

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a1u-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11. Power Management and Sleep Modes

11.1 Features

- Power management for adjusting power consumption and functions
- Five sleep modes
 - Idle
 - Power down
 - Power save
 - Standby
 - Extended standby
- Power reduction register to disable clock and turn off unused peripherals in active and idle modes

11.2 Overview

Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.

All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to active mode.

In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power management than sleep modes alone.

11.3 Sleep Modes

Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.

The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will reset, start up, and execute from the reset vector.

11.3.1 Idle Mode

In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled interrupt will wake the device.

11.3.2 Power-down Mode

In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the twowire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.

18. AWeX – Advanced Waveform Extension

18.1 Features

- Waveform output with complementary output from each compare channel
- Four dead-time insertion (DTI) units
 - 8-bit resolution
 - Separate high and low side dead-time setting
 - Double buffered dead time
 - Optionally halts timer during dead-time insertion
- Pattern generation unit creating synchronised bit pattern across the port pins
 - Double buffered pattern generation
 - Optional distribution of one compare channel output across the port pins
- Event controlled fault protection for instant and predictable fault triggering

18.2 Overview

The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG) modes. It is primarily intended for use with different types of motor control and other power control applications. It enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port pins.

Each of the waveform generator outputs from the Timer/Counter 0 are split into a complimentary pair of outputs when any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting.

The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition, the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.

The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives great flexibility in the selection of fault triggers.

The AWeX is available for TCC0 and TCE0. The notation of these are AWEXC and AWEXE.

Table 33-3. Port C - alternate functions.

PORT C	PIN#	INTERRUPT	TCC0 ⁽¹⁾⁽²⁾	AWEXC	TCC1	USARTC0 ⁽³⁾	USARTC1	SPIC ⁽⁴⁾	TWIC	CLOCKOUT ⁽⁵⁾	EVENTOUT ⁽⁶⁾
GND	13										
vcc	14										
PC0	15	SYNC	OC0A	OC0ALS					SDA		
PC1	16	SYNC	OC0B	OC0AHS		XCK0			SCL		
PC2	17	SYNC/ASYNC	OC0C	OCOBLS		RXD0					
PC3	18	SYNC	OC0D	OC0BHS		TXD0					
PC4	19	SYNC		OC0CLS	OC1A			SS			
PC5	20	SYNC		OC0CHS	OC1B		XCK1	MOSI			
PC6	21	SYNC		OC0DLS			RXD1	MISO		clk _{RTC}	
PC7	22	SYNC		OC0DHS			TXD1	SCK		clk _{PER}	EVOUT

Notes: 1. Pin mapping of all TC0 can optionally be moved to high nibble of port. Refer to Pin Remap register in I/O Ports in the XMEGA AU Manual.

2. If TC0 is configured as TC2 all eight pins can be used for PWM output. Refer to Pin Remap register in I/O Ports in the XMEGA AU Manual.

3. Pin mapping of all USART0 can optionally be moved to high nibble of port. Refer to Pin Remap register in I/O Ports in the XMEGA AU Manual..

4. Pins MOSI and SCK for all SPI can optionally be swapped.Refer to Pin Remap register in I/O Ports in the XMEGA AU Manual.

5. CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7. Refer to CLKEVOUT register in I/O port configuration in the XMEGA AU Manual.

6. EVOUT can optionally be moved between port C, D and E and between pin 4 and 7. Refer to CLKEVOUT register in I/O port configuration in the XMEGA AU Manual.

Table 33-4. Port D - alternate functions.

PORT D	PIN#	INTERRUPT	TCD0	TCD1	USBD	USARTD0	USARTD1	SPID	TWID	CLOCKOUT	EVENTOUT
GND	23										
vcc	24										
PD0	25	SYNC	OC0A						SDA		
PD1	26	SYNC	OC0B			XCK0			SCL		
PD2	27	SYNC/ASYN C	OC0C			RXD0					
PD3	28	SYNC	OC0D			TXD0					
PD4	29	SYNC		OC1A				SS			
PD5	30	SYNC		OC1B			XCK1	MOSI			
PD6	31	SYNC			D-		RXD1	MISO			
PD7	32	SYNC			D+		TXD1	SCK		clk _{PER}	EVOUT

Table 33-5. Port E - alternate functions.

PORT E	PIN #	INTERRUPT	TCE0	AWEXE	TCE1	USARTE0	USARTE1	SPIE	TWIE	CLOCKOUT	EVENTOUT
GND	33										
vcc	34										
PE0	35	SYNC	OC0A	OC0ALS					SDA		
PE1	36	SYNC	OC0B	OC0AHS		XCK0			SCL		

PORT J	PIN #	INTERRUPT	SDRAM 3P	SRAM ALE1	SRAM ALE12	LPC3 ALE1	LPC2 ALE1	LPC2 ALE12
GND	63							
VCC	64							
PJ0	65	SYNC	D0	D0	D0	D0/A0	D0/A0	D0/A0/A8
PJ1	66	SYNC	D1	D1	D1	D1/A1	D1/A1	D1/A1/A9
PJ2	67	SYNC/ASYNC	D2	D2	D2	D2/A2	D2/A2	D2/A2/A10
PJ3	68	SYNC	D3	D3	D3	D3/A3	D3/A3	D3/A3/A11
PJ4	69	SYNC	A8	D4	D4	D4/A4	D4/A4	D4/A4/A12
PJ5	70	SYNC	A9	D5	D5	D5/A5	D5/A5	D5/A5/A13
PJ6	71	SYNC	A10	D6	D6	D6/A6	D6/A6	D6/A6/A14
PJ7	72	SYNC	A11	D7	D7	D7/A7	D7/A7	D7/A7/A15

Table 33-8. Port J - alternate functions.

Table 33-9. Port K - alternate functions.

PORT K	PIN #	INTERRUPT	SDRAM 3P	SRAM ALE1	SRAM ALE2	LPC3 ALE1
GND	73					
vcc	74					
PK0	75	SYNC	A0	A0/A8	A0/A8/A16	A8
PK1	76	SYNC	A1	A1/A9	A1/A9/A17	A9
PK2	77	SYNC/ASYNC	A2	A2/A10	A2/A10/A18	A10
PK3	78	SYNC	A3	A3/A11	A3/A11/A19	A11
PK4	79	SYNC	A4	A4/A12	A4/A12/A20	A12
PK5	80	SYNC	A5	A5/A13	A5/A13/A21	A13
PK6	81	SYNC	A6	A6/A14	A6/A14/A22	A14
PK7	82	SYNC	A7	A7/A15	A7/A15/A23	A15

Table 33-10. Port Q - alternate functions.

PORT Q	PIN #	INTERRUPT	TOSC
VCC	83		
GND	84		
PQ0	85	SYNC	TOSC1
PQ1	86	SYNC	TOSC2
PQ2	87	SYNC/ASYNC	
PQ3	88	SYNC	

35. Instruction Set Summary

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks
		Arithmetic	and Logic Instructions				1
ADD	Rd, Rr	Add without Carry	Rd	~	Rd + Rr	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	Rd	←	Rd + Rr + C	Z,C,N,V,S,H	1
ADIW	Rd, K	Add Immediate to Word	Rd	←	Rd + 1:Rd + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract without Carry	Rd	~	Rd - Rr	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	Rd	←	Rd - K	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	Rd	~	Rd - Rr - C	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	Rd	←	Rd - K - C	Z,C,N,V,S,H	1
SBIW	Rd, K	Subtract Immediate from Word	Rd + 1:Rd	~	Rd + 1:Rd - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND	Rd	←	Rd • Rr	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	Rd	~	Rd • K	Z,N,V,S	1
OR	Rd, Rr	Logical OR	Rd	←	Rd v Rr	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	Rd	~	Rd v K	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	Rd	←	Rd ⊕ Rr	Z,N,V,S	1
СОМ	Rd	One's Complement	Rd	~	\$FF - Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	Rd	←	\$00 - Rd	Z,C,N,V,S,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd	←	Rd v K	Z,N,V,S	1
CBR	Rd,K	Clear Bit(s) in Register	Rd	←	Rd • (\$FFh - K)	Z,N,V,S	1
INC	Rd	Increment	Rd	←	Rd + 1	Z,N,V,S	1
DEC	Rd	Decrement	Rd	←	Rd - 1	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	Rd	←	Rd • Rd	Z,N,V,S	1
CLR	Rd	Clear Register	Rd	←	$Rd \oplus Rd$	Z,N,V,S	1
SER	Rd	Set Register	Rd	←	\$FF	None	1
MUL	Rd,Rr	Multiply Unsigned	R1:R0	←	Rd x Rr (UU)	Z,C	2
MULS	Rd,Rr	Multiply Signed	R1:R0	~	Rd x Rr (SS)	Z,C	2
MULSU	Rd,Rr	Multiply Signed with Unsigned	R1:R0	←	Rd x Rr (SU)	Z,C	2
FMUL	Rd,Rr	Fractional Multiply Unsigned	R1:R0	←	Rd x Rr<<1 (UU)	Z,C	2
FMULS	Rd,Rr	Fractional Multiply Signed	R1:R0	←	Rd x Rr<<1 (SS)	Z,C	2
FMULSU	Rd,Rr	Fractional Multiply Signed with Unsigned	R1:R0	←	Rd x Rr<<1 (SU)	Z,C	2
DES	К	Data Encryption	if (H = 0) then R15:R0 else if (H = 1) then R15:R0	← ←	Encrypt(R15:R0, K) Decrypt(R15:R0, K)		1/2
		Bra	nch instructions				
RJMP	k	Relative Jump	PC	←	PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, 0	None	2
EIJMP		Extended Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	2
JMP	k	Jump	PC	←	k	None	3
RCALL	k	Relative Call Subroutine	PC	←	PC + k + 1	None	2 / 3 (1)

Table 37-5.	Current consum	ption for modules	and peripherals.
-------------	----------------	-------------------	------------------

Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units
	ULP oscillator				1.0		
	32.768kHz int. oscillator				27		
	2MHz int. oscillator				85		
		DFLL enabled with	32.768kHz int. osc. as reference		120		
	32MHz int. oscillator				310		
		DFLL enabled with		560		μA	
	Watchdog timer				1.0		
	BOD	Continuous mode			126		
	666	Sampled mode, in	cludes ULP oscillator		1.2		
	Internal 1.0V reference				89		
	Temperature sensor				83		
I _{CC}					3.0		
	ADC	250ksps V _{REF} = Ext ref	CURRLIMIT = LOW		2.6		mA
			CURRLIMIT = MEDIUM		2.1		
			CURRLIMIT = HIGH		1.6		
	DAC	250ksps V _{REF} = Ext ref	Normal mode		1.9		
	DAC	No load	Low Power mode		1.1		
	AC	High speed mode			324		
	AC	Low power mode			122		
	DMA	615KBps between	I/O registers and SRAM		140		μA
	Timer/counter				20		
	USART	Rx and Tx enabled	d, 9600 BAUD		4.0		
	Flash memory and EEPRC	M programming			4.0	8.0	mA

Note: 1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

37.1.11 External Reset Characteristics

Table 37-18. External reset characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{EXT}	Minimum reset pulse width			86	1000	ns
Popot	Posst threshold voltage (V_{ij})	V _{CC} = 2.7 - 3.6V		0.60*V _{CC}		
M	Reset threshold voltage (V _{IH})	V _{CC} = 1.6 - 2.7V		0.60*V _{CC}		V
V _{RST}		V _{CC} = 2.7 - 3.6V		0.40*V _{CC}		V
	Reset threshold voltage (V _{IL})	V _{CC} = 1.6 - 2.7V		0.40*V _{CC}		

37.1.12 Power-on Reset Characteristics

Table 37-19. Power-on reset characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{POT-} ⁽¹⁾ POR threshold voltage falling V _C	$V_{\rm CC}$ falls faster than 1V/ms	0.4	1.0			
	POR threshold voltage failing V _{CC}	V_{CC} falls at 1V/ms or slower	0.8	1.0		V
V _{POT+}	POR threshold voltage rising $\rm V_{\rm CC}$			1.3	1.59	

Note: 1. V_{POT-} values are only valid when BOD is disabled. When BOD is enabled $V_{POT-} = V_{POT+}$.

37.1.13 Flash and EEPROM Memory Characteristics

Table 37-20. Endurance and data retention.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
	Flash	Write/Erase cycles	25°C	10K			
			85°C	10K			Cycle
			105°C	2K			
		Data retention	25°C	100			Year
			85°C	25			
			105°C	10			
		Write/Erase cycles	25°C	100K			Cycle
			85°C	100K			
			105°C	30K			
			25°C	100			
		Data retention	85°C	25			Year
			105°C	10			

37.2.3 Current consumption

	Table 37-38.	Current consum	ption for Active	mode and sleep	o modes.
--	--------------	----------------	------------------	----------------	----------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
			V _{CC} = 1.8V		50		
		32kHz, Ext. Clk	V _{CC} = 3.0V		95		μA
ldle p			V _{CC} = 1.8V		350		
	Active power consumption ⁽¹⁾	1MHz, Ext. Clk	V _{CC} = 3.0V		700		
			V _{CC} = 1.8V		650	700	
		2MHz, Ext. Clk	y = 2.0y		1.2	1.4	m (
		32MHz, Ext. Clk	V _{CC} = 3.0V		15	20	mA
			V _{CC} = 1.8V		3.5		
		32kHz, Ext. Clk	V _{CC} = 3.0V		6.4		_
			V _{CC} = 1.8V		109		
	Idle power consumption ⁽¹⁾	1MHz, Ext. Clk	V _{CC} = 3.0V		200		μA
			V _{CC} = 1.8V		290	380	
		2MHz, Ext. Clk	y = 2.0y		476	650	_
		32MHz, Ext. Clk	V _{CC} = 3.0V		6.6	9.2	mA
I _{CC}	Power-down power consumption	T = 25°C	V _{CC} = 1.8V		0.1	1.0	μΑ
-00		T = 25°C			0.1	1.0	
		T = 85°C	V _{CC} = 3.0V		1.7	5.0	
		T = 105°C			6.0	10	
		WDT and sampled BOD enabled, T = 25° C	V _{CC} = 3.0V		1.3	3.0	
		WDT and sampled BOD enabled, T = 85° C			3.1	10	
		WDT and sampled BOD enabled, T = 105°C	_		7.0	12	
		RTC on ULP clock, WDT and	V _{CC} = 1.8V		1.2		
		sampled BOD enabled, $T = 25^{\circ}C$	V _{CC} = 3.0V		1.3		
	Power-save power	RTC on 1.024kHz low power	V _{CC} = 1.8V		0.7	2.0	
	consumption ⁽²⁾	32.768kHz TOSC, T = 25°C	V _{CC} = 3.0V		0.8	2.0	
		RTC from low power 32.768kHz	V _{CC} = 1.8V		0.9	3.0	
		TOSC, $T = 25^{\circ}C$	V _{CC} = 3.0V		1.0	3.0	
	Reset power consumption	Current through RESET pin subtracted	V _{CC} = 3.0V		914		

Notes: 1. All Power Reduction Registers set.

2. Maximum limits are based on characterization, and not tested in production.

37.2.11 External Reset Characteristics

Table 37-52. External reset characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
t _{EXT}	Minimum reset pulse width			86	1000	ns
	Reset threshold voltage (V _{IH}) Reset threshold voltage (V _{IL})	V _{CC} = 2.7 - 3.6V		0.60*V _{CC}		
		V _{CC} = 1.6 - 2.7V		0.60*V _{CC}		V
V _{RST}		V _{CC} = 2.7 - 3.6V		0.40*V _{CC}		v
		V _{CC} = 1.6 - 2.7V		0.40*V _{CC}		

37.2.12 Power-on Reset Characteristics

Table 37-53. Power-on reset characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V (1)	POR threshold voltage falling V_{CC}	V_{CC} falls faster than 1V/ms	0.4	1.0		
V _{POT-} ⁽¹⁾	FOR Intestion voltage failing V _{CC}	V_{CC} falls at 1V/ms or slower	0.8	1.0		V
V _{POT+}	POR threshold voltage rising $\rm V_{\rm CC}$			1.3	1.59	

Note: 1. V_{POT-} values are only valid when BOD is disabled. When BOD is enabled $V_{POT-} = V_{POT+}$.

37.2.13 Flash and EEPROM Memory Characteristics

Table 37-54. Endurance and data retention.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
	Flash	Write/Erase cycles	25°C	10K			
			85°C	10K			Cycle
			105°C	2K			
		Data retention	25°C	100			Year
			85°C	25			
			105°C	10			
		Write/Erase cycles	25°C	100K			Cycle
			85°C	100K			
			105°C	30K			
			25°C	100			
		Data retention	85°C	25			Year
			105°C	10			

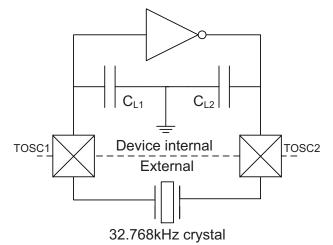
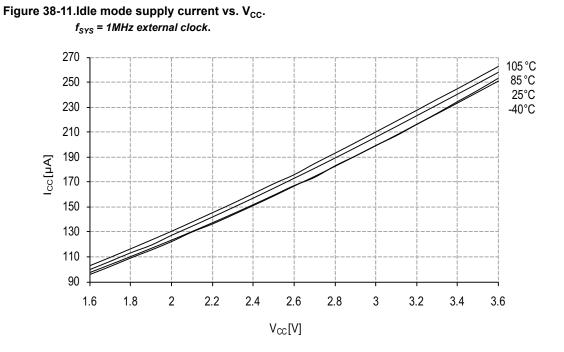

37.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics

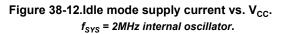
Table 37-64. E	xternal 32.768kHz crystal oscillator and TOSC characteristics.
----------------	--

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Recommended crystal	Crystal load capacitance 6.5pF			60	ko
ESR/R1	equivalent series resistance (ESR)	Crystal load capacitance 9.0pF			35	kΩ
C _{TOSC1}	Parasitic capacitance TOSC1 pin			4.0		
C _{TOSC2}	Parasitic capacitance TOSC2 pin			4.1		pF
CL	Parasitic capacitance load			2.0		-
	Recommended safety factor	Capacitive load matched to crystal specification	3			

Note: 1. See Figure 37-11 for definition.

Figure 37-11.TOSC input capacitance.


The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.


Table 37-68. Two-wire interface characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{IH}	Input high voltage		0.7*V _{CC}		V _{CC} +0.5	
V _{IL}	Input low voltage		-0.5		0.3*V _{CC}	V
V _{hys}	Hysteresis of Schmitt trigger inputs		0.05*V _{CC} ⁽¹⁾		0	V
V _{OL}	Output low voltage	3mA, sink current	0		0.4	
t _r	Rise time for both SDA and SCL		20+0.1C _b ⁽¹⁾⁽²⁾		0	
t _{of}	Output fall time from V_{IHmin} to V_{ILmax}	$10pF < C_b < 400pF^{(2)}$	20+0.1C _b ⁽¹⁾⁽²⁾		300	ns
t _{SP}	Spikes suppressed by input filter		0		50	
I _I	Input current for each I/O pin	$0.1V_{CC} < V_{I} < 0.9V_{CC}$	-10		10	μA
CI	Capacitance for each I/O pin				10	pF
f _{SCL}	SCL clock frequency	f _{PER} ⁽³⁾ >max(10f _{SCL} , 250kHz)	0		400	kHz
R _P	Value of pull-up resistor	f _{SCL} ≤ 100kHz	$\frac{V_{CC} - 0.4V}{3mA}$		$\frac{100ns}{C_b}$ 300ns	Ω
		f _{SCL} > 100kHz			$\frac{500hs}{C_b}$	
t _{HD;STA}	Hold time (repeated) START condition	f _{SCL} ≤ 100kHz	4.0			μs
110,017		f _{SCL} > 100kHz	0.6			_
t _{LOW}	Low period of SCL clock	$f_{SCL} \le 100 kHz$	4.7			_
2011	·	f _{SCL} > 100kHz	1.3			_
t _{HIGH}	High period of SCL clock	$f_{SCL} \le 100 kHz$	4.0			_
nigh	3 F 1 1 1 1 1 1 1 1 1 1	f _{SCL} > 100kHz	0.6			μs
t _{su;sta}	Set-up time for a repeated START	$f_{SCL} \leq 100 kHz$	4.7			
*50;51A	condition	f _{SCL} > 100kHz	0.6			_
t _{HD;DAT}	Data hold time	$f_{SCL} \leq 100 kHz$	0		3.5	
"HD;DAI		f _{SCL} > 100kHz	0		0.9	
t	Data setup time	$f_{SCL} {\leq 100 kHz}$	250			ns
t _{su;dat}		f _{SCL} > 100kHz	100			
+	Setup time for STOP condition	$f_{SCL} {\leq 100 kHz}$	4.0			
t _{su;sto}		f _{SCL} > 100kHz	0.6			μs
+	Bus free time between a STOP and	$f_{SCL} \leq 100 kHz$	4.7			
t _{BUF}	START condition	f _{SCL} > 100kHz	1.3			

Notes:

Required only for f_{SCL} > 100kHz.
 C_b = Capacitance of one bus line in pF.
 f_{PER} = Peripheral clock frequency.

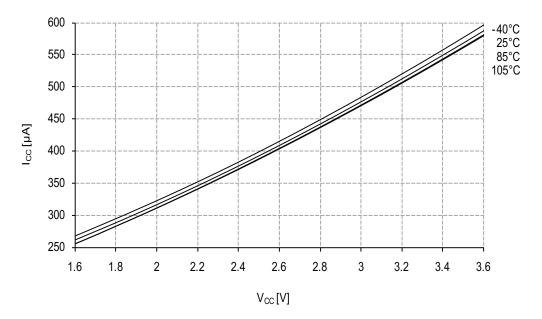


Figure 38-21. I/O pin pull-up resistor current vs. pin voltage.

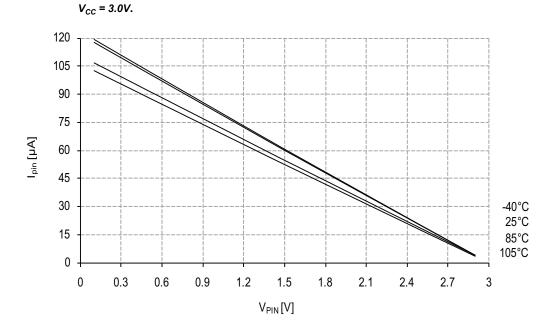


Figure 38-22. I/O pin pull-up resistor current vs. pin voltage. $V_{cc} = 3.3V.$

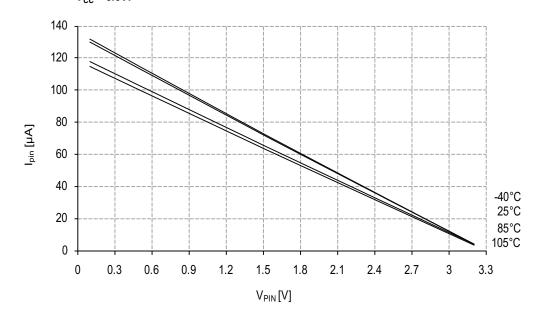


Figure 38-27.I/O pin output voltage vs. sink current.

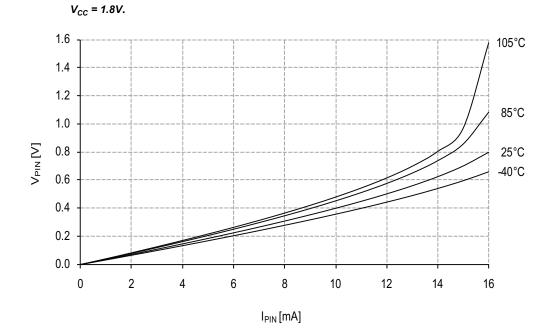
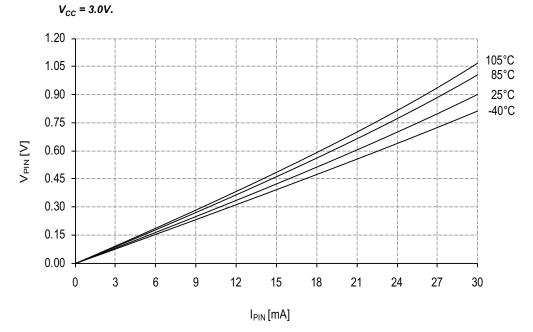



Figure 38-28.I/O pin output voltage vs. sink current.

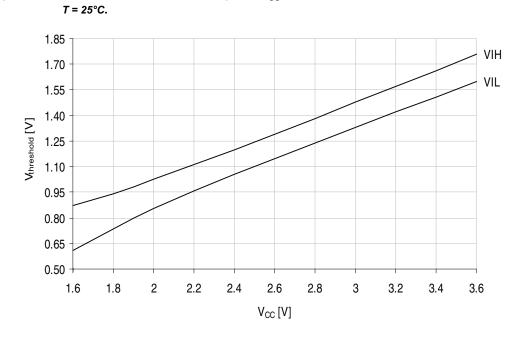
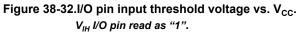
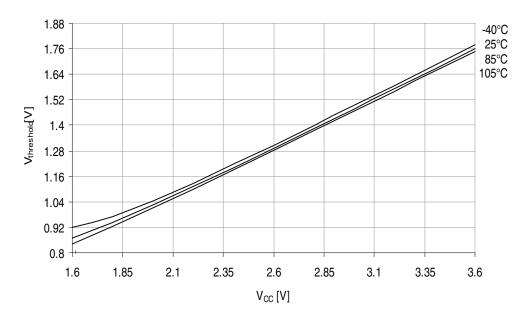




Figure 38-31.I/O pin input threshold voltage vs. $\ensuremath{\text{V}_{\text{CC}}}$.

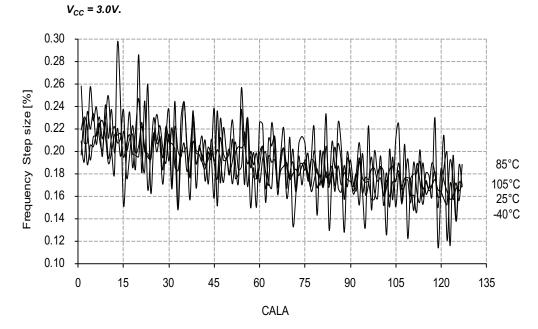


Figure 38-77. 32MHz internal oscillator CALA calibration step size.

Figure 38-78. 32MHz internal oscillator frequency vs. CALB calibration value. V_{CC} = 3.0V, DFLL disabled.

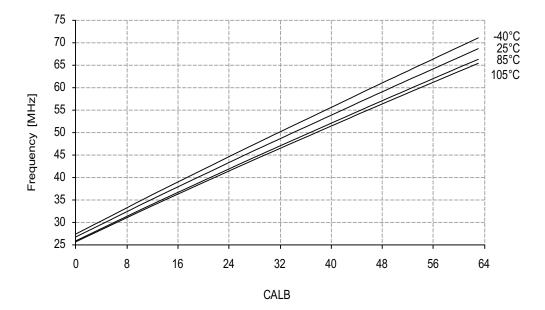
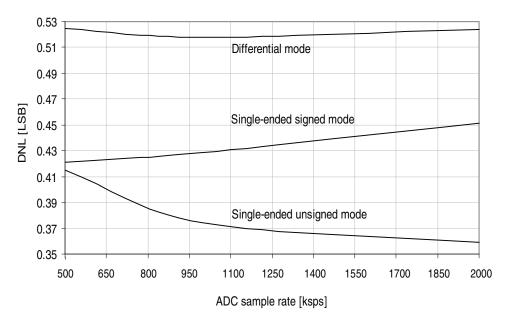
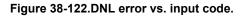
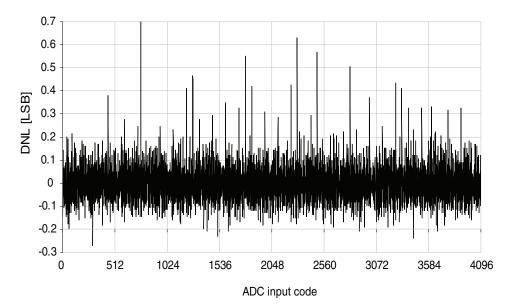
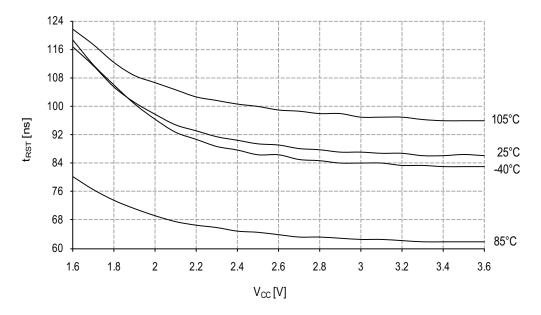
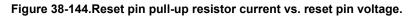





Figure 38-121.DNL error vs. sample rate.


T = 25 °C, *V*_{CC} = 3.6*V*, *V*_{REF} = 2.0*V* external.



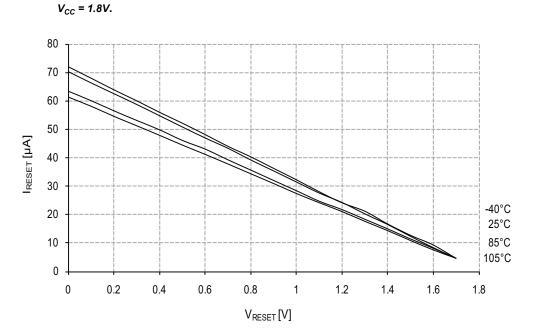
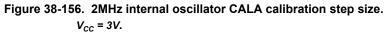
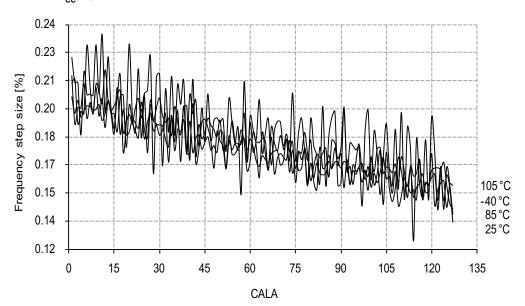




Figure 38-155. 2MHz internal oscillator frequency vs. temperature. *DFLL enabled*.

15. ADC has increased linearity error when using the gain stage above 500ksps

The INL error for gain stage is increased to above 20LSB for sampling speed exceeding 500 ksps.

Problem fix/Workaround

None.

16. DAC Offset calibration range too small when using AVCC as reference

If using AVCC as reference, the DAC offset calibration will not totally remove the offset error. Offset could be up to 100LSB after calibration.

Problem fix/Workaround

Offset adjustment must be partly handled in software.

17. DAC clock noise

The system clock is visible as clock noise on the output of the DAC. Peak to peak noise is in the range 0.7mV - 1.6mV at 2MHz and 0.05mV to 0.1mV at 32MHz. If external clock is used as system clock, the noise is up to three times higher.

Problem fix/Workaround

Add external low-pass filter to remove the noise.

18. Internal 1V reference has noise at low temperature

The internal 1.0V reference for the ADC and DAC has increased noise at low temperatures. The noise can result in INL numbers up to +/- 20 LSB at temperatures below 0C.

Problem fix/Workaround

For the ADC, use oversampling to reduce noise. For the DAC use external filter to reduce the noise.

39.2.2 Rev. A - K

Not sampled.