

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18875-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	DSM	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RB5	26	23	ANB5		—			—			T1G ⁽¹⁾ SMTSIG2 ⁽¹⁾	CCP3 ⁽¹⁾	—	—	_		IOCB5	—
RB6	27	24	ANB6	—	-	—	—	—	—	—	—	—	—	CLCIN2 ⁽¹⁾	—	—	IOCB6	ICSPCLK
RB7	28	25	ANB7	_	DAC1OUT2	_		—	_		T6IN ⁽¹⁾	-	—	CLCIN3 ⁽¹⁾		-	IOCB7	ICSPDAT
RC0	11	8	ANC0	_	-	_	_	—	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	—	_	_	_	IOCC0	SOSCO
RC1	12	9	ANC1		-	_		—	_		SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	—	_	Ι	-	IOCC1	SOSCI
RC2	13	10	ANC2	-	—	-	-	—	—	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	_		—	IOCC2	—
RC3	14	11	ANC3		_			SCL1 ^(3,4) SCK1 ⁽¹⁾			T2IN ⁽¹⁾		—	_	_		IOCC3	—
RC4	15	12	ANC4		-			SDA1 ^(3,4) SDI1 ⁽¹⁾		_	_		_	—	-		IOCC4	—
RC5	16	13	ANC5	_	—		-	—	—	_	T4IN ⁽¹⁾	-	—	—	—	_	IOCC5	—
RC6	17	14	ANC6	—	-	—	—	—	CK(3)	_	—	—	—	—	—	—	IOCC6	—
RC7	18	15	ANC7		—			—	RX ⁽¹⁾ DT ⁽³⁾	_	—		—	—	-		IOCC7	—
RE3	1	26	_	_	_	_	_	_	_	_	_	_	—	_	_	_	IOCE3	MCLR VPP
Vdd	20	17	—	_	—	—	_	—	_	_	—	—	—	—	—	_	—	—
Vss	8, 19	5, 16	_		_	_	—	-	_	—	_	-	—	-	-	-	—	—

TABLE 2: 28-PIN ALLOCATION TABLE (PIC16(L)F18855) (CONTINUED)

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTX pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTX pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input 4: logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

TABLE 1-2: PIC16F18855 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IUCAU	ANA0	AN	—	ADC Channel A0 input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	—	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ /	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCA1	ANA1	AN	—	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	—	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/VREF-/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DAC10011/IOCA2	ANA2	AN	—	ADC Channel A2 input.
	C1IN0+	AN	—	Comparator positive input.
	C2IN0+	AN	—	Comparator positive input.
	VREF-	AN	—	External ADC and/or DAC negative reference input.
	DAC1OUT1	—	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	—	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/MDCARL ⁽¹⁾ /	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IUCAS	ANA3	AN	—	ADC Channel A3 input.
	C1IN1+	AN	—	Comparator positive input.
	VREF+	AN	—	External ADC and/or DAC positive reference input.
	MDCARL ⁽¹⁾	TTL/ST	—	Modular Carrier input 1.
	IOCA3	TTL/ST	—	Interrupt-on-change input.
RA4/ANA4/MDCARH ⁽¹⁾ /T0CKI ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
CCP5 MOCA4	ANA4	AN	—	ADC Channel A4 input.
	MDCARH ⁽¹⁾	TTL/ST	—	Modular Carrier input 2.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	CCP5 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM5 (default input location for capture function).
	IOCA4	TTL/ST	—	Interrupt-on-change input.
Legend: AN = Analog input or outp	ut CMOS =	CMOS co	mpatible input or	Output OD = Open-Drain CMOS levels l^2C = Schmitt Trigger input with l^2C

TTL = TTL compatible input ST

= Schmitt Trigger input with I²C

HV = High Voltage XTAL = Crystal levels

1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx Note pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IADLL	5-15. SI L			ILCI01011				NOLD)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 13												
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
68Ch	CWG3CLKCON		_	_	_	_	_	_	_	CS	0	0
68Dh	CWG3ISM		—	_	—	-		IS<3	:0>		0000	0000
68Eh	CWG3DBR		—	_		•	D	BR<5:0>			00 0000	00 0000
68Fh	CWG3DBF		—	_			D	BF<5:0>			00 0000	00 0000
690h	CWG3CON0		EN	LD	—	—	— MODE<2:0>			00000	00000	
691h	CWG3CON1		—	_	IN	-	POLD	POLC	POLB	POLA	x- 0000	u- 0000
692h	CWG3AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA		_	—	0001 01	0001 01
693h	CWG3AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
694h	CWG3STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
695h	—	—				U	nimplemented				—	—
696h	_	—				U	nimplemented				-	—
697h	_	—				U	nimplemented				-	—
698h	—	-				U	nimplemented				-	—
699h	_	—				U	nimplemented				-	—
69Ah	-	—		Unimplemented —							-	—
69Bh	-	—		Unimplemented —							—	
69Ch	-	—		Unimplemented							-	—
69Dh	-	—				U	nimplemented				-	—
69Eh	—	—				U	nimplemented				—	—
69Fh	_	_		Unimplemented								

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Note 1:

Unimplemented, read as '1'. 2:

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

Rev. 10-000057A

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

3.5.3 DATA EEPROM MEMORY

The EEPROM memory can be read or written through NVMCONx/NVMADRx/NVMDATx the reaister interface (see section Section 10.2 "Data EEPROM Memory"). However, to make access to the EEPROM memory easier, read-only access to the EEPROM contents are also available through indirect addressing by an FSR. When the MSB of the FSR (ex: FSRxH) is set to 0x70, the lower 8-bit address value (in FSRxL) determines the EEPROM location that may be read from (through the INDF register). In other words, the EEPROM address range 0x00-0xFF is mapped into the FSR address space between 0x7000-0x70FF. Writing to the EEPROM cannot be accomplished via the FSR/INDF interface. Reads from the EEPROM through the FSR/INDF interface will require one additional instruction cycle to complete.

3.5.4 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

9.7 Register Definitions: Windowed Watchdog Timer Control

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0				
-	-			WDTPS<4:0>(1)			SEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

	q = bit is cleared q = value depends on com
bit 7-6	Unimplemented: Read as '0'
bit 5-1	WDTPS<4:0>: Watchdog Timer Prescale Select bits ⁽¹⁾
	Bit Value = Prescale Rate
	11111 = Reserved Results in minimum interval (1:32)
	•
	•
	•
	10011 = Reserved. Results in minimum interval (1:32)
	10010 = 1:8388608 (2 ²³) (Interval 256s nominal)
	10001 = 1:4194304 (2 ²²) (Interval 128s nominal)
	$10000 = 1:2097152 (2^{21})$ (Interval 64s nominal)
	$01111 = 1:1048576 (2^{20}) (Interval 32s nominal)$
	$01110 = 1.524288 (2^{19})$ (Interval 16s nominal)
	$01101 = 1.262144 (2^{10}) (Interval 8s nominal)$
	01100 = 1:1310/2 (2'') (Interval 4s nominal)
	01011 = 1.65536 (Interval 2s nominal) (Reset Value)
	01010 = 1.32708 (interval 15 nominal)
	01001 - 1.10304 (interval 256 ms nominal)
	0.1111 = 1.4096 (Interval 230 ins nominal)
	0.0110 = 1.2048 (Interval 64 ms nominal)
	0.0101 = 1.2040 (Interval 32 ms nominal)
	00100 = 1:512 (Interval 16 ms nominal)
	00011 = 1:256 (Interval 8 ms nominal)
	00010 = 1:128 (Interval 4 ms nominal)
	00001 = 1:64 (Interval 2 ms nominal)
	00000 = 1:32 (Interval 1 ms nominal)
bit 0	SEN: Software Enable/Disable for Watchdog Timer bit
	If WDTE<1:0> = 1x:
	This bit is ignored.
	<u>If WDTE<1:0> = 01</u> :
	1 = WDT is turned on
	0 = WDT is turned off
	<u>If WDTE<1:0> = 00:</u>
	This bit is ignored.

- Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

REGISTER 18-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	—	_	_		NCH<2:0>	
bit 7							bit 0

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'

bit 2-0 NCH<2:0>: Comparator Negative Input Channel Select bits

- 111 = CxVN connects to AVss
 - 110 = CxVN connects to FVR Buffer 2
 - 101 = CxVN unconnected
 - 100 = CxVN unconnected
 - 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

REGISTER 18-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	_		PCH<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 5-3 PCH<2:0>: Comparator Positive Input Channel Select bits

- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		q = Value depends on condition				
bit 7	OVRD: Steer	OVRD: Steering Data D bit						
bit 6	OVRC: Steer	OVRC: Steering Data C bit						
bit 5	OVRB: Steer	OVRB: Steering Data B bit						
bit 4	OVRA: Steer	OVRA: Steering Data A bit						
bit 3	S STRD: Steering Enable D bit ⁽²⁾							
	1 = CWGxD	output has the	CWGx_data	waveform with	polarity control	from POLD bit		
0 = CWGxD output is assigned the value of OVRD bit								
bit 2	STRC: Steer	ing Enable C bi	t ⁽²⁾					
	1 = CWGxC 0 = CWGxC	output has the	CWGx_data v ned the value	waveform with of OVRC bit	polarity control	from POLC bit		
bit 1	STRB: Steer	ing Enable B bi	t ⁽²⁾					
	1 = CWGxB	output has the	CWGx_data	waveform with	polarity control	from POLB bit		
	0 = CWGxB	output is assign	ned the value	of OVRB bit				
bit 0	STRA: Steer	ing Enable A bi	t ⁽²⁾					
	1 = CWGxA	output has the	CWGx_data	waveform with	polarity control	from POLA bit		
	0 = CWGxA	output is assig	ned the value	of OVRA bit				
Note 1: T	he bits in this re	gister apply on	y when MOD	E<2:0> = 00x.				

REGISTER 20-7: CWGxSTR: CWGx STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

23.4.1 CVD OPERATION

A CVD operation begins with the ADC's internal (C_{HOLD}) sample and hold capacitor being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, CHOLD is precharged to VDD or Vss, while the path to the sensor node is also discharged to VDD or VSS. Typically, this node is discharged to the level opposite that of CHOLD. When the precharge phase is complete, the VDD/VSS bias paths for the two nodes are shut off and CHOLD and the path to the external sensor node are reconnected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged CHOLD and sensor nodes, which results in a final voltage level setting on CHOLD which is determined by the capacitances and precharge levels of the two nodes. After acquisition, the ADC converts the voltage level on CHOLD. This process is then repeated with the selected precharge levels for both the CHOLD and the inverted sensor nodes. Figure 23-7 shows the waveform for two inverted CVD measurements, which is known as differential CVD measurement.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			ADPCI	H<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/	/alue at all other	Resets
'1' = Bit is set	0	'0' = Bit is cleare	ed				
bit 7-6	Unimplement	ed: Read as '0'					
bit 5-0	ADPCH<5:0>:	: ADC Positive Inp	ut Channel Se	lection bits			
	111111 = Fixe	ed Voltage Refere	nce (FVR) ⁽²⁾				
	111110 = DA	C1 output ⁽¹⁾	x <i>y</i>				
	111101 = Ten	nperature Indicato	₍ 3)				
	111100 = AV s	ss (Analog Ground	l)				
	111011 = Res	served. No channe	l connected.				
	•						
	•						
	100010 = AN	E2 ⁽⁴⁾					
	100001 = ANI	E1 ⁽⁴⁾					
	100000 = ANI	E0 ⁽⁴⁾					
	011111 = ANI	D7 ⁽⁴⁾					
	011110 = ANI	D6 ⁽⁴⁾					
	011101 = AN	$D5^{(4)}$					
	011100 = ANI	D4 ⁽⁴⁾					
	011011 - ANI	D3(4)					
	011010 = ANI	D2(4)					
	011000 = AN	D0 ⁽⁴⁾					
	010111 = AN	C7					
	010110 = AN	C6					
	010101 = AN	C5					
	010100 = AN	C4					
	010011 = AN	C3					
	010010 = AN	C2					
	010001 = AN	C1					
	010000 = AN0						
	001111 - ANI	B6					
	001100 = ANI	B5					
	001100 = AN	B4					
	001011 = ANI	B3					
	001010 = ANI	B2					
	001001 = ANI	B1					
	001000 = ANI	B0					
	000111 = AN	A7					
	000110 = AN	A6					
	000101 = AN	A5					
	000100 = AN	A4 A2					
	000011 = AN	Δ2					
	000010 - AN	<u>π</u> ε Δ1					
	000001 = AN	AO					

REGISTER 23-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

Note 1: See Section 25.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information.

- 2: See Section 16.0 "Fixed Voltage Reference (FVR)" for more information.
- 3: See Section 17.0 "Temperature Indicator Module" for more information.
- 4: PIC16(L)F18875 only.

FIGURE 25-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

29.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

31.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULES

31.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 31-1 is a block diagram of the SPI interface module.

33.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUD1CON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. The overflow condition will set the RCIF flag. The counter continues to count until the fifth rising edge is detected on the RX pin. The RCIDL bit will remain false ('0') until the fifth rising edge at which time the RCIDL bit will be set. If the RCREG is read after the overflow occurs but before the fifth rising edge then the fifth rising edge will set the RCIF again.

Terminating the auto-baud process early to clear an overflow condition will prevent proper detection of the sync character fifth rising edge. If any falling edges of the sync character have not yet occurred when the ABDEN bit is cleared then those will be falsely detected as Start bits. The following steps are recommended to clear the overflow condition:

- 1. Read RCREG to clear RCIF.
- 2. If RCIDL is '0' then wait for RDCIF and repeat step 1.
- 3. Clear the ABDOVF bit.

33.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUD1CON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 33-7), and asynchronously if the device is in Sleep mode (Figure 33-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in IDLE mode waiting to receive the next character.

33.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-85: Typical FVR Voltage 1x, PIC16LF18855/75 Only.

FIGURE 38-86: FVR Voltage Error 1x, PIC16F18855/75 Only.

FIGURE 38-87: FVR Voltage Error 2x, PIC16LF18855/75 Only.

FIGURE 38-88: FVR Voltage Error 2x, PIC16F18855/75 Only.

FIGURE 38-89: FVR Voltage Error 4x, PIC16F18855/75 Only.

FIGURE 38-90: HFINTOSC Typical Frequency Error, PIC16LF18855/75 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

Frequency Error, PIC16F18855/75 Only.

FIGURE 38-92: HFINTOSC Frequency Error, VDD = 3.0V.

FIGURE 38-93:

Schmitt Trigger High Values.

FIGURE 38-94: Schmitt Trig

Schmitt Trigger Low Values.

FIGURE 38-95: Input Level, TTL.

Control Enabled.