

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18875-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program Flash Memory RAM CLKOUT /OSC2 Timing Generation CPU JLKIN, OSC1 ☑─► CLKIN/ INTRC Oscillator (Note 3) ADC Temp TMR0 TMR6 TMR5 TMR4 TMR3 TMR2 TMR1 CRC DSM C2 C1 DAC FVR Scanner 10-bit Indicator CWG1 CWG2 CWG3 SMT2 SMT1 NCO1 EUSART MSSP2 MSSP1 CLC4 CLC3 CLC2 CLC1 ZCD1 PWM6/7 CCPs(5)

Note 1: See applicable chapters for more information on peripherals.

2: See Table 1-1 for peripherals available on specific devices.

PIC16(L)F18855/75 BLOCK DIAGRAM

- 3: See Figure 2-1.
- 4: PIC16(L)F18875 only.

FIGURE 1-1:

Rev. 10-000039J 11/20/2015

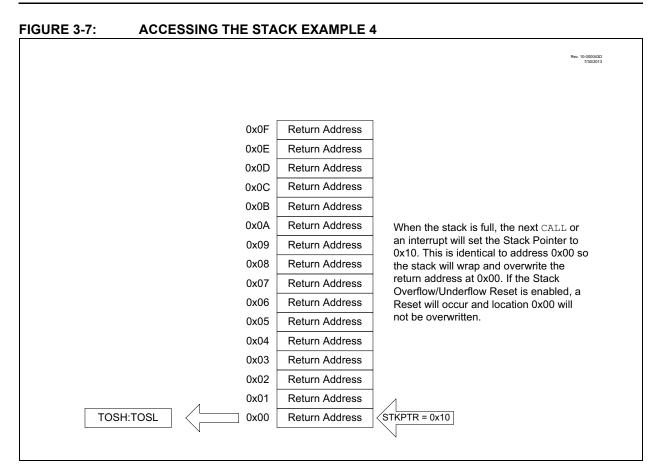
PORTA

PORTB

PORTC

PORTD

PORTE


TABLE 3-8: PIC16(L)F18855/75 MEMORY MAP, BANK 28

	Bank 28
E0Ch	—
E0Dh	—
E0Eh	_
E0Fh	CLCDATA
E10h	CLC1CON
E11h	CLC1POL
E12h	CLC1SEL0
E13h	CLC1SEL1
E14h	CLC1SEL2
E15h	CLC1SEL3
E16h	CLC1GLS0
E17h	CLC1GLS1
E18h	CLC1GLS2
E19h	CLC1GLS3
E1Ah	CLC2CON
E1Bh	CLC2POL
E1Ch	CLC2SEL0
E1Dh	CLC2SEL1
E1Eh	CLC2SEL2
E1Fh	CLC2SEL3
E20h	CLC2GLS0
E21h	CLC2GLS1
E22h	CLC2GLS2
E23h	CLC2GLS3
E24h	CLC3CON
E25h	CLC3POL
E26h	CLC3SEL0
E27h	CLC3SEL1
E28h	CLC3SEL2
E29h	CLC3SEL3
E2Ah	CLC3GLS0
E2Bh	CLC3GLS1
E2Ch	CLC3GLS2
E2Dh	CLC3GLS3

	Bank 28
E2Eh	CLC4CON
E2Fh	CLC4POL
E30h	CLC4SEL0
E31h	CLC4SEL1
E32h	CLC4SEL2
E33h	CLC4SEL3
E34h	CLC4GLS0
E35h	CLC4GLS1
E36h	CLC4GLS2
E37h	CLC4GLS3
E38h	
	_
E6Fh	

Legend:

= Unimplemented data memory locations, read as '0'.

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

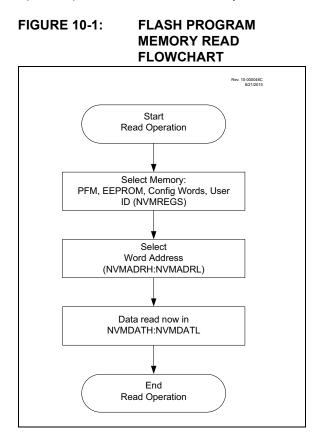
The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- · Linear Data Memory
- Data EEPROM Memory
- Program Flash Memory

			11.0				
R/W/HS-0/0		U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
OSFIF	CSWIF	—	_	—	—	ADTIF	ADIF
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is und	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7 OSFIF : Oscillator Fail-Safe Interrupt Flag bit 1 = Oscillator fail-safe interrupt has occurred (must be cleared in software)							
		tor fail-safe inte	•				
bit 6		k Switch Comp		0			
		switch module switch does no			tion (must be cl tion	eared in softwa	ire)
bit 5-2	Unimplemen	ted: Read as ')'				
bit 1	bit 1 ADTIF : Analog-to-Digital Converter (ADC) Threshold Compare Interrupt Flag bit 1 = An A/D measurement was beyond the configured threshold (must be cleared in software) 0 = A/D measurements have been within the configured threshold						tware)
bit 0	ADIF: Analog-to-Digital Converter (ADC) Interrupt Flag bit 1 = An A/D conversion or complex operation has completed (must be cleared in software) 0 = An A/D conversion or complex operation is not complete						
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear							

REGISTER 7-12: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1


prior to enabling an interrupt.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF
bit 7							bit (
Legend:	•••						
R = Readable I		W = Writable		•	nented bit, read		
u = Bit is uncha	anged	x = Bit is unkr			at POR and BO	R/value at all o	itner Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	SCANIF: Prog	gram Memory S	Scanner Interr	upt Flag bit			
		ation has comp tion is pending	,		nsition has occu ogress	ırred)	
bit 6	CRCIF: CRC Interrupt Flag bit						
	 1 = The operation has completed (a BUSY 1 to 0 transition has occurred) 0 = No operation is pending or the operation is still in progress 						
bit 5	NVMIF: Non-Volatile Memory (NVM) Interrupt Flag bit						
	•	ested NVM ope rrupt not assert		npleted			
bit 4	NCO1IF: Nun	nerically Contro	lled Oscillator	(NCO) Interru	upt Flag bit		
		has rolled ove interrupt event					
bit 3	Unimplemen	ted: Read as ')'				
bit 2	CWG3IF: CW	G3 Interrupt Fl	ag bit				
		s gone into shu					
L :4 4		operating norm	•	pt cleared			
bit 1		G2 Interrupt Fl					
	 CWG2 has gone into shutdown CWG3 is operating normally, or interrupt cleared 						
bit 0	CWG1IF: CWG1 Interrupt Flag bit						
1 = CWG1 has gone into shutdown							
	0 = CWG1 is	· · · · · · · · · · · · · · · · · · ·		we the lease of			

REGISTER 7-19: PIR7: PERIPHERAL INTERRUPT REQUEST REGISTER 7

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

Upon completion, the RD bit is cleared by hardware.

EXAMPLE 10-1: PFM PROGRAM MEMORY READ

data will be returned in the variables,						
BANKSEL	NVMADRL	; Select Bank for NVMCON registers				
MOVLW	PROG_ADDR_LO	;				
MOVWF	NVMADRL	; Store LSB of address				
MOVLW	PROG_ADDR_HI	;				
MOVWF	NVMADRH	; Store MSB of address				
BCF	NVMCON1,NVMREGS	; Do not select Configuration Space				
BSF	NVMCON1,RD	; Initiate read				
MOVFNVMDATL,W; Get LSB of wordMOVWFPROG_DATA_LO; Store in user locationMOVFNVMDATH,W; Get MSB of wordMOVWFPROG_DATA_HI; Store in user location						

REGISTER 11-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIF	T<15:8>			
bit 7							bit C
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	OR and BOR/Val	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

SHIFT<15:8>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 11-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIFT	۲<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

SHIFT<7:0>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 11-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			X<1	5:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 X<15:8>: XOR of Polynomial Term X_N Enable bits

REGISTER 11-10: CRCXORL: CRC XOR LOW BYTE REGISTER

R/W-x/x	U-1						
			X<7:1>				_
bit 7							bit 0

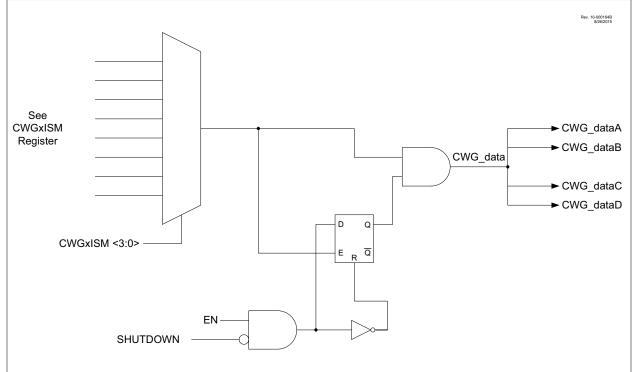
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 XOR<7:1>: XOR of Polynomial Term X_N Enable bits

bit 0 Unimplemented: Read as '1'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	269
ADREF				ADNREF			ADPRE	F<1:0>	362
ADPCH					ADPCH	1<5:0>			363
CM1CON1	_		_	—	_	_	INTP	INTN	280
CM1NSEL	_	_	_	_	_		NCH<2:0>		281
CM1PSEL	_	_	_	_	_		PCH<2:0>		281
CM2CON1	_	_	_	_	_	_	INTP	INTN	280
CM2NSEL	-	_	_	-	_		NCH<2:0>		281
CM2PSEL	_	_	_	_	— PCH<2:0>		281		
DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	DAC1NSS	389

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE


Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

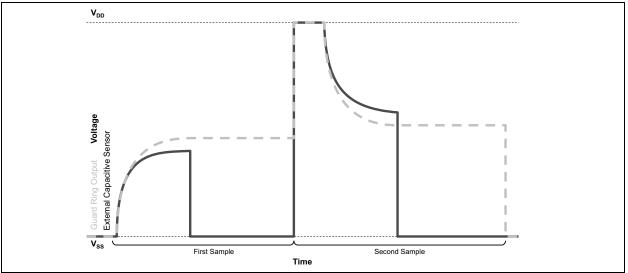
20.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 20.9 "CWG Steering Mode"**.

20.2 Clock Source

The CWG module allows the following clock sources to be selected:


- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWGxCLKCON register.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		Gate 2 Data 4 1		,			
		(true) is gated i (true) is not gat					
bit 6		Gate 2 Data 4 l					
DILO		(inverted) is ga	•	,			
		(inverted) is ga					
bit 5		Gate 2 Data 3 1	-				
		(true) is gated i	•	,			
	0 = CLCIN2 ((true) is not gat	ted into CLCx	Gate 2			
bit 4	LCxG3D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
		(inverted) is ga					
		(inverted) is no	•				
bit 3		Gate 2 Data 2 T		,			
		(true) is gated i (true) is not gat					
bit 2		Gate 2 Data 2					
		(inverted) is ga	• ·	,			
		(inverted) is no					
bit 1		Sate 2 Data 1 1	•				
		(true) is gated i					
	0 = CLCIN0	(true) is not gat	ted into CLCx	Gate 2			
bit 0	LCxG3D1N:	Gate 2 Data 1 I	Negated (inver	ted) bit			
		(inverted) is ga					
	0 = CLCINO ((inverted) is no	t gated into CL	Cx Gate 2			

REGISTER 22-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	205
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	207
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	222
MDCON0	MDEN	_	MDOUT	MDOPOL			_	MDBIT	397
MDCON1		_	MDCHPOL	MDCHSYNC			MDCLPOL	MDCLSYNC	398
MDSRC	_	_	—			MDMS<4:0>	>	•	399
MDCARH		_		—		MDC	:HS<3:0>		400
MDCARL	_	_	—	—		MDC	CLS<3:0>		401
MDCARLPPS	_	_	—		ME	CARLPPS<	4:0>		249
MDCARHPPS	_	_	—		MD	CARHPPS<	:4:0>		249
MDSRCPPS	_	_	—		M	DSRCPPS<4	4:0>		249
RxyPPS			—			RxyPPS<4:0)>		250
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	207
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	222
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	EN	_	OUT	FMT		MODE<3:0>				
CCP2CON	EN	—	OUT	FMT		MODE	E<3:0>		452	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	455	
CCPTMRS1	—	—	P7TSE	L<1:0>	P6TSE	L<1:0>	C5TSE	L<1:0>	455	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	134	
PIE1	OSFIE	CSWIE	—	—	—	_	ADTIE	ADIE	136	
PIR1	OSFIF	CSWIF	—	—	—	_	ADTIF	ADIF	145	
PR2	Timer2 Mod	ule Period Re	gister					L	425*	
TMR2	Holding Reg	ister for the 8	r for the 8-bit TMR2 Register						425*	
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		441	
T2CLKCON	_	_	_	_		CS<	<3:0>		440	
T2RST	—	—	—			RSEL<4:0>			443	
T2HLT	PSYNC	CKPOL	CKSYNC	—		442				
PR4	Timer4 Mod	ule Period Re	gister			425*				
TMR4	Holding Reg	ister for the 8	-bit TMR4 Re	gister					425*	
T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		441	
T4CLKCON	—	—	—	_	—		CS<3:0>		440	
T4RST	—	_	_			RSEL<4:0>			443	
T4HLT	PSYNC	CKPOL	CKSYNC	—		MODE	E<3:0>		442	
PR6	Timer6 Mod	ule Period Re	Period Register						425*	
TMR6	Holding Reg	ister for the 8	er for the 8-bit TMR6 Register					425*		
T6CON	ON		CKPS<2:0> OUTPS<3:0>					441		
T6CLKCON	—	—	—	—	—		CS<2:0>		440	
T6RST	—	_	_			RSEL<4:0>			443	
T6HLT	PSYNC	CKPOL	CKSYNC	—		MOD	E<3:0>		442	

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

30.3.4 TIMER2 TIMER RESOURCE

This device has a newer version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to Section 29.5, Operation Examples for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the FOSC/4 clock source selected

30.3.5 PWM PERIOD

The PWM period is specified by the PR2/4/6 register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 30-1.

EQUATION 30-1: PWM PERIOD

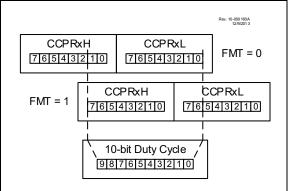
$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

Note 1: Tosc = 1/Fosc

When TMR2/4/6 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2/4/6 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is transferred from the CCPRxL/H register pair into a 10-bit buffer.

Note:	The Timer postscaler (see Section 29.4
	"Timer2 Interrupt") is not used in the
	determination of the PWM frequency.


30.3.6 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the CCPRxFMT bit of the CCPxCON register (see Figure 30-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 30-2 is used to calculate the PWM pulse width.

Equation 30-3 is used to calculate the PWM duty cycle ratio.

FIGURE 30-5: PWM 10-BIT ALIGNMENT

EQUATION 30-2: PULSE WIDTH

Pulse Width = (CCPRxH:CCPRxL register pair) •

TOSC • (TMR2 Prescale Value)

EQUATION 30-3: DUTY CYCLE RATIO

Duty Cycle Ratio =
$$\frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 30-4).

30.3.7 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 30-4.

EQUATION 30-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

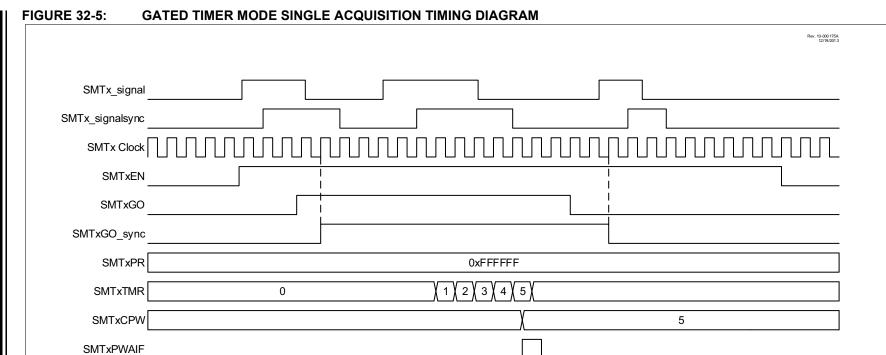
TABLE 30-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

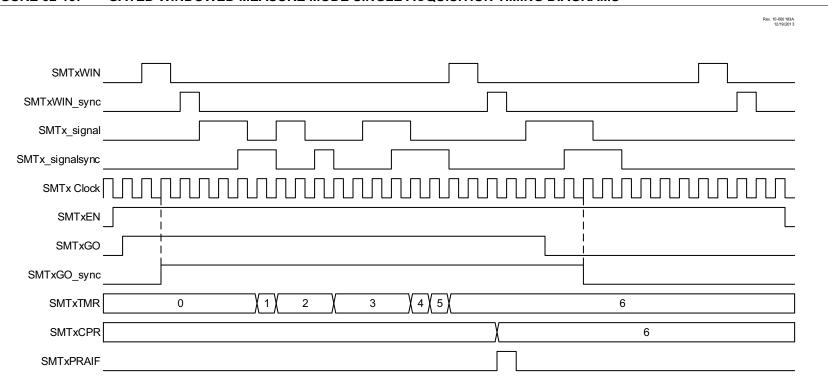
PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 30-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

30.3.8 OPERATION IN SLEEP MODE


In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.


30.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

30.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

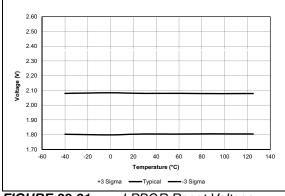
FIGURE 32-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

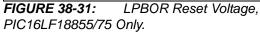
PIC16(L)F18855/75

37.3 DC Characteristics

TABLE 37-1:SUPPLY VOLTAGE

PIC16LF	PIC16LF18855/75			Standard Operating Conditions (unless otherwise stated)					
PIC16F1	18855/75								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
Supply '	Voltage						·		
D002	Vdd		1.8 2.5	-	3.6 3.6	V V	Fosc ≤ 16 MHz Fosc > 16 MHz		
D002	Vdd		2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≥ 16 MHz		
RAM Da	ita Retent	tion ⁽¹⁾							
D003	Vdr		1.5	—		V	Device in Sleep mode		
D003	Vdr		1.5	—	_	V	Device in Sleep mode		
Power-c	on Reset	Release Voltage ⁽²⁾							
D004	VPOR			1.6		V	BOR or LPBOR disabled ⁽³⁾		
D004	VPOR		_	1.6		V	BOR or LPBOR disabled ⁽³⁾		
Power-c	on Reset	Rearm Voltage ⁽²⁾							
D005	VPORR			0.8		V	BOR or LPBOR disabled ⁽³⁾		
D005	VPORR			1.2		V	BOR or LPBOR disabled ⁽³⁾		
VDD Ris	e Rate to	ensure internal Power-on F	Reset sig	gnal ⁽²⁾			•		
D006	SVDD		0.05	—		V/ms	BOR or LPBOR disabled ⁽³⁾		
D006	SVDD		0.05	—		V/ms	BOR or LPBOR disabled ⁽³⁾		


† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 37-3, POR and POR REARM with Slow Rising VDD.

3: Please see Table 37-11 for BOR and LPBOR trip point information.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

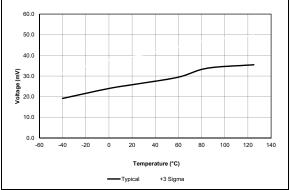


FIGURE 38-32: LPBOR Reset Hysteresis, PIC16LF18855/75 Only.

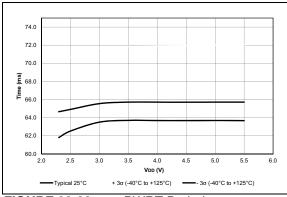


FIGURE 38-33: PWRT Period, PIC16F18855/75 Only.

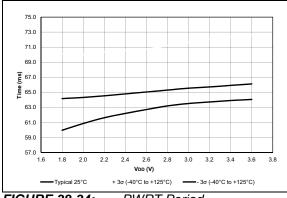


FIGURE 38-34: PWRT Period, PIC16LF18855/75 Only.

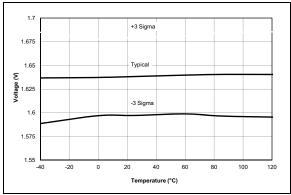


FIGURE 38-35: POR Release Voltage.

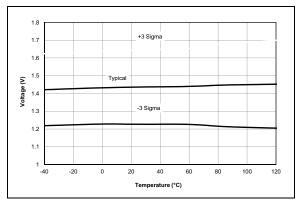


FIGURE 38-36: POR Rearm Voltage, VREGPM1 = 0, PIC16F18855/75 Only.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	T T T	Examples: a) PIC16F18855- E/SP Extended temperature
Device:	PIC16F18855; PIC16LF18855; PIC16F18875; PIC16LF18875	SPDIP package b) PIC16F18875- I/P Industrial temperature PDIP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package: ⁽²⁾	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	2: Small form-factor packaging options may be available. Please check www.microchip.com/packaging for small-form factor package availability, or contact your local Sales Office.