

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a1u-aur

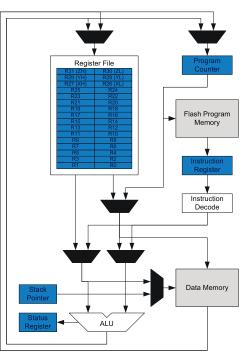
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6. AVR CPU

6.1 Features

- 8/16-bit, high-performance Atmel AVR RISC CPU
 - 142 instructions
 - Hardware multiplier
- 32x8-bit registers directly connected to the ALU
- Stack in RAM
- Stack pointer accessible in I/O memory space
- Direct addressing of up to 16MB of program memory and 16MB of data memory
- True 16/24-bit access to 16/24-bit I/O registers
- Efficient support for 8-, 16-, and 32-bit arithmetic
- Configuration change protection of system-critical features


6.2 Overview

All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the program in the flash memory. Interrupt handling is described in a separate section, refer to "Interrupts and Programmable Multilevel Interrupt Controller" on page 27.

6.3 Architectural Overview

In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.

Figure 6-1. Block diagram of the AVR CPU architecture.

Atmel

11. Power Management and Sleep Modes

11.1 Features

- Power management for adjusting power consumption and functions
- Five sleep modes
 - Idle
 - Power down
 - Power save
 - Standby
 - Extended standby
- Power reduction register to disable clock and turn off unused peripherals in active and idle modes

11.2 Overview

Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.

All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to active mode.

In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power management than sleep modes alone.

11.3 Sleep Modes

Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.

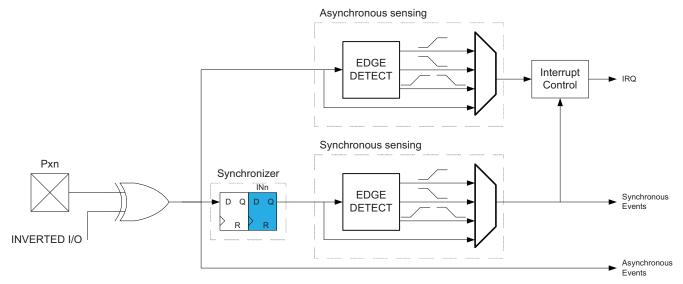
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will reset, start up, and execute from the reset vector.

11.3.1 Idle Mode

In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled interrupt will wake the device.

11.3.2 Power-down Mode

In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the twowire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.


Program address (base address)	Source	Interrupt description
0x028	TCC1_INT_base	Timer/counter 1 on port C interrupt base
0x030	SPIC_INT_vect	SPI on port C interrupt vector
0x032	USARTC0_INT_base	USART 0 on port C interrupt base
0x038	USARTC1_INT_base	USART 1 on port C interrupt base
0x03E	AES_INT_vect	AES interrupt vector
0x040	NVM_INT_base	Nonvolatile memory interrupt base
0x044	PORTB_INT_base	Port B interrupt base
0x048	ACB_INT_base	Analog comparator on port B interrupt base
0x04E	ADCB_INT_base	Analog to digital converter on port B interrupt base
0x056	PORTE_INT_base	Port E interrupt base
0x05A	TWIE_INT_base	Two-Wire interface on port E interrupt base
0x05E	TCE0_INT_base	Timer/counter 0 on port E interrupt base
0x06A	TCE1_INT_base	Timer/counter 1 on port E interrupt base
0x072	SPIE_INT_vect	SPI on port E interrupt vector
0x074	USARTE0_INT_base	USART 0 on port E interrupt base
0x07A	USARTE1_INT_base	USART 1 on port E interrupt base
0x080	PORTD_INT_base	Port D interrupt base
0x084	PORTA_INT_base	Port A interrupt base
0x088	ACA_INT_base	Analog comparator on Port A interrupt base
0x08E	ADCA_INT_base	Analog to digital converter on Port A interrupt base
0x096	TWID_INT_base	Two-Wire Interface on port D interrupt base
0x09A	TCD0_INT_base	Timer/counter 0 on port D interrupt base
0x0A6	TCD1_INT_base	Timer/counter 1 on port D interrupt base
0x0AE	SPID_INT_vector	SPI on port D interrupt vector
0x0B0	USARTD0_INT_base	USART 0 on port D interrupt base
0x0B6	USARTD1_INT_base	USART 1 on port D interrupt base
0x0BC	PORTQ_INT_base	Port Q INT base
0x0C0	PORTH_INT_base	Port H INT base
0x0C4	PORTJ_INT_base	Port J INT base
0x0C8	PORTK_INT_base	Port K INT base
0x0D0	PORTF_INT_base	Port F INT base
0x0D4	TWIF_INT_base	Two-Wire interface on Port F INT base
0x0D8	TCF0_INT_base	Timer/counter 0 on port F interrupt base

15.4 Input sensing

Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is shown in Figure 15-7 on page 33.

When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.

15.5 Alternate Port Functions

Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for that peripheral. "Pinout and Pin Functions" on page 56 shows which modules on peripherals that enable alternate functions on a pin, and what alternate functions that are available on a pin.

28. EBI – External Bus Interface

28.1 Features

- Supports SRAM up to:
 - 512KB using 2- or 3-port EBI configuration
 - 16MB using 3- or 4-port EBI configuration
- Supports SDRAM up to:
 - 128Mb using 3- or 4-port EBI configuration
 - 4-bit SDRAM with 3-port EBI configuration
 - 4- or 8-bit SDRAM with 4-port EBI configuration
- Four software configurable chip selects
- Software configurable wait state insertion
- Can run from the 2x peripheral clock frequency for fast access
- Simultaneous SRAM and SDRAM support with 4-port EBI configuration

28.2 Overview

The External Bus Interface (EBI) is used to connect external peripherals and memory for accessthrough the data memory space. When the EBI is enabled, data address space outside the internal SRAM becomes available using dedicated EBI pins.

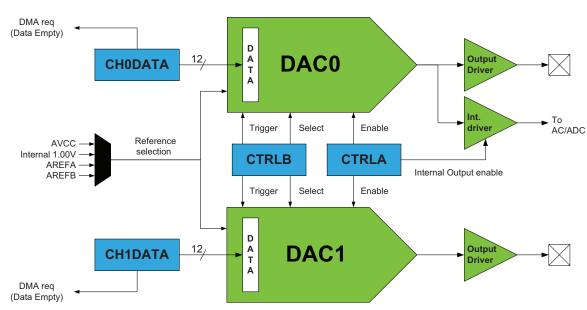
The EBI can interface external SRAM, SDRAM, and peripherals, such as LCD displays and other memory mapped devices.

The address space for the external memory is selectable from 256 bytes (8-bit) up to 16MB (24-bit). Various multiplexing modes for address and data lines can be selected for optimal use of pins when more or fewer pins are available for the EBI. The complete memory will be mapped into one linear data address space continuing from the end of the internal SRAM.

The EBI has four chip selects, each with separate configuration. Each can be configured for SRAM, SRAM low pin count (LPC), or SDRAM.

The EBI is clocked from the fast, 2x peripheral clock, running up to two times faster than the CPU.

Four-bit and eight-bit SDRAM are supported, and SDRAM configurations, such as CAS latency and refresh rate, are configurable in software.


30. DAC – 12-bit Digital to Analog Converter

30.1 Features

- Two digital to analog converters (DACs)
- 12-bit resolution
- Two independent, continuous-drive output channels
- Up to one million samples per second conversion rate per DAC channel
- Built-in calibration that removes:
 - Offset error
 - Gain error
- Multiple conversion trigger sources
 - On new available data
 - Events from the event system
- High drive capabilities and support for
 - Resistive loads
 - Capacitive loads
 - Combined resistive and capacitive loads
- Internal and external reference options
- DAC output available as input to analog comparator and ADC
- Low-power mode, with reduced drive strength
- Optional DMA transfer of data

30.2 Overview

The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two channels, each with12-bit resolution, and is capable of converting up to one million samples per second (msps) on each channel. The built-in calibration system can remove offset and gain error when loaded with calibration values from software.

Figure 30-1. DAC overview.

PORT E	PIN #	INTERRUPT	TCE0	AWEXE	TCE1	USARTE0	USARTE1	SPIE	TWIE	CLOCKOUT	EVENTOUT
PE2	37	SYNC/ASYNC	OC0C	OC0BLS		RXD0					
PE3	38	SYNC	OC0D	OC0BHS		TXD0					
PE4	39	SYNC		OCOCLS	OC1A			SS			
PE5	40	SYNC		OC0CHS	OC1B		XCK1	MOSI			
PE6	41	SYNC		OC0DLS			RXD1	MISO			
PE7	42	SYNC		OC0DHS			TXD1	SCK		clk _{PER}	EVOUT

Notes:

1. All pins on the port can optionally be used for EBI chip select or address lines. Refer to the EBIOUT register description in the XMEGA AU Manual.

Table 33-6. Port F - alternate functions.

PORT F	PIN #	INTERRUPT	TCF0	TCF1	USARTF0	USARTF1	SPIF	TWIF
GND	43							
vcc	44							
PF0	45	SYNC	OC0A					SDA
PF1	46	SYNC	OC0B		XCK0			SCL
PF2	47	SYNC/ASYNC	OC0C		RXD0			
PF3	48	SYNC	OC0D		TXD0			
PF4	49	SYNC		OC1A			SS	
PF5	50	SYNC		OC1B		XCK1	MOSI	
PF6	51	SYNC				RXD1	MISO	
PF7	52	SYNC				TXD1	SCK	

Note: 1. All pins on the port can optionally be used for EBI chip select or address lines. Refer to the EBIOUT register description in the XMEGA AU Manual.

Table 33-7. Port H - alternate functions.

PORT H	PIN #	INTERRUPT	SDRAM 3P	SRAM ALE1	SRAM ALE12	LPC3 ALE1	LPC2 ALE1	LPC2 ALE12
GND	53							
VCC	54							
PH0	55	SYNC	WE	WE	WE	WE	WE	WE
PH1	56	SYNC	CAS	RE	RE	RE	RE	RE
PH2	57	SYNC/ASYNC	RAS	ALE1	ALE1	ALE1	ALE1	ALE1
PH3	58	SYNC	DQM		ALE2			ALE2
PH4	59	SYNC	BA0	CS0/A16	CS0	CS0/A16	CS0	CS0/A16
PH5	60	SYNC	BA1	CS1/A17	CS1	CS1/A17	CS1	CS1/A17
PH6	61	SYNC	CKE	CS2/A18	CS2	CS2/A18	CS2	CS2/A18
PH7	62	SYNC	CLK	CS3/A19	CS3	CS3/A19	CS3	CS3/A19

Notes: 1. CS0 - CS3 can optionally be moved to Port E or F

2. A16-A23 can optionally be moved to Port E or F when EBI configured in 4PORT mode. Refer to the EBIOUT register description in the XMEGA AU Manual.

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	т	1
CLT		Clear T in SREG	T ← 0	т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	н	1
		MCU o	control instructions		
BREAK		Break	(See specific descr. for BREAK)	None	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1

Notes: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.

2. One extra cycle must be added when accessing Internal SRAM.

Atmel

37. Electrical Characteristics

All typical values are measured at $T = 25^{\circ}C$ unless other temperature condition is given. All minimum and maximum values are valid across operating temperature and voltage unless other conditions are given.

Note: For devices that are not available yet, preliminary values in this datasheet are based on simulations, and/or characterization of similar AVR XMEGA microcontrollers. After the device is characterized the final values will be available, hence existing values can change. Missing minimum and maximum values will be available after the device is characterized.

37.1 ATxmega64A1U

37.1.1 Absolute Maximum Ratings

Stresses beyond those listed in Table 37-1 on page 74 under may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 37-1. Absolute maximum ratings.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power supply voltage		-0.3		4	V
I _{VCC}	Current into a V_{CC} pin				200	mA
I _{GND}	Current out of a Gnd pin				200	ША
V _{PIN}	Pin voltage with respect to Gnd and V_{CC}		-0.5		V _{CC} +0.5	V
I _{PIN}	I/O pin sink/source current		-25		25	mA
T _A	Storage temperature		-65		150	°C
Tj	Junction temperature				150	C

37.1.2 General Operating Ratings

The device must operate within the ratings listed in Table 37-2 in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 37-2. General operating conditions.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power supply voltage		1.60		3.6	V
AV _{CC}	Analog supply voltage		1.60		3.6	v
T _A	Temperature range		-40		85	°C
Tj	Junction temperature		-40		105	C

37.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics

Table 37-24. 32MHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Tunable frequency range	DFLL can tune to this frequency over voltage and temperature	30		35	MHz
	Factory calibrated frequency			32		
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	%
	DFLL calibration step size			0.24		70

37.1.14.4 32kHz Internal ULP Oscillator characteristics

Table 37-25. 32kHz internal ULP oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Output frequency			32		kHz
	Accuracy		-30		30	%

37.1.14.5 Internal Phase Locked Loop (PLL) characteristics

Table 37-26. Internal PLL characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	
		V _{CC} = 1.6V	20		32	MHz
f _{OUT}	Output frequency ⁽¹⁾	V _{CC} = 2.7V	20		96	INITIZ
		V _{CC} = 3.6V	20		128	
	Duty cycle			50		%
	Start-up lock time	f _{OUT} = 48MHz		18		
	Re-lock time	f _{OUT-init} = 10MHz, f _{OUT-end} = 64MHz		17		μs

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units		
		V _{CC} = 3.0V, T= 85°C	mode = HS		60	90		
t _{delay}	Propagation delay	mode = HS			60		ns	
		V _{CC} = 3.0V, T= 85°C	mode = LP		130			
	Current source calibration	Single mode		2		8		
	range	Double mode		4		16	μs	
	64-Level Voltage Scaler	Integral non-linearity (INL)			0.3	0.5	lsb	

37.2.9 Bandgap and Internal 1.0V Reference Characteristics

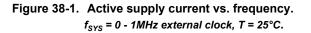
Table 37-50. Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC or DAC	1 Clk _{PER} + 2.5µs			
		As input voltage to ADC and AC		1.5		μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference for ADC and DAC	T= 85°C, after calibration	0.99	1	1.01	V
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

37.2.10 Brownout Detection Characteristics

Table 37-51. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{BOT}	BOD level 0 falling V _{CC}		1.60	1.62	1.72	V
	BOD level 1 falling V _{CC}			1.8		
	BOD level 2 falling V _{CC}			2.0		
	BOD level 3 falling V_{CC}			2.2		
	BOD level 4 falling V _{CC}			2.4		
	BOD level 5 falling V _{CC}			2.6		
	BOD level 6 falling V _{CC}			2.8		
	BOD level 7 falling V _{CC}			3.0		
t _{BOD}	Detection time	Continuous mode		0.4		μs
		Sampled mode		1000		
V _{HYST}	Hysteresis			1.4		%



38. Typical Characteristics

38.1 ATxmega64A1U

38.1.1 Current consumption

38.1.1.1 Active mode supply current

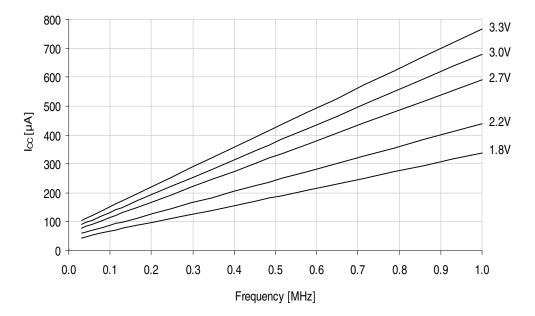
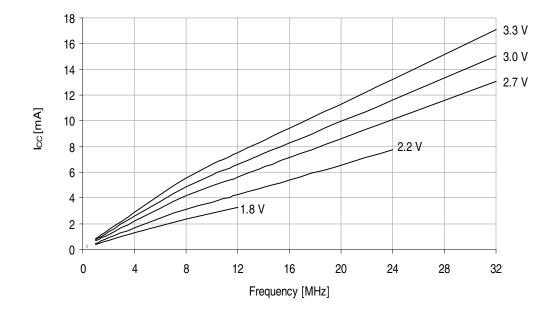
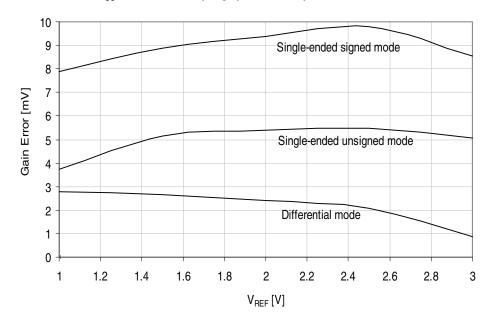




Figure 38-2. Active supply current vs. frequency. $f_{SYS} = 1 - 32MHz \text{ external clock, } T = 25^{\circ}C.$

Figure 38-41.Gain error vs. V_{REF}.

 $T = 25 \,$ °C, $V_{CC} = 3.6V$, ADC sampling speed = 500ksps.


```
T = 25 \,°C, V_{REF} = external 1.0V, ADC sampling speed = 500ksps.
```

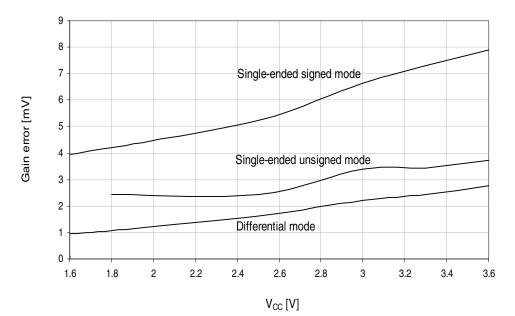
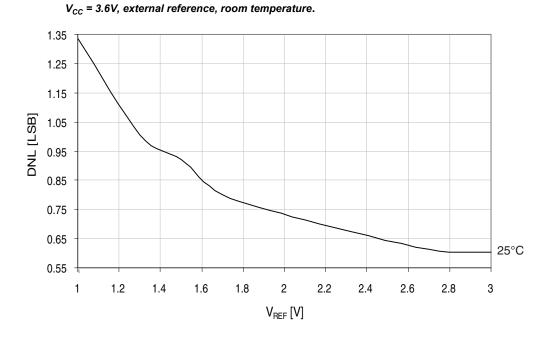
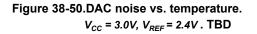
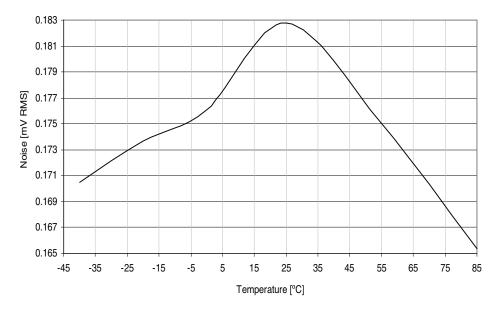





Figure 38-49.DAC DNL error vs. V_{REF}.

Atmel

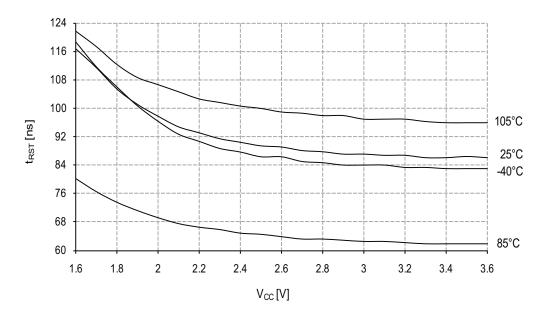
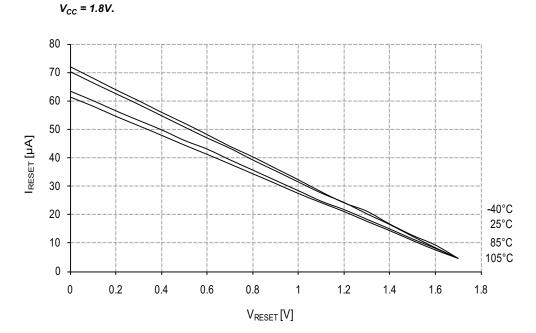



Figure 38-61.Minimum Reset pin pulse width vs. V_{cc}.

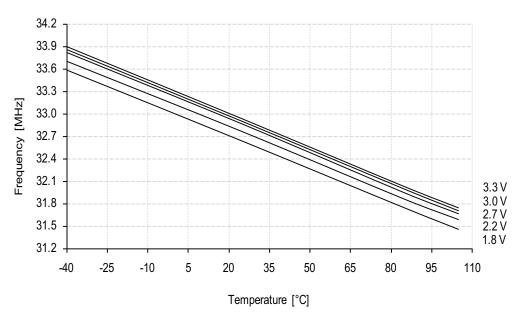
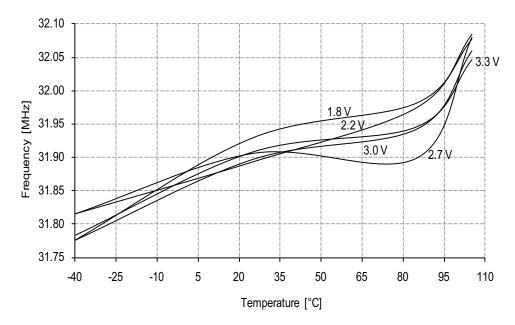
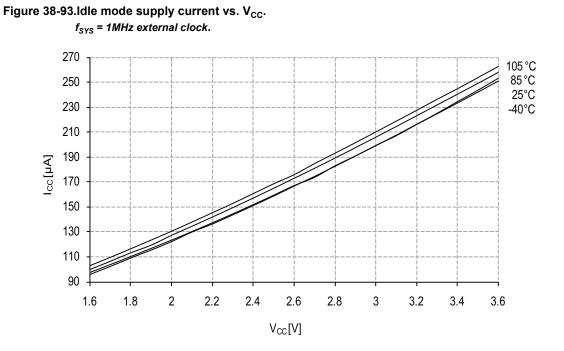
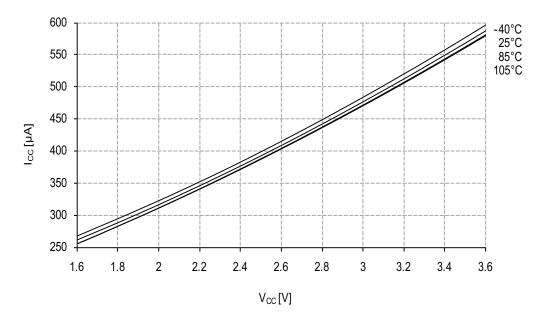




Figure 38-75. 32MHz internal oscillator frequency vs. temperature. *DFLL disabled*.


Figure 38-76. 32MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator.

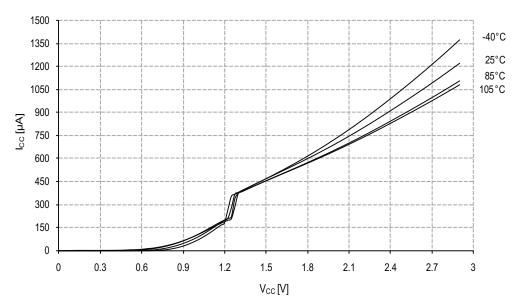
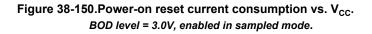
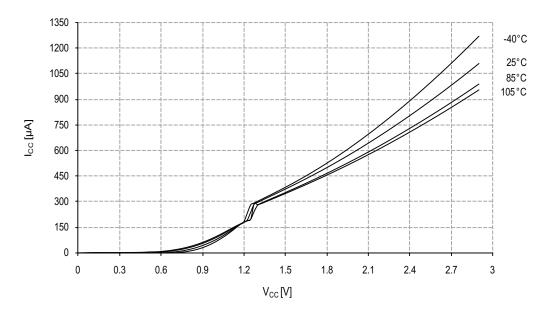




Figure 38-149.Power-on reset current consumption vs. V_{CC} . BOD level = 3.0V, enabled in continuous mode.

Problem fix/Workaround

Use the ADC in single ended signed mode.

15. ADC has increased linearity error when using the gain stage above 500ksps

The INL error for gain stage is increased to above 20LSB for sampling speed exceeding 500 ksps.

Problem fix/Workaround

None.

16. DAC Offset calibration range too small when using AVCC as reference

If using AVCC as reference, the DAC offset calibration will not totally remove the offset error. Offset could be up to 100LSB after calibration.

Problem fix/Workaround

Offset adjustment must be partly handled in software.

17. DAC clock noise

The system clock is visible as clock noise on the output of the DAC. Peak to peak noise is in the range 0.7mV - 1.6mV at 2MHz and 0.05mV to 0.1mV at 32MHz. If external clock is used as system clock, the noise is up to three times higher.

Problem fix/Workaround

Add external low-pass filter to remove the noise.

18. Internal 1V reference has noise at low temperature

The internal 1.0V reference for the ADC and DAC has increased noise at low temperatures. The noise can result in INL numbers up to +/- 20 LSB at temperatures below 0C.

Problem fix/Workaround

For the ADC, use oversampling to reduce noise. For the DAC use external filter to reduce the noise.

39.1.2 Rev. A - K

Not sampled.

- 7. Added electrical characterization for "ATxmega64A1U" on page 74.
- 8. Updated Table 37-29 on page 89 and Table 37-63 on page 112. Added ESR and start-up time parameters.
- 9. Added typical characteristics for "ATxmega64A1U" on page 120.

40.6 8385D - 07/2012

1. Updated Table 7-2 on page 15. Devices are respectively ATxmega64A1U and ATxmega128A1U.

40.7 8385C - 07/2012

- 1. Updated Table 7-1 on page 13. Device ID for ATxmega128A1U is 4C97. Device ID for ATxmega64A1U is 4E96.
- 2. Updated the package "100C2" on page 73. The ball rows are A-K (without I).
- 3. Updated the whole datasheet using the Atmel new updated datasheet template that includes Atmel new logo and new registered TM.

40.8 8385B - 03/2012

- 1. Added "Electrical Characteristics" on page 74.
- 2. Added "Typical Characteristics" on page 120.
- 3. Updated "Errata" on page 202.
- 4. Used Atmel new datasheet template that includes Atmel new addresses on the last page.

40.9 8385A - 11/2011

1. Initial revision.