

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18875t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS/OD	General purpose I/O.
CLUINO	ANA0	AN	—	ADC Channel A0 input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	—	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
CLCINT	ANA1	AN	—	ADC Channel A1 input.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	—	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/VREF-/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUT1/IOCA2	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	—	Comparator positive input.
	C2IN0+	AN	—	Comparator positive input.
	VREF-	AN	—	External ADC and/or DAC negative reference input.
	DAC1OUT1	-	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
MDCARL MOCA3	ANA3	AN	—	ADC Channel A3 input.
	C1IN1+	AN	—	Comparator positive input.
	VREF+	AN	—	External ADC and/or DAC positive reference input.
	MDCARL ⁽¹⁾	TTL/ST	—	Modular Carrier input 1.
	IOCA3	TTL/ST	—	Interrupt-on-change input.
RA4/ANA4/MDCARH ⁽¹⁾ /T0CKI ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	—	ADC Channel A4 input.
	MDCARH ⁽¹⁾	TTL/ST	—	Modular Carrier input 2.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	CCP5 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM5 (default input location for capture function).
	IOCA4	TTL/ST	_	Interrupt-on-change input.
Legend: AN = Analog input or o	utput CMOS =	CMOS compa	tible input or out	put OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C = Schmitt Trigger input with I²CHV= High Voltage XTAL= Crystal levels Note

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IABLE	3-13: SPE		-UNCTION	REGISTE		RT BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30												
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
F0Ch — F0Fh	_	-				u	Inimplemented				_	—
F10h	RA0PPS		_	—			RAC	PPS<5:0>			00 0000	uu uuuu
F11h	RA1PPS		_	_			RA1	PPS<5:0>			00 0000	uu uuuu
F12h	RA2PPS		_	_			RA2	PPS<5:0>			00 0000	uu uuuu
F13h	RA3PPS		_	_			RAS	PPS<5:0>			00 0000	uu uuuu
F14h	RA4PPS		_	_			RA4	PPS<5:0>			00 0000	uu uuuu
F15h	RA5PPS		_	_			RAS	PPS<5:0>			00 0000	uu uuuu
F16h	RA6PPS		_	_			RAG	PPS<5:0>			00 0000	uu uuuu
F17h	RA7PPS		_	_			RA7	PPS<5:0>			00 0000	uu uuuu
F18h	RB0PPS		-	—			RBC	PPS<5:0>			00 0000	uu uuuu
F19h	RB1PPS		-	-			RB1	PPS<5:0>			00 0000	uu uuuu
F1Ah	RB2PPS		-	-			RB2	PPS<5:0>			00 0000	uu uuuu
F1Bh	RB3PPS		1	—			RB3	PPS<5:0>			00 0000	uu uuuu
F1Ch	RB4PPS			_			RB4	PPS<5:0>			00 0000	uu uuuu
F1Dh	RB5PPS			_			RB5	PPS<5:0>			00 0000	uu uuuu
F1Eh	RB6PPS		—	-			RB6	PPS<5:0>			00 0000	uu uuuu
F1Fh	RB7PPS		—	—			RB7	PPS<5:0>			00 0000	uu uuuu
F20h	RCOPPS		—	—			RCC	PPS<5:0>			00 0000	uu uuuu
F21h	RC1PPS		_	_			RC1	PPS<5:0>			00 0000	uu uuuu
F22h	RC2PPS		_	_			RC2	PPS<5:0>			00 0000	uu uuuu
F23h	RC3PPS		_	_			RC3	PPS<5:0>			00 0000	uu uuuu

© 2015-2017 Microchip Technology Inc.

DS40001802D-page 77

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

IABLE	3-13: SPE	CIA		-UNCTION	REGISTE	R SUMMA	RT BANKS	J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
E31b		—	х	—	—			RE1	PPS<5:0>			00 0000	uu uuuu
1 5 111	NLIFF 3	х	-				U	nimplemented					
Faab			Х	_				RE2	PPS<5:0>			00 0000	uu uuuu
F3211	REZPPS	х	_				U	nimplemented					
F33h F37h	_	-	_		Unimplemented							_	_
F38h	ANSELA			ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
F39h	WPUA			WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	0000 0000	0000 0000
F3Ah	ODCONA			ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000 0000	0000 0000
F3Bh	SLRCONA			SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	1111 1111
F3Ch	INLVLA			INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111
F3Dh	IOCAP			IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000
F3Eh	IOCAN			IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000
F3Fh	IOCAF			IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000
F40h	CCDNA			CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	0000 0000	0000 0000
F41h	CCDPA			CCDPA7	CCDPA6	CCDPA5	CCDPA4	CCDPA3	CCDPA2	CCDPA1	CCDPA0	0000 0000	0000 0000
F42h	_	-	-				U	nimplemented				—	—
F43h	ANSELB			ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
F44h	WPUB			WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	0000 0000	0000 0000
F45h	ODCONB			ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000 0000	0000 0000
F46h	SLRCONB			SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	1111 1111

x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

5.6 **RESET Instruction**

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.7 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.4.2** "**Overflow/Underflow Reset**" for more information.

5.8 **Programming Mode Exit**

Upon exit of In-Circuit Serial Programming (ICSP) mode, the device will behave as if a POR had just occurred (the device does not reset upon run time self-programming/erase operations).

5.9 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in the Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

5.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer Configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

REGISTER 6-7: OSCTUNE: HFINTOSC TUNING REGISTER

U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			HFTUN	N<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'.
bit 5-0	HFTUN<5:0>: HFINTOSC Frequency Tuning bits 11 1111 = Maximum frequency
	•
	•
	•
	10 0001
	10 0000 = Center frequency. Oscillator module is running at the calibrated frequency (default value).
	01 1111
	•
	•
	•
	00 0000 = Minimum frequency.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1			NOSC<2:0>			NDIV<3:0>				
OSCCON2	_		COSC<2:0>				122			
OSCCON3	CWSHOLD	SOSCPWR	-	ORDY	NOSCR	_	_	_	123	
OSCFRQ	_	—	_	_	_	Н	FFRQ<2:0>		126	
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	124	
OSCTUNE	_	_			HFTUN	<5:0>			127	
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_	125	

TABLE 6-3:SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-4: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—		FCMEN	_	CSWEN	—	—	CLKOUTEN	02
CONFIGT	7:0	_	I	RSTOSC<2:0	>	_	F	EXTOSC<2:0	>	93

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

8.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 8-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

8.2.3 LOW-POWER SLEEP MODE

The PIC16F18855/75 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC16F18855/75 allows the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. Depending on the configuration of these bits, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.3 Register Definitions: Voltage Regulator and DOZE Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1		
	—	—	—	—	—	VREGPM	Reserved		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
h:+ 7 0		ted. Deed on W	o'						

DIL 7-2	Unimplemented. Read as 0
bit 1	VREGPM: Voltage Regulator Power Mode Selection bit

 The fine to have the galater to wer mode deletation
1 = Low-Power Sleep mode enabled in Sleep ⁽²⁾
Draws lowest current in Sleep, slower wake-up
0 = Normal Power mode enabled in Sleep ⁽²⁾

Draws higher current in Sleep, faster wake-up

bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F18855/75 only.

2: See Section 37.0 "Electrical Specifications".

13.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 13-1.

		Dofault	Remappable to Pins of PORTx								
Input Signal Name	Input Register Name	Location	Р	IC16F188	55		PIC16F18875				
		at POR	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTE	
INT	INTPPS	RB0	•	•		•	•				
TOCKI	TOCKIPPS	RA4	•	•		•	•				
T1CKI	T1CKIPPS	RC0	•		•	•		•			
T1G	T1GPPS	RB5		•	•		•	•			
T3CKI	T3CKIPPS	RC0		•	•		•	•			
T3G	T3GPPS	RC0	•		•	•		•			
T5CKI	T5CKIPPS	RC2	•		•	•		•			
T5G	T5GPPS	RB4		•	•		•		٠		
T2IN	T2INPPS	RC3	•		•		•		٠		
T4IN	T4INPPS	RC5		•	•		•	•			
T6IN	T6INPPS	RB7		•	•		•		٠		
CCP1	CCP1PPS	RC2		•	•		•	•			
CCP2	CCP2PPS	RC1		•	•		•	•			
CCP3	CCP3PPS	RB5		•	•		•		•		
CCP4	CCP4PPS	RB0		•	•		•		٠		
CCP5	CCP5PPS	RA4	•		•	•				•	
SMTWIN1	SMTWIN1PPS	RC0		•	•		•				
SMTSIG1	SMTSIG1PPS	RC1		•	•		•				
SMTWIN2	SMTWIN2PPS	RB4		•	•		•		٠		
SMTSIG2	SMTSIG2PPS	RB5		•	•		•		٠		
CWG1IN	CWG1PPS	RB0		•	•		•		٠		
CWG2IN	CWG2PPS	RB1		•	•		•		٠		
CWG3IN	CWG3PPS	RB2		•	•		•		٠		
MDCARL	MDCARLPPS	RA3	•		•	•			٠		
MDCARH	MDCARHPPS	RA4	•		•	•			•		
MDMSRC	MDSRCPPS	RA5	•		•	•			٠		
CLCIN0	CLCIN0PPS	RA0	•		•	•		•			
CLCIN1	CLCIN1PPS	RA1	•		•	•		•			
CLCIN2	CLCIN2PPS	RB6		•	•		•		٠		

 TABLE 13-1:
 PPS INPUT SIGNAL ROUTING OPTIONS

REGISTER	14-2: PMD	1: PMD CONT	ROL REGIS	TER 1					
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NCOMD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD		
bit 7	·	÷		·			bit 0		
Legend:									
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets		
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion			
bit 7	NCOMD: Dis	able Numericall	y Control Osci	illator bit					
1 = NCO1		odule disabled							
1.11.0	0 = NCO1 m		5.0						
bit 6	1 - TMP6 m	sable Timer TMR6							
	0 = TMR6 m	nodule enabled							
bit 5	TMR5MD: Di	sable Timer TM	R5						
bit 5	1 = TMR5 m	1 = TMR5 module disabled							
	0 = TMR5 m	nodule enabled							
bit 4	TMR4MD: Di	sable Timer TM	R4						
	1 = TMR4 m	odule disabled							
1.11.0	0 = 1MR4 m								
bit 3		sable Timer TM	R3						
	0 = TMR3 m	nodule enabled							
bit 2	TMR2MD: Di	sable Timer TM	R2						
2	1 = TMR2 m	odule disabled							
	0 = TMR2 m	odule enabled							
bit 1	TMR1MD: Di	sable Timer TM	R1						
	1 = TMR1 m	odule disabled							
	0 = IMR1 m	odule enabled							
bit 0	TMR0MD: Di	sable Timer TM	R0						
	1 = TMR0 m	odule enabled							

© 2015-2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	<1:0> ADFVR<1:0>		
ADREF				ADNREF		ADPREF<1:0>			362
ADPCH					ADPCH	1<5:0>			363
CM1CON1		_	—		—	—	INTP	INTN	280
CM1NSEL	_	—	—	_	—		NCH<2:0>		281
CM1PSEL	_	—	—	_	—		PCH<2:0>		281
CM2CON1	_	—	—	_	—	_	INTP	INTN	280
CM2NSEL	_	—	—	_	—		NCH<2:0>		281
CM2PSEL	_	_	_	_	_		PCH<2:0>		281
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	389

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

R/W-0/0	R/V	V-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1, 2}	²⁾ CKP	OL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0> ^(6, 7)		
bit 7								bit 0
Legend:								
R = Readabl	e bit		W = Writable bit		U = Unimpleme	nted bit, read as	'0'	
u = Bit is und	changed		x = Bit is unknor	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is se	t		'0' = Bit is cleare	ed				
bit 7	PSYN	C: Timerx	Prescaler Sync	hronization Ena	ble bit ^(1, 2)			
	1 = T	MRx Pres	caler Output is	synchronized to	Fosc/4			
	0 = 1	MRx Pres	scaler Output is i	not synchronize	d to Fosc/4			
bit 6	CKPO	L: Timerx	Clock Polarity S	Selection bit(3)				
	$\perp = F_{i}$ $\cap = R$	alling edg	e of input clock	clocks timer/pre	scaler			
hit 5	CKSY	NC: Time	rx Clock Synchr	nization Enable	⊇ hit(4, 5)			
Sit C	1 = 0	N register	r bit is synchron	zed to TMR2 of	lk input			
	0 = O	N registe	r bit is not synch	ronized to TMR	2_clk input			
bit 4-0	MODE	<4:0>: Ti	merx Control Mo	de Selection bi	ts ^(6, 7)			
	See Ta	ble 29-1 <u>.</u>						
Note 1:	Setting this	s bit ensur	es that reading	TMRx will returi	n a valid value.			
2:	When this I	bit is '1', T	Timer2 cannot o	perate in Sleep	mode.			
3:	CKPOL sh	ould not b	e changed while	e ON = 1.				
4:	Setting this	s bit ensur	es glitch-free op	eration when th	e ON is enabled	or disabled.		
5:	When this	bit is set t	hen the timer op	eration will be o	lelayed by two T	/Rx input clocks	after the ON bit	is set.
6:	Unless othe of TMRx).	erwise ind	licated, all mode	s start upon ON	= 1 and stop upo	n ON = 0 (stops o	occur without affe	ecting the value

REGISTER 29-3: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

31.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 31.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

31.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

31.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit (I^2C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Figure 31-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 31-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 31-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

31.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

31.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 31.7** "**Baud Rate Generator**" for more detail.

31.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 31-25).

FIGURE 31-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

31.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed, writing to the lower five bits of SSPxCON2									
	is disabled until the Start condition is complete.									

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0			
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit 0			
Legend:										
R = Reada	ible bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is u	nchanged	x = Bit is unki	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set				
bit 7	GCEN: General 1 = Enable inf 0 = General c	ral Call Enable terrupt when a all address dis	e bit (in I ² C Sla general call a sabled	ve mode only) ddress (0x00 d	or 00h) is receiv	ed in the SSPx	SR			
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C eceived ved	mode only)						
bit 5	ACKDT: Ackn	nowledge Data	bit (in I ² C mo	de only)						
	<u>In Receive mo</u> Value transmi 1 = Not Ackno 0 = Acknowle	ode: tted when the owledge dge	user initiates a	an Acknowledg	le sequence at t	the end of a red	ceive			
bit 4	ACKEN: Ackr	nowledge Sequ	uence Enable	bit (in I ² C Mas	ter mode only)					
	<u>In Master Rec</u> 1 = Initiate A Automatio 0 = Acknowle	<u>ceive mode:</u> Acknowledge cally cleared b edge sequence	sequence on y hardware. e idle	SDA and S	CL pins, and	transmit ACk	(DT data bit.			
bit 3	RCEN: Recei	ve Enable bit (in I ² C Master	mode only)						
	1 = Enables F 0 = Receive id	Receive mode die	for I ² C	•						
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)					
	SCKMSSP Re 1 = Initiate Sto 0 = Stop cond	elease Control op condition or lition Idle	: n SDA and SC	L pins. Automa	atically cleared	by hardware.				
bit 1	RSEN: Repea 1 = Initiate Re 0 = Repeated	 RSEN: Repeated Start Condition Enable bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 								
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit						
	<u>In Master moo</u> 1 = Initiate Sta 0 = Start conc	<u>de:</u> art condition or lition Idle	n SDA and SC	L pins. Autom	atically cleared	by hardware.				
	In Slave mode 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enab etching is disab	led for both sla bled	ave transmit ar	nd slave receive	e (stretch enabl	ed)			
Note 1	For hits ACKEN D			ha l ² C madula	is not in the IDI	E mada thia h	it may not be			

REGISTER 31-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

REGISTER 32-4: SMTxCLK: SMT CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	_	—	_	—		CSEL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	DR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condi	ition	
bit 7-3	Unimplemen	ted: Read as '	כ'				
bit 2-0	CSEL<2:0>: 3	SMT Clock Sel	ection bits				
	111 = Refere	nce Clock Out	put				
	110 = SOSC						
	101 = MFINT	OSC/16					
	100 = MFINT	OSC					
	011 = LFINT(OSC					
	010 = HFINT	OSC 16 MHz					
	001 = Fosc						
	000 = Fosc/4	Ļ					

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility