

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a1u-anr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Ordering Information

Ordering code	Flash (bytes)	EEPROM (bytes)	SRAM (bytes)	Speed (MHz)	Power supply	Package (1)(2)(3)	Temp.
ATxmega128A1U-AU	128K + 8K	2K	8K				
ATxmega128A1U-AUR ⁽⁴⁾	128K + 8K	2K	8K			100A	
ATxmega64A1U-AU	64K + 4K	2K	4K	_		TUUA	
ATxmega64A1U-AUR ⁽⁴⁾	64K + 4K	2K	4K				
ATxmega128A1U-CU	128K + 8K	2K	8K	_			-
ATxmega128A1U-CUR ⁽⁴⁾	128K + 8K	2K	8K			100C1	-40°C - 85°C
ATxmega64A1U-CU	64K + 4K	2K	4K			10001	-40°C - 85°C
ATxmega64A1U-CUR ⁽⁴⁾	64K + 4K	2K	4K		4.0. 0.01		_
ATxmega128A1U-C7U	128K + 8K	2K	8K	- 32 1.0 - 3.0V	32 1.6 - 3.6V		
ATxmega128A1U-C7UR ⁽⁴⁾	128K + 8K	2K	8K			100C2	
ATxmega64A1U-C7U	64K + 4K	2K	4K	_		10002	
ATxmega64A1U-C7UR ⁽⁴⁾	64K + 4K	2K	4K				
ATxmega128A1U-AN	128K + 8K	2K	8K				
ATxmega128A1U-ANR ⁽⁴⁾	128K + 8K	2K	8K			100A	-40°C - 105°C
ATxmega64A1U-AN	64K + 4K	2K	4K			TUUA	-40°C - 105°C
ATxmega64A1U-ANR ⁽⁴⁾	64K + 4K	2K	4K				

1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For packaging information, see "Packaging information" on page 71.

4. Tape and Reel.

Notes:

	Package Type
100A	100-lead, 14 x 14 x 1.0mm, 0.5mm lead pitch, thin profile plastic quad flat package (TQFP)
100C1	100-ball, 9 x 9 x 1.2mm body, ball pitch 0.80mm, chip ball grid array (CBGA)
100C2	100-ball, 7 x 7 x 1.0mm body, ball pitch 0.65mm, very thin fine-pitch ball grid array (VFBGA)

Typical Applications

Industrial control	Climate control	Low power battery applications
Factory automation	RF and ZigBee [®]	Power tools
Building control	USB connectivity	HVAC
Board control	Sensor control	Utility metering
White goods	Optical	Medical applications

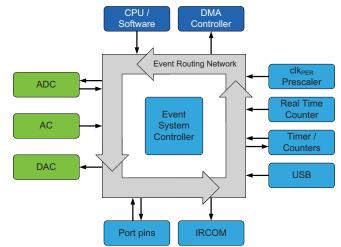
Table 7-3. Number of Bytes and Pages in the EEPROM.

Devices	EEPROM	Page Size	E2BYTE	E2PAGE	No of Pages
	Size	bytes			
ATxmega64A1U	2К	32	ADDR[4:0]	ADDR[10:5]	64
ATxmega128A1U	2K	32	ADDR[4:0]	ADDR[10:5]	64

9. Event System

9.1 Features

- System for direct peripheral-to-peripheral communication and signaling
- Peripherals can directly send, receive, and react to peripheral events
 - CPU and DMA controller independent operation
 - 100% predictable signal timing
 - Short and guaranteed response time
- Eight event channels for up to eight different and parallel signal routing configurations
- Events can be sent and/or used by most peripherals, clock system, and software
- Additional functions include
 - Quadrature decoders
 - Digital filtering of I/O pin state
- Works in active mode and idle sleep mode


9.2 Overview

The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one peripheral's state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity, size and execution time of application code. It also allows for synchronized timing of actions in several peripheral modules.

A change in a peripheral's state is referred to as an event, and usually corresponds to the peripheral's interrupt conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing network. How events are routed and used by the peripherals is configured in software.

Figure 9-1 on page 18 shows a basic diagram of all connected peripherals. The event system can directly connect together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA controller). Events can also be generated from software and the peripheral clock.

Figure 9-1. Event system overview and connected peripherals.

The event routing network consists of eight software-configurable multiplexers that control how events are routed and used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.

11. Power Management and Sleep Modes

11.1 Features

- Power management for adjusting power consumption and functions
- Five sleep modes
 - Idle
 - Power down
 - Power save
 - Standby
 - Extended standby
- Power reduction register to disable clock and turn off unused peripherals in active and idle modes

11.2 Overview

Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.

All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to active mode.

In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power management than sleep modes alone.

11.3 Sleep Modes

Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.

The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will reset, start up, and execute from the reset vector.

11.3.1 Idle Mode

In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled interrupt will wake the device.

11.3.2 Power-down Mode

In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the twowire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		1x gain, normal mode			-0.7		
	Gain Error	8x gain, normal mode			-3.0		%
		64x gain, normal mode			-4.8		
		1x gain, normal mode			0.4		
	Offset Error, input referred	8x gain, normal mode			0.4		mV
		64x gain, normal mode			0.4		
		1x gain, normal mode			0.6		
	Noise	8x gain, normal mode	V _{CC} = 3.6V Ext. V _{REF}		2.0		mV rms
		64x gain, normal mode	NLI		11		

Note: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

37.1.7 DAC Characteristics

Table 37-12	. Power	supply,	reference	and	output	range.
-------------	---------	---------	-----------	-----	--------	--------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
AV _{REF}	External reference voltage		1.0		V _{CC} - 0.6	v
R _{channel}	DC output impedance				50	Ω
	Linear output voltage range		0.15		AV _{CC} -0.15	V
R _{AREF}	Reference input resistance			>10		MΩ
CAREF	Reference input capacitance	Static load		7		pF
	Minimum resistance load		1.0			kΩ
	Maximum canacitance load				100	pF
	Maximum capacitance load	1000 Ω serial resistance			1.0	nF
	Output sink/source	Operating within accuracy specification			AV _{CC} /100 0	mA
		Safe operation			10	

Table 37-13. Clock and timing.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
f	Conversion rate	C _{load} =100pF,	Normal mode	0		1000	kene
DAC	Conversion rate	maximum step size	Low power mode			500	ksps

Table 37-14. Accuracy characteristics.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
RES	Input resolution					12	Bits
		$\gamma = E_{\rm V} + 1.0 \gamma$	V _{CC} = 1.6V		±2.0	±3	
		V _{REF} = Ext 1.0V	V _{CC} = 3.6V		±1.5	±2.5	
INL ⁽¹⁾	Integral non-linearity		V _{CC} = 1.6V		±2.0	±4	_
	integral non-intearity	V _{REF} =AV _{CC}	V _{CC} = 3.6V		±1.5	±4	
		\/ -INIT1\/	V _{CC} = 1.6V		±5.0		
		V	V _{REF} =INT1V	V _{CC} = 3.6V		±5.0	
	Differentiel new linearity	V _{REF} =Ext 1.0V	V _{CC} = 1.6V		±1.5	3.0	lsb
			V _{CC} = 3.6V		±0.6	1.5	
DNL ⁽¹⁾			V _{CC} = 1.6V		±1.0	3.5	-
DINL	Differential non-linearity	V _{REF} =AV _{CC}	V _{CC} = 3.6V		±0.6	1.5	-
			V _{CC} = 1.6V		±4.5		
		V _{REF} =INT1V	V _{CC} = 3.6V		±4.5		-
	Gain error	After calibration			<4.0		-
	Gain calibration step size				4.0		
	Gain calibration drift	V _{REF} = Ext 1.0V			<0.2		mV/K
	Offset error	After calibration			<1.0		lsb
	Offset calibration step size				1.0		

Note: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.

37.1.8 Analog Comparator Characteristics

Table 37-15. Analog Comparator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{off}	Input offset voltage			<±10		mV
I _{lk}	Input leakage current			<1		nA
	Input voltage range		-0.1		AV _{CC} +0.1	V
V _{hys1}	Hysteresis, none			0		
M		mode = High Speed (HS)		22		
V _{hys2}	Hysteresis, small	mode = Low Power (LP)		30		mV
M		mode = HS		43		
V _{hys3}	Hysteresis, large	mode = LP		60		

37.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics

Table 37-24. 32MHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Tunable frequency range	DFLL can tune to this frequency over voltage and temperature	30		35	MHz
	Factory calibrated frequency			32		
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	%
	DFLL calibration step size			0.24		70

37.1.14.4 32kHz Internal ULP Oscillator characteristics

Table 37-25. 32kHz internal ULP oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Output frequency			32		kHz
	Accuracy		-30		30	%

37.1.14.5 Internal Phase Locked Loop (PLL) characteristics

Table 37-26. Internal PLL characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	64	
		V _{CC} = 1.6V	20	0.4	32	MHz	
f _{OUT}	Output frequency ⁽¹⁾	V _{CC} = 2.7V	20		96		
		V _{CC} = 3.6V	20		128		
	Duty cycle			50		%	
	Start-up lock time	f _{OUT} = 48MHz		18			
	Re-lock time	f _{OUT-init} = 10MHz, f _{OUT-end} = 64MHz		17		μs	

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

37.2.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification.

Table 37-41. I/O pin characteristics.

Symbol	Parameter	Con	ndition	Min.	Тур.	Max.	Units	
I _{OH} ⁽¹⁾ / I _{OL} ⁽²⁾	I/O pin source/sink current			-20		20	mA	
V _{IH}		V _{CC} = 2.7 - 3.6V		2		V _{CC} +0.3		
	High level input voltage	V _{CC} = 2.0 - 2.7V		0.7*V _{CC}		V _{CC} +0.3		
		V _{CC} = 1.6 - 2.0V		0.7*V _{CC}		V _{CC} +0.3		
		V _{CC} = 2.7- 3.6V		-0.3		0.3*V _{CC}		
V _{IL}	Low level input voltage	V _{CC} = 2.0 - 2.7V		-0.3		0.3*V _{CC}		
		V _{CC} = 1.6 - 2.0V		-0.3		0.3*V _{CC}		
		V _{CC} = 3.0 - 3.6V	I _{OH} = -2mA	2.4	0.94*V _{CC}			
		V _{CC} = 2.3 - 2.7V	I _{OH} = -1mA	2.0	0.96*V _{CC}			
V	High level output voltage	$V_{\rm CC} = 2.3 - 2.7 V$	I _{OH} = -2mA	1.7	0.92*V _{CC}		V	
V _{OH}		V _{CC} = 3.3V	I _{OH} = -8mA	2.6	2.9		v	
		V _{CC} = 3.0V	I _{OH} = -6mA	2.1	2.6			
		ν	V _{CC} = 1.8V	I _{OH} = -2mA	1.4	1.6		
		V _{CC} = 3.0 - 3.6V	I _{OL} = 2mA		0.05*V _{CC}	0.4		
		V _{CC} = 2.3 - 2.7V	I _{OL} = 1mA		0.03*V _{CC}	0.4		
V	Low level output voltage	V _{CC} - 2.3 - 2.7 V	I _{OL} = 2mA		0.06*V _{CC}	0.7		
V _{OL}	Low level output voltage	V _{CC} = 3.3V	I _{OL} = 15mA		0.4	0.76		
		V _{CC} = 3.0V	I _{OL} = 10mA		0.3	0.64		
		V _{CC} = 1.8V	I _{OL} = 5mA		0.3	0.46		
I _{IN}	Input leakage current				<0.001	0.1	μA	
R _P	I/O pin Pull/Buss keeper resistor				25		kΩ	
R _{RST}	Reset pin pull-up resistor				25		NS2	
+	Pad rise time	Noload			4.0		ne	
t _r I	Pad rise time	d rise time No load	slew rate limitation		7.0		ns	

1. The sum of all I_{OH} for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA. The sum of all I_{OH} for PORTB must not exceed 100mA. The sum of all I_{OH} for PORTQ, PORTR and PDI must not exceed 100mA. Notes:

The sum of all I_{OL} for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA. The sum of all I_{OL} for PORTB must not exceed 100mA. The sum of all I_{OL} for PORTQ, PORTR and PDI must not exceed 100mA. 2.

37.2.6 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
AV _{CC}	Analog supply voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference voltage		1		AV _{CC} - 0.6	v
R _{in}	Input resistance	Switched		5.0		kΩ
C _{in}	Input capacitance	Switched		5.0		pF
R _{AREF}	Reference input resistance	(leakage only)		>10		MΩ
C _{AREF}	Reference input capacitance	Static load		7		pF
V _{IN}	Input range		-0.1		AV _{CC} +0.1	
	Conversion range	Differential mode, Vinp - Vinn	-V _{REF}		V _{REF}	V
V _{IN}	Conversion range	Single ended unsigned mode, Vinp	-ΔV		V_{REF} - ΔV	
ΔV	Fixed offset voltage			190		LSB

Table 37-42. Power supply, reference and input range.

Table 37-43. Clock and timing.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Clk _{ADC}	ADC Clock frequency	Maximum is 1/4 of peripheral clock frequency	100		2000	kHz
		Measuring internal signals	100		125	
		Current limitation (CURRLIMIT) off	100		2000	
£	Comple rote	CURRLIMIT = LOW	100		1500	kana
f _{ADC}	Sample rate	CURRLIMIT = MEDIUM	100 100 100 0.25	1000	ksps	
		CURRLIMIT = HIGH			500	
	Sampling time	1/2 Clk _{ADC} cycle	0.25		5	μs
	Conversion time (latency)	(RES+2)/2+(GAIN !=0) RES (Resolution) = 8 or 12	5		8	Clk _{ADC} cycles
	Start-up time	ADC clock cycles		12	24	Clk _{ADC} cycles
	ADC sottling time	After changing reference or input mode		7	7	Clk _{ADC}
	ADC settling time	After ADC flush		1	1	cycles

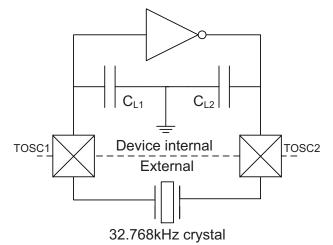

37.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics

Table 37-64. E	xternal 32.768kHz crystal oscillator and TOSC characteristics.
----------------	--

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Recommended crystal	Crystal load capacitance 6.5pF			60	ko
ESR/RI	ESR/R1 equivalent series resistance (ESR)	Crystal load capacitance 9.0pF			35	kΩ
C _{TOSC1}	Parasitic capacitance TOSC1 pin			4.0		
C _{TOSC2}	Parasitic capacitance TOSC2 pin			4.1		pF
CL	Parasitic capacitance load			2.0		-
	Recommended safety factor	Capacitive load matched to crystal specification	3			

Note: 1. See Figure 37-11 for definition.

Figure 37-11.TOSC input capacitance.

The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

38.1.1.3 Power-down mode supply current

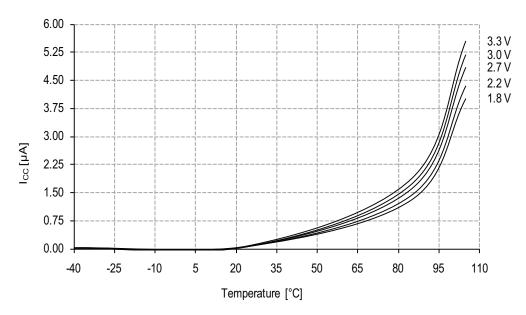


Figure 38-15.Power-down mode supply current vs. Temperature. *All functions disabled.*

Figure 38-16.Power-down mode supply current vs. Temperature. Sampled BOD with Watchdog Timer running on ULP oscillator.

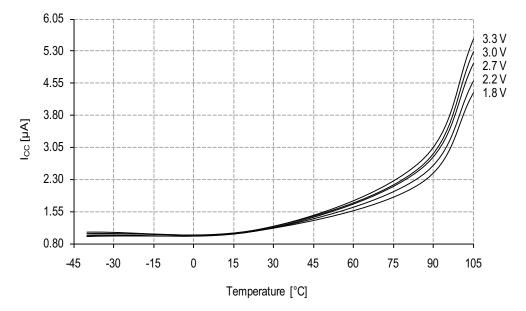
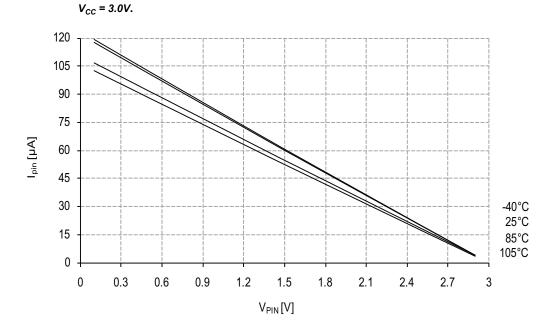
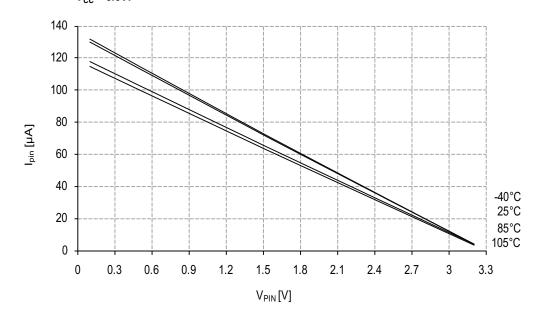
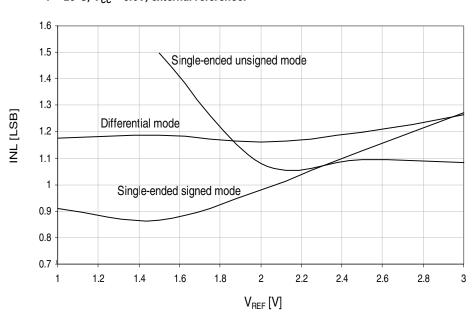
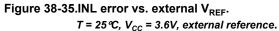
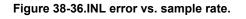
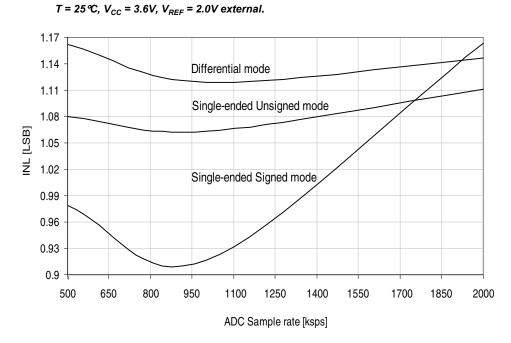


Figure 38-21. I/O pin pull-up resistor current vs. pin voltage.


Figure 38-22. I/O pin pull-up resistor current vs. pin voltage. $V_{cc} = 3.3V.$



38.1.3 ADC Characteristics

Atmel

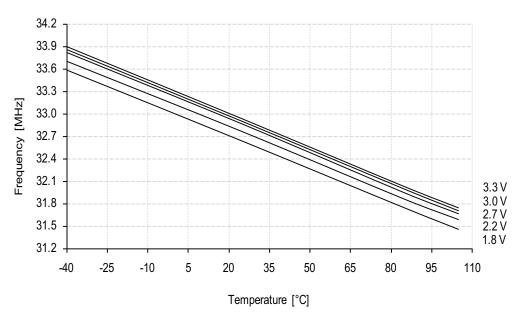
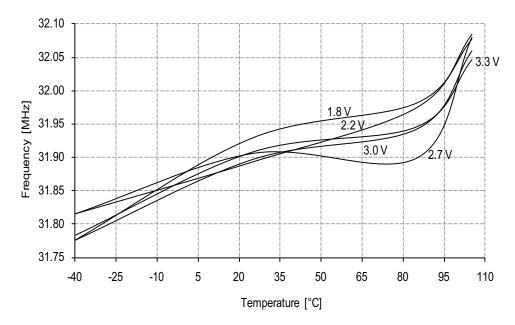



Figure 38-75. 32MHz internal oscillator frequency vs. temperature. *DFLL disabled*.

Figure 38-76. 32MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator.

38.2.1.3 Power-down mode supply current

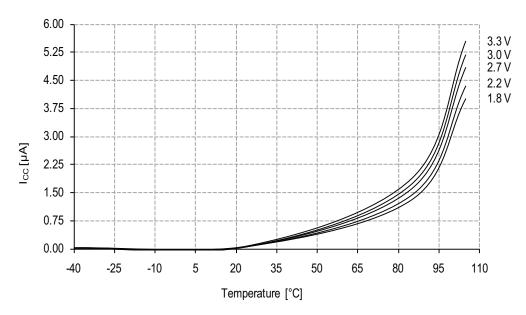
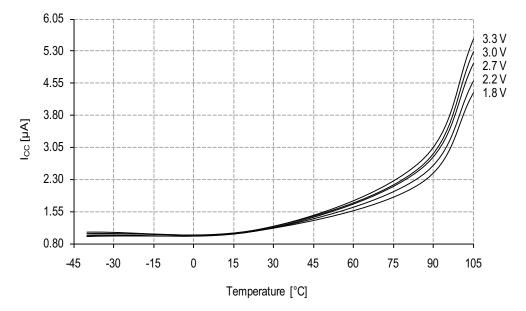



Figure 38-97.Power-down mode supply current vs. Temperature. *All functions disabled*.

Figure 38-98.Power-down mode supply current vs. Temperature. Sampled BOD with Watchdog Timer running on ULP oscillator.

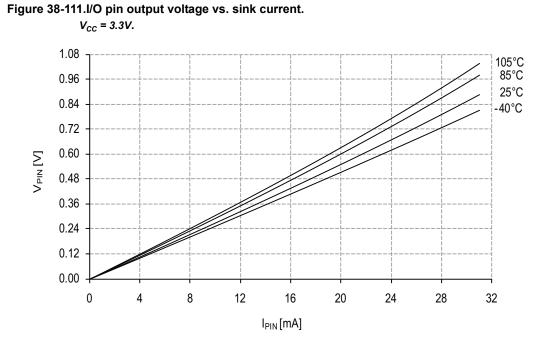


Figure 38-112.I/O pin output voltage vs. sink current.

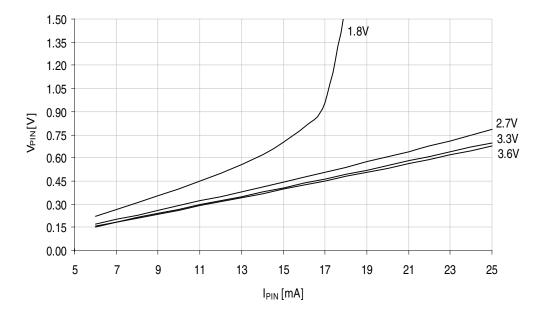
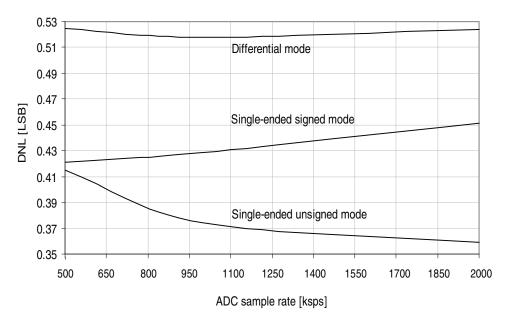
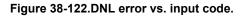




Figure 38-121.DNL error vs. sample rate.

T = 25 °C, *V*_{CC} = 3.6*V*, *V*_{REF} = 2.0*V* external.

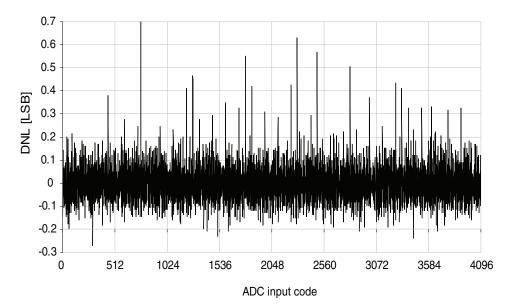
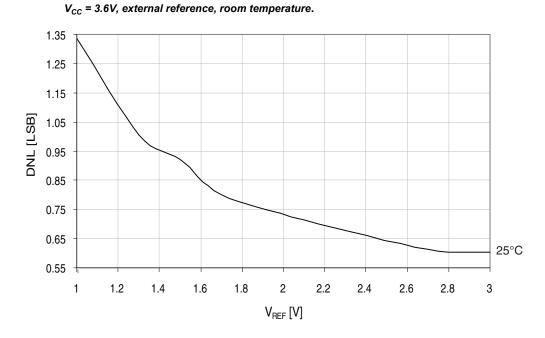
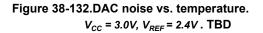
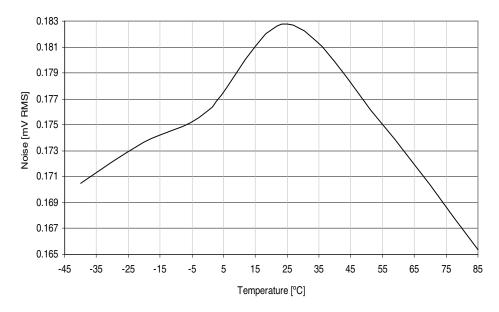





Figure 38-131.DAC DNL error vs. V_{REF}.

Atmel

39. Errata

39.1 ATxmega64A1U

39.1.1 Rev. L

- Register ANAINIT in MCUR will always read as zero
- Enabling DFLL with illegal reference oscillator will lock the DFLL
- XOSCPWR configuration is non-functional
- Configuration of PGM and CWCM is not as described in XMEGA AU Manual
- AWEX PWM output after fault restarted with wrong values
- RTC Counter value not correctly read after sleep
- RTC clock output option is non-functional
- USB, when receiving 1023 byte length isochronous frame, it will corrupt 1024th SRAM location
- USB endpoint table is 16-byte alignment
- USB Auto ZLP feature is non-functional
- Disabling the USART transmitter does not automatically set the TxD pin direction to input
- TWI, SDAHOLD configuration in the TWI CTRL register is one bit
- ADC has increased INL error in when used in SE unsigned mode at low temperatures
- ADC is non-functional in SE unsigned mode with VREF below 1.8V
- ADC has increased linearity error when using the gain stage above 500ksps
- DAC Offset calibration range too small when using AVCC as reference
- DAC clock noise
- Internal 1V reference has noise at low temperature

1 Register ANAINIT in MCUR will always read as zero

The ANAINIT register in the MCUR module will always be read as zero even if written to a value. The actual content of the register is correct.

Problem fix/Workaround

Do not use software that reads these registers to get the Analog Initialization configuration.

2. Enabling DFLL with illegal reference oscillator will lock the clock system

If external crystal is selected as reference for DFLL, but no crystal is connected and DFLL is enabled, the DFLL will be locked until reset is issued.

Problem fix/Workaround

Do not enable DFLL before reference clock is present, enabled and ready.

3. XOSCPWR configuration is non-functional

The Crystal oscillator drive (XOSCPWR) option in the XOSC Control register is non-functional.

Problem fix/Workaround

None.

Problem fix/Workaround

Allocate 1024bytes RAM buffer when using 1023 isochronous endpoint. This workaround is implemented in all USB software and source code delivered from Atmel in the AVR Software Framework.

9. USB endpoint table is 16-byte alignment

The USB endpoint table uses 16-byte alignment, instead of 16-bit alignment.

Problem fix/Workaround

Align the endpoint configuration table pointer in SRAM to a 16-byte. This workaround is implemented in all USB software and source code delivered from Atmel in the AVR Software Framework.

10. USB Auto ZLP feature is non-functional

The Auto ZLP feature is non-functional and can not be used.

Problem fix/Workaround

None.

11. Disabling the USART transmitter does not automatically set the TxD pin direction to input

If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD pin direction to input.

Problem fix/Workaround

The TxD pin direction can be set to input using the Port pin direction to input using the port direction (DIR) register. When the port pin direction is input, it will be immediate and ongoing transmissions will be truncated.

12. TWI, SDAHOLD configuration in the TWI CTRL register is one bit

The SDAHOLD configuration in the TWI Control register (CTRL) is one bit. Due to this the SDA hold time can be configured for maximum ~50ns when enabled. Configuring for longer hold time will have no effect.

Problem fix/Workaround

If longer SDA hold time than 50nS is required it must be handled in software.

13. ADC has increased INL error in when used in SE unsigned mode at low temperatures

When the ADC is used on single ended (SE) unsigned mode, -INL error is increased up to +/- 5 LSB in temperatures below -20C.

Problem fix/Workaround

Use the ADC in single ended signed mode.

14. ADC is non-functional in SE unsigned mode with $\rm V_{REF}$ below 1.8V

When the ADC is used on single ended unsigned mode and V_{REF} is below 1.8V, INL and DNL error is increased above +/- 10LSB, i.e. the ADC have missing codes under this condition.

Problem fix/Workaround

Use the ADC in single ended signed mode.

