trip Point (BORV = 01).

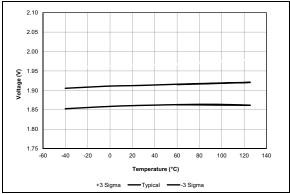

FIGURE 38-26: Brown-Out Reset Hysteresis, Trip Point (BORV = 01).

FIGURE 38-27: Brown-Out Reset Voltage, Trip Point (BORV = 1x).

FIGURE 38-28: Brown-Out Reset Hysteresis, Trip Point (BORV = 1x).

FIGURE 38-29: Brown-Out Reset Voltage, Trip Point (BORV = 11).

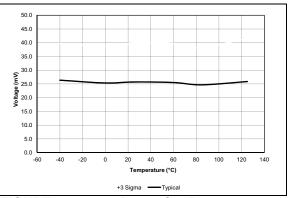
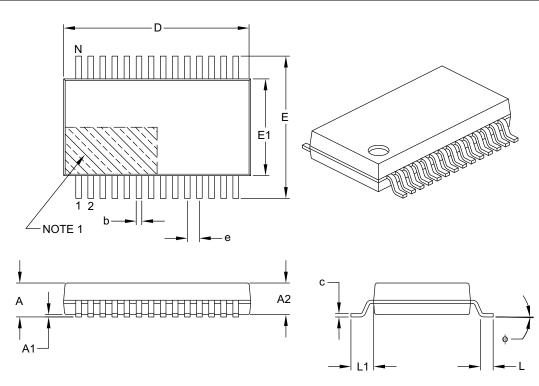



FIGURE 38-30: Brown-Out Reset Hysteresis, Trip Point (BORV = 11), PIC16LF18855/75 Only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е	0.65 BSC			
Overall Height	А	_	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B