

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18875t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE :	ABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)												
Address	Name	PIC16(L)F18855	PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0 (C	Continued)												
01Bh	—	—	—				U	nimplemented				-	-
01Ch	TMR0L			Holding Registe	er for the Least	Significant Byte o	f the 16-bit TMR0 F	legister				0000 0000	0000 0000
01Dh	TMR0H			Holding Registe	er for the Most S	Significant Byte of	the 16-bit TMR0 R	egister				1111 1111	1111 1111
01Eh	T0CON0			T0EN	_	TOOUT	T016BIT		T0OUTP	S<3:0>		0-00 0000	0-00 0000
01Fh	T0CON1				T0CS<2:0>		TOASYNC		TOCKPS	6<3:0>		0000 0000	0000 0000

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

TABLE	3-13: SPE	CIAL F	UNCTION	I REGISTE	R SUMMA	RY BANKS (0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18855 PIC16(L)F18875	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 8												
	CPU CORE REGISTERS; see Table 3-2 for specifics											
40Ch	SCANLADRL LADR<7:0>						0000 0000	0000 0000				
40Dh	SCANLADRH					I	LADR<15:8>				0000 0000	0000 0000
40Eh	SCANHADRL			HADR<7:0> 1111 1111 1111 1111							1111 1111	
40Fh	SCANHADRH			HADR<15:8>							1111 1111	1111 1111
410h	SCANCON0		EN	SCANGO	BUSY	INVALID	INTM	—	E<1:0>	0000 0-00	0000 0-00	
411h	SCANTRIG		—	—	—	—		TSEL<	<3:0>		0000	0000
412h	-	—		Unimplemented —						-	-	
413h	-	-				U	nimplemented				-	—
414h	-	-				U	nimplemented				-	—
415h	-	-				U	nimplemented				-	—
416h	CRCDATL						DATA<7:0>				XXXX XXXX	xxxx xxxx
417h	CRCDATH						DATA<15:8>				XXXX XXXX	xxxx xxxx
418h	CRCACCL						ACC<7:0>				0000 0000	0000 0000
419h	CRCACCH						ACC<15:8>				0000 0000	0000 0000
41Ah	CRCSHIFTL						SHIFT<7:0>				0000 0000	0000 0000
41Bh	CRCSHIFTH					S	SHIFT<15:8>				0000 0000	0000 0000
41Ch	CRCXORL					X<7:1>				—	xxxx xxx-	xxxx xxx-
41Dh	CRCXORH						X<15:8>			·	XXXX XXXX	xxxx xxxx
41Eh	CRCCON0		EN	CRCGO	BUSY	ACCM	—	—	SHIFTM	FULL	000000	000000
41Fh	CRCCON1			DLE	EN<3:0>			PLEN<	<3:0>	·	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

6.2.1.4 4x PLL

The oscillator module contains a PLL that can be used with external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 37-9.

The PLL may be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to enable the EXTOSC with 4x PLL.
- 2. Write the NOSC bits in the OSCCON1 register to enable the EXTOSC with 4x PLL.

6.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 31 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 6.3 "Clock Switching"** for more information.

FIGURE 6-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

REGISTER	6-4: OS	CSTAT: OSCIL		TUS REGISTE	ER 1		
R-q/q	R-0/q	R-0/q	R-0/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR
bit 7			·		· · · · · · · · · · · · · · · · · · ·		bit
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read as	'0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	1 = The	XTOSC (external) C oscillator is ready to oscillator is not enab	be used		d.		
bit 6	1 = The	INTOSC Oscillator F oscillator is ready to oscillator is not enab	be used	t ready to be used	d.		
bit 5	1 = The o	INTOSC Oscillator scillator is ready to l scillator is not enabl	be used	ready to be used			
bit 4	1 = The	NTOSC Oscillator R oscillator is ready to oscillator is not enab	be used	ready to be used	d.		
bit 3	1 = The	ondary (Timer1) Osc oscillator is ready to oscillator is not enab	be used		d.		
bit 2	1 = The	C Oscillator Ready oscillator is ready to oscillator is not enab	be used	ready to be used	t		
bit 1	Unimplem	ented: Read as '0'					
bit 0	1 = The	is Ready bit PLL is ready to be u PLL is not enabled,		ut source is not re	eady, or the PLL is	not locked.	

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF
bit 7	•	•	•			•	bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read a							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of						ther Resets	
'1' = Bit is set'0' = Bit is clearedHS = Hardware set							
h ii 7 0		ta de Danadara (o'				
bit 7-6	-	ted: Read as '					
bit 5		er6 Interrupt FI	•	1.1 made a T			unthe cleared
	in softwa	•	eniowed, or in	1:1 mode, a Th	/IR6 to PR6 mat	ch occurrea (m	ust be cleared
		event has occ	urred				
bit 4	TRM5IF: Time	er5 Overflow Ir	terrupt Flag b	it			
		erflow occurred	,	ared in softwar	e)		
		overflow occu					
bit 3		er4 Interrupt FI	-				
	1 = The TMR4 in softwa	•	erflowed, or in	1:1 mode, a TN	/IR4 to PR4 mat	ch occurred (m	ust be cleared
		event has occ	urred				
bit 2	TRM3IF: Time	er3 Overflow In	terrupt Flag b	it			
		erflow occurred	•	ared in softwar	e)		
		overflow occu					
bit 1		er2 Interrupt FI	-				
	1 = The TMR2 in softwa		erflowed, or in	1:1 mode, a TM	/IR2 to PR2 mat	ch occurred (m	ust be cleared
		event has occ	urred				
bit 0	TRM1IF: Time	er1 Overflow Ir	iterrupt Flag b	it			
		erflow occurred			e)		
	0 = No TMR1	overflow occu	rred				

REGISTER 7-15: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	TMR5GIF	TMR3GIF	TMR1GIF
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	•	at POR and BO		ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7		4 Interrupt Flag	-				
					be cleared in so	ftware)	
h # C		interrupt event					
bit 6		3 Interrupt Flag	-	ourrod (must	be cleared in so	ftworo	
		interrupt event				ntware)	
bit 5		2 Interrupt Flag					
			-	ccurred (must	be cleared in so	oftware)	
		interrupt event		·		,	
bit 4	CLC1IF: CLC	1 Interrupt Flag	g bit				
		•		•	be cleared in so	ftware)	
		interrupt event					
bit 3	•	ted: Read as '					
bit 2		mer5 Gate Inte					
		r5 Gate has go r5 Gate has no			ed)		
bit 1		mer3 Gate Inte	•	C			
		r5 Gate has go		ne gate is close	ed)		
		r5 Gate has no	•	•	,		
bit 0	TMR1GIF: Ti	mer1 Gate Inte	rrupt Flag bit				
		r1 Gate has go			ed)		
	0 = The Time	r1 Gate has no	t gone inactiv	e			
Noto: Int	orrupt flog hits -	ro oot when an	intorrunt				
	errupt flag bits a ndition occurs, r						
	corresponding						
En	able bit, GIE, c	of the INTCON	register.				

REGISTER 7-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt							
	condition occurs, regardless of the state of							
	its corresponding enable bit or the Global							
	Enable bit, GIE, of the INTCON register.							
	User software should ensure the							
	appropriate interrupt flag bits are clear							
	prior to enabling an interrupt.							

12.4 PORTA Registers

12.4.1 DATA REGISTER

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize PORTA.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The PORT data latch LATA (Register 12-4) holds the output port data, and contains the latest value of a LATA or PORTA write.

EXAMPLE 12-1: INITIALIZING PORTA

; initia	ports are in	illustrates ORTA register. The itialized in the same
BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

12.4.2 DIRECTION CONTROL

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.4.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 12-7) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

12.4.4 SLEW RATE CONTROL

The SLRCONA register (Register 12-8) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

REGISTER 15-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

Legend: R = Readable bit		vv = vvritable i	JIC	U = Unimpien	nented bit, read	as '0'			
Legend:	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
Legend:									
bit 7							bit 0		
IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		

'1' = Bit is set	'0' = Bit is cleared

bit 7-0

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 15-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 15-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

- IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits
- 1 = An enabled change was detected on the associated pin
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change

21.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero crossing threshold is the zero crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 21-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching

21.1 External Resistor Selection

The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 21-1 and Figure 21-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 21-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

EXTERNAL VOLTAGE

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T: 0	Gate 3 Data 4 1	True (non-inve	rted) bit			
		(true) is gated i					
		(true) is not gat					
bit 6		Gate 3 Data 4 I	•	,			
		(inverted) is ga (inverted) is no					
bit 5		Gate 3 Data 3 1	•				
Sit 0		(true) is gated i	•	,			
		(true) is not gat					
bit 4	LCxG4D3N:	Gate 3 Data 3	Negated (inve	rted) bit			
		(inverted) is ga					
		(inverted) is no	•				
bit 3		Gate 3 Data 2 1		,			
		(true) is gated i (true) is not gat					
bit 2		. , .					
DIL Z	LCxG4D2N: Gate 3 Data 2 Negated (inverted) bit 1 = CLCIN1 (inverted) is gated into CLCx Gate 3						
		(inverted) is ga					
bit 1		Gate 4 Data 1 1	•				
		(true) is gated i		,			
	0 = CLCIN0	(true) is not gat	ted into CLCx	Gate 3			
bit 0		Gate 3 Data 1 I	•	,			
		(inverted) is ga					
	0 = CLCINO((inverted) is no	t gated into Cl	LCX Gate 3			

REGISTER 22-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

REGISTER 22-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-4 Unimplemented: Read as '0'								
bit 3	MLC4OUT: Mirror copy of LC4OUT bit							
bit 2	MLC3OUT: N	lirror copy of L0	C3OUT bit					
bit 1	MLC2OUT: N	lirror copy of L(C2OUT bit					

bit 0 MLC10UT: Mirror copy of LC10UT bit

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Table 23-2 for auto-conversion sources.

ADACT Value	Source Peripheral	Description
0x00	Disabled	External Trigger Disabled
0x01	ADACTPPS	Pin selected by ADACTPPS
0x02	TMR0	Timer0 overflow condition
0x03	TMR1	Timer1 overflow condition
0x04	TMR2	Match between Timer2 postscaled value and PR2
0x05	TMR3	Timer3 overflow condition
0x06	TMR4	Match between Timer4 postscaled value and PR4
0x07	TMR5	Timer5 overflow condition
0x08	TMR6	Match between Timer6 postscaled value and PR6
0x09	SMT1	Match between SMT1 and SMT1PR
0x0A	SMT2	Match between SMT2 and SMT2PR
0x0B	CCP1	CCP1 output
0x0C	CCP2	CCP2 output
0x0D	CCP3	CCP3 output
0x0E	CCP4	CCP4 output
0x0F	CCP5	CCP5 output
0x10	PWM6	PWM6 output
0x11	PWM7	PWM7 output
0x12	C1	Comparator C1 output
0x13	C2	Comparator C2 output
0x14	IOC	Interrupt-on-change interrupt trigger
0x15	CLC1	CLC1 output
0x16	CLC2	CLC2 output
0x17	CLC3	CLC3 output
0x18	CLC4	CLC4 output
0x19-0x1B	Reserved	Reserved, do not use
0x1C	ADERR	Read of ADERR register
0x1D	ADRESH	Read of ADRESH register
0x1E	Reserved	Reserved, do not use
0x1F	ADPCH	Read of ADPCH register

TABLE 23-2: ADC AUTO-CONVERSION TABLE

24.1 NCO OPERATION

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 24-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCO output to reduce uncertainty.

EQUATION 24-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

24.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- HFINTOSC
- Fosc
- LC1_out
- LC2_out
- LC3_out
- LC4_out

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

24.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

24.1.3 ADDER

The NCO Adder is a full adder, which operates independently from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

24.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not user-accessible.

REGISTER 32-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1		
	SMTxPR<7:0>								
bit 7							bit 0		
Legend:									
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkn	own -n/n = Value at POR and BOR/Value at all other			other Resets			
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 32-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	
	SMTxPR<15:8>							
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 32-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
SMTxPR<23:16>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

33.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 33-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 33-1. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 33.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 33-1: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

0000h XXXXh 001Ch **BRG** Value Edge #5 Edge #1 Edge #2 Edge #3 Edge #4 bit 0 bit 1 bit 2 bit 3 bit 5 bit 6 bit 7 RX pin Start bit 4 Stop bit Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRGL XXh 1Ch XXh 00h SPBRGH Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

FIGURE 33-6: AUTOMATIC BAUD RATE CALIBRATION

35.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F1783XX Memory Programming Specification" (DS400001738).

35.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

35.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See **Section 5.4 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

35.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 35-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 35-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 35-3 for more information.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COMF	Complement f
Syntax:	[<i>label</i>] CALLW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation: $(PC) + 1 \rightarrow TOS,$ $(W) \rightarrow PC<7:0>,$ (PCLATH<6:0>) -	$(W) \rightarrow PC < 7:0>,$	Operation:	$(\overline{f}) \rightarrow (destination)$
	$(PCLATH<6:0>) \rightarrow PC<14:8>$	Status Affected:	Z
Status Affected:	None	Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle		

CLRF	Clear f	
Syntax:	[label] CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

instruction.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.