

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	78
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128a1u-c7u

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8. DMAC – Direct Memory Access Controller

8.1 Features

- Allows high speed data transfers with minimal CPU intervention
 - from data memory to data memory
 - from data memory to peripheral
 - from peripheral to data memory
 - from peripheral to peripheral
- Four DMA channels with separate
 - transfer triggers
 - interrupt vectors
 - addressing modes
- Programmable channel priority
- From 1 byte to 16MB of data in a single transaction
 - Up to 64KB block transfers with repeat
 - 1, 2, 4, or 8 byte burst transfers
- Multiple addressing modes
 - Static
 - Incremental
 - Decremental
- Optional reload of source and destination addresses at the end of each
 - Burst
 - Block
 - Transaction
- Optional interrupt on end of transaction
- Optional connection to CRC generator for CRC on DMA data

8.2 Overview

The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and thus offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees up CPU time. The four DMA channels enable up to four independent and parallel transfers.

The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from communication modules. The DMA controller can also read from memory mapped EEPROM.

Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from 1 byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source and destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination addresses can be done after each burst or block transfer, or when a transaction is complete. Application software, peripherals, and events can trigger DMA transfers.

The four DMA channels have individual configuration and control settings. This include source, destination, transfer triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a transaction is complete or when the DMA controller detects an error on a DMA channel.

To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer when the first is finished, and vice versa.

11.3.3 Power-save Mode

Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.

11.3.4 Standby Mode

Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.

11.3.5 Extended Standby Mode

Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.

14. Interrupts and Programmable Multilevel Interrupt Controller

14.1 Features

- Short and predictable interrupt response time
 - Separate interrupt configuration and vector address for each interrupt
- Programmable multilevel interrupt controller
 - Interrupt prioritizing according to level and vector address
 - Three selectable interrupt levels for all interrupts: low, medium and high
 - Selectable, round-robin priority scheme within low-level interrupts
 - Non-maskable interrupts for critical functions
- Interrupt vectors optionally placed in the application section or the boot loader section

14.2 Overview

Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.

All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are serviced within a certain amount of time.

Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.

14.3 Interrupt vectors

The interrupt vector is the sum of the peripheral's base interrupt address and the offset address for specific interrupts in each peripheral. The base addresses for the Atmel AVR XMEGA A1U devices are shown in Table 14-1 on page 27. Offset addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA AU manual. For peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 14-1 on page 27. The program address is the word address.

Program address (base address)	Source	Interrupt description
0x000	RESET	
0x002	OSCF_INT_vect	Crystal oscillator failure interrupt vector (NMI)
0x004	PORTC_INT_base	Port C interrupt base
0x008	PORTR_INT_base	Port R interrupt base
0x00C	DMA_INT_base	DMA controller interrupt base
0x014	RTC_INT_base	Real time counter interrupt base
0x018	TWIC_INT_base	Two-Wire interface on port C interrupt base
0x01C	TCC0_INT_base	Timer/counter 0 on port C interrupt base

Table 14-1. Reset and interrupt vectors.

Program address (base address)	Source	Interrupt description
0x028	TCC1_INT_base	Timer/counter 1 on port C interrupt base
0x030	SPIC_INT_vect	SPI on port C interrupt vector
0x032	USARTC0_INT_base	USART 0 on port C interrupt base
0x038	USARTC1_INT_base	USART 1 on port C interrupt base
0x03E	AES_INT_vect	AES interrupt vector
0x040	NVM_INT_base	Nonvolatile memory interrupt base
0x044	PORTB_INT_base	Port B interrupt base
0x048	ACB_INT_base	Analog comparator on port B interrupt base
0x04E	ADCB_INT_base	Analog to digital converter on port B interrupt base
0x056	PORTE_INT_base	Port E interrupt base
0x05A	TWIE_INT_base	Two-Wire interface on port E interrupt base
0x05E	TCE0_INT_base	Timer/counter 0 on port E interrupt base
0x06A	TCE1_INT_base	Timer/counter 1 on port E interrupt base
0x072	SPIE_INT_vect	SPI on port E interrupt vector
0x074	USARTE0_INT_base	USART 0 on port E interrupt base
0x07A	USARTE1_INT_base	USART 1 on port E interrupt base
0x080	PORTD_INT_base	Port D interrupt base
0x084	PORTA_INT_base	Port A interrupt base
0x088	ACA_INT_base	Analog comparator on Port A interrupt base
0x08E	ADCA_INT_base	Analog to digital converter on Port A interrupt base
0x096	TWID_INT_base	Two-Wire Interface on port D interrupt base
0x09A	TCD0_INT_base	Timer/counter 0 on port D interrupt base
0x0A6	TCD1_INT_base	Timer/counter 1 on port D interrupt base
0x0AE	SPID_INT_vector	SPI on port D interrupt vector
0x0B0	USARTD0_INT_base	USART 0 on port D interrupt base
0x0B6	USARTD1_INT_base	USART 1 on port D interrupt base
0x0BC	PORTQ_INT_base	Port Q INT base
0x0C0	PORTH_INT_base	Port H INT base
0x0C4	PORTJ_INT_base	Port J INT base
0x0C8	PORTK_INT_base	Port K INT base
0x0D0	PORTF_INT_base	Port F INT base
0x0D4	TWIF_INT_base	Two-Wire interface on Port F INT base
0x0D8	TCF0_INT_base	Timer/counter 0 on port F interrupt base

17. TC2 – Time/Counter Type 2

17.1 Features

- Eight eight-bit timer/counters
 - Four Low-byte timer/counters
 - Four High-byte timer/counters
- Up to eight compare channels in each timer/counter 2
 - Four compare channels for the low-byte timer/counter
 - Four compare channels for the high-byte timer/counter
- Waveform generation
 - Single slope pulse width modulation
- Timer underflow interrupts/events
- One compare match interrupt/event per compare channel for the low-byte timer/counter
- Can be used with the event system for count control
- Can be used to trigger DMA transactions

17.2 Overview

There are four Timer/counter 2. These are realized when a Timer/counter 0 is set in split mode. It is then a system of two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width modulation (PWM) channels with individually controlled duty cycles, and is intended for applications that require a high number of PWM channels.

The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter, respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare match interrupts, events and DMA triggers.

The two eight-bit timer/counters have a shared clock source and separate period and compare settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or from the event system. The counters are always counting down.

PORTC, PORTD, PORTE and PORTF each has one Timer/Counter 2. Notation of these are TCC2 (Time/Counter C2), TCD2, TCE2 and TCF2, respectively.

26. AES and DES Crypto Engine

26.1 Features

- Data Encryption Standard (DES) CPU instruction
- Advanced Encryption Standard (AES) crypto module
- DES Instruction
 - Encryption and decryption
 - DES supported
 - Encryption/decryption in 16 CPU clock cycles per 8-byte block
- AES crypto module
 - Encryption and decryption
 - Supports 128-bit keys
 - Supports XOR data load mode to the state memory
 - Encryption/decryption in 375 clock cycles per 16-byte block

26.2 Overview

The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used standards for cryptography. These are supported through an AES peripheral module and a DES CPU instruction, and the communication interfaces and the CPU can use these for fast, encrypted communication and secure data storage.

DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into the register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.

The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data must be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375 peripheral clock cycles before the encryption/decryption is done. The encrypted/encrypted data can then be read out, and an optional interrupt can be generated. The AES crypto module also has DMA support with transfer triggers when encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded.

Mnemonics	Operands	Description	Opera	ation		Flags	#Clocks
ICALL		Indirect Call to (Z)	PC(15:0) PC(21:16)	← ←	Z, 0	None	2 / 3 ⁽¹⁾
EICALL		Extended Indirect Call to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	3 ⁽¹⁾
CALL	k	call Subroutine	PC	←	k	None	3 / 4 ⁽¹⁾
RET		Subroutine Return	PC	←	STACK	None	4 / 5 ⁽¹⁾
RETI		Interrupt Return	PC	←	STACK	1	4 / 5 ⁽¹⁾
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC	←	PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd - Rr			Z,C,N,V,S,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C			Z,C,N,V,S,H	1
CPI	Rd,K	Compare with Immediate	Rd - K			Z,C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC	~	PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register Set	if (Rr(b) = 1) PC	~	PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if (I/O(A,b) = 0) PC	←	PC + 2 or 3	None	2/3/4
SBIS	A, b	Skip if Bit in I/O Register Set	If (I/O(A,b) =1) PC	←	PC + 2 or 3	None	2/3/4
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC	←	PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC	←	PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC	←	PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC	←	PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC	←	PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC	~	PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC	←	PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC	~	PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC	←	PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC	~	PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC	←	PC + k + 1	None	1/2
BRLT	k	Branch if Less Than, Signed	if (N \oplus V= 1) then PC	~	PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC	~	PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC	~	PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC	←	PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC	~	PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC	←	PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC	~	PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC	←	PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC	~	PC + k + 1	None	1/2
		Data tr	ansfer instructions				
MOV	Rd, Rr	Copy Register	Rd	←	Rr	None	1
MOVW	Rd, Rr	Copy Register Pair	Rd+1:Rd	←	Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd	~	к	None	1

37.1.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification.

Table 37-7.	I/O pin	characteristics.
-------------	---------	------------------

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
I _{OH} ⁽¹⁾ / I _{OL} ⁽²⁾	I/O pin source/sink current			-20		20	mA
		V _{CC} = 2.7 - 3.6V		2		V _{CC} +0.3	
V _{IH}	High level input voltage	V _{CC} = 2.0 - 2.7V		0.7*V _{CC}		V _{CC} +0.3	
		V _{CC} = 1.6 - 2.0V		0.7*V _{CC}		V _{CC} +0.3	
		V _{CC} = 2.7- 3.6V		-0.3		0.3*V _{CC}	
V _{IL}	V _{IL} Low level input voltage	V _{CC} = 2.0 - 2.7V		-0.3		0.3*V _{CC}	
		V _{CC} = 1.6 - 2.0V		-0.3		0.3*V _{CC}	
		V _{CC} = 3.0 - 3.6V	I _{OH} = -2mA	2.4	0.94*V _{CC}		
V _{OH}	High level output voltage	V - 2 2 2 7V	I _{OH} = -1mA	2.0	0.96*V _{CC}		
		$v_{\rm CC} = 2.3 - 2.7 v$	I _{OH} = -2mA	1.7	0.92*V _{CC}		V
		V _{CC} = 3.3V	I _{OH} = -8mA	2.6	2.9		V
		V _{CC} = 3.0V	I _{OH} = -6mA	2.1	2.6		
		V _{CC} = 1.8V	I _{OH} = -2mA	1.4	1.6		
		V _{CC} = 3.0 - 3.6V	I _{OL} = 2mA		0.05*V _{CC}	0.4	
		V - 2 2 2 7V	I _{OL} = 1mA		0.03*V _{CC}	0.4	
V		V _{CC} – 2.3 - 2.7 V	I _{OL} = 2mA		0.06*V _{CC}	0.7	
VOL	Low level output voltage	V _{CC} = 3.3V	I _{OL} = 15mA		0.4	0.76	
		V _{CC} = 3.0V	I _{OL} = 10mA		0.3	0.64	
		V _{CC} = 1.8V	I _{OL} = 5mA		0.3	0.46	
I _{IN}	Input leakage current		1		<0.001	0.1	μA
R _P	I/O pin Pull/Buss keeper resistor				25		ko
R _{RST}	Reset pin pull-up resistor				25		K12
	Dad rise time	Nalaad			4.0		
ί _r	Pad rise time	100 1080	slew rate limitation		7.0		ns

1. The sum of all I_{OH} for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA. The sum of all I_{OH} for PORTB must not exceed 100mA. The sum of all I_{OH} for PORTQ, PORTR and PDI must not exceed 100mA. Notes:

The sum of all I_{OL} for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA. The sum of all I_{OL} for PORTB must not exceed 100mA. The sum of all I_{OL} for PORTQ, PORTR and PDI must not exceed 100mA. 2.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units	
t _{delay}	Propagation delay	V _{CC} = 3.0V, T= 85°C	mode = HS		60	90		
		mode = HS			60		ns	
		V _{CC} = 3.0V, T= 85°C	mode = LP		130			
	Current source calibration	Single mode		2		8		
	range	Double mode		4		16	μs	
	64-Level Voltage Scaler	Integral non-linearity (INL)			0.3	0.5	lsb	

37.1.9 Bandgap and Internal 1.0V Reference Characteristics

Table 37-16. Bandgap and Internal 1.0V reference characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Startup time	As reference for ADC or DAC	1 (Clk _{PER} + 2.5	ōμs	
	Startup time	As input voltage to ADC and AC		1.5		μs
	Bandgap voltage			1.1		V
INT1V	Internal 1.00V reference for ADC and DAC	T= 85°C, after calibration	0.99	1	1.01	v
	Variation over voltage and temperature	Relative to T= 85°C, V_{CC} = 3.0V		±1.0		%

37.1.10 Brownout Detection Characteristics

Table 37-17. Brownout detection characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
	BOD level 0 falling V _{CC}		1.60	1.62	1.72		
	BOD level 1 falling V _{CC}			1.8			
	BOD level 2 falling V _{CC}			2.0		V	
N	BOD level 3 falling V_{CC}			2.2			
V _{BOT}	BOD level 4 falling V _{CC}			2.4			
	BOD level 5 falling V _{CC}			2.6			
	BOD level 6 falling V _{CC}			2.8			
	BOD level 7 falling V _{CC}			3.0			
+		Continuous mode		0.4			
t _{BOD}		Sampled mode		1000		μs	
V _{HYST}	Hysteresis			1.4		%	

Table 37-21. Programming time.

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units
	Chip Erase	64KB Flash, EEPROM ⁽²⁾ and SRAM Erase		55		
		Page Erase		4		
Flash	Flash	Page Write		4		
		Atomic Page Erase and Write		8		ms
		Page Erase		4		
	EEPROM	Page Write		4		
		Atomic Page Erase and Write		8		

Notes: 1. Programming is timed from the 2MHz internal oscillator.

2. EEPROM is not erased if the EESAVE fuse is programmed.

37.1.14 Clock and Oscillator Characteristics

37.1.14.1 Calibrated 32.768kHz Internal Oscillator characteristics

Table 37-22. 32.768kHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Frequency			32.768		kHz
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-0.5		0.5	0/_
	User calibration accuracy		-0.5		0.5	/0

37.1.14.2 Calibrated 2MHz RC Internal Oscillator characteristics

Table 37-23. 2MHz internal oscillator characteristics.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Tunable frequency range	DFLL can tune to this frequency over voltage and temperature	1.8		2.2	MHz
	Factory calibrated frequency			2.0		
	Factory calibration accuracy	T = 85°C, V _{CC} = 3.0V	-1.5		1.5	0/_
	DFLL calibration stepsize	T = 25°C, V _{CC} = 3.0V		0.23		/0

37.2.4 Wake-up time from sleep modes

Symbol	Parameter	Condition	Min.	Typ. ⁽¹⁾	Max.	Units	
t _{wakeup}	Wake-up time from idle, standby, and extended standby mode	External 2MHz clock		2.0			
		32.768kHz internal oscillator		120		μs	
		2MHz internal oscillator		2.0			
		32MHz internal oscillator		0.2			
	Wake-up time from Power-save and Power-down mode	External 2MHz clock		4.5			
		32.768kHz internal oscillator		320			
		2MHz internal oscillator		10			
		32MHz internal oscillator		5.5			

Table 37-40.	Device wake-up	time from sleep	modes with v	arious system	clock sources.

Note: 1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 37-9. All peripherals and modules start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.

Atmel

38.1.2 I/O Pin Characteristics

Figure 38-29.I/O pin output voltage vs. sink current.

Figure 38-30.I/O pin output voltage vs. sink current.

38.1.5 Analog Comparator Characteristics

Figure 38-51.Analog comparator hysteresis vs. V_{CC}. *High-speed, small hysteresis.*

Figure 38-90.Idle mode supply current vs. frequency.

Figure 38-89. Active mode supply current vs. V_{cc} . f_{SYS} = 32MHz internal oscillator.

38.2.1.3 Power-down mode supply current

Figure 38-97.Power-down mode supply current vs. Temperature. *All functions disabled*.

Figure 38-98.Power-down mode supply current vs. Temperature. Sampled BOD with Watchdog Timer running on ULP oscillator.

39.2 ATxmega128A1U

39.2.1 Rev. L

- Register ANAINIT in MCUR will always read as zero
- Enabling DFLL with illegal reference oscillator will lock the DFLL
- XOSCPWR configuration is non-functional
- Configuration of PGM and CWCM is not as described in XMEGA AU Manual
- AWEX PWM output after fault restarted with wrong values
- RTC Counter value not correctly read after sleep
- RTC clock output option is non-functional
- USB, when receiving 1023 byte length isochronous frame, it will corrupt 1024th SRAM location
- USB endpoint table is 16-byte alignment
- USB Auto ZLP feature is non-functional
- Disabling the USART transmitter does not automatically set the TxD pin direction to input
- TWI, SDAHOLD configuration in the TWI CTRL register is one bit
- ADC has increased INL error in when used in SE unsigned mode at low temperatures
- ADC is non-functional in SE unsigned mode with VREF below 1.8V
- ADC has increased linearity error when using the gain stage above 500ksps
- DAC Offset calibration range too small when using AVCC as reference
- DAC clock noise
- Internal 1V reference has noise at low temperature

1 Register ANAINIT in MCUR will always read as zero

The ANAINIT register in the MCUR module will always be read as zero even if written to a value. The actual content of the register is correct.

Problem fix/Workaround

Do not use software that reads these registers to get the Analog Initialization configuration.

2. Enabling DFLL with illegal reference oscillator will lock the clock system

If external crystal is selected as reference for DFLL, but no crystal is connected and DFLL is enabled, the DFLL will be locked until reset is issued.

Problem fix/Workaround

Do not enable DFLL before reference clock is present, enabled and ready.

3. XOSCPWR configuration is non-functional

The Crystal oscillator drive (XOSCPWR) option in the XOSC Control register is non-functional.

Problem fix/Workaround

None.

4. Configuration of PGM and CWCM is not as described in XMEGA AU Manual

Configuration of common waveform channel mode (CWCM) and pattern generation mode (PGM), is not as described in the XMEGA AU manual.

