

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

ĿХЕ

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY7C642xx
RAM Size	1K x 8
Interface	I²C, USB
Number of I/O	50
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN-EP (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64215-56ltxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28-Pin Part Pinout

The CY7C64215 enCoRe III device is available in a 28-pin package which is listed and illustrated in the following table. Every port pin (labeled with a "P") is capable of digital I/O. However, V_{SS} and V_{DD} are not capable of digital I/O.

Table 3. 28-Pin Part Pinout (SSOP)

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	Po	wer	GND	Ground connection.
2	I/O	I, M	P0[7]	Analog column mux input.
3	I/O	I/O,M	P0[5]	Analog column mux input and column output.
4	I/O	I/O,M	P0[3]	Analog column mux input and column output.
5	I/O	I,M	P0[1]	Analog column mux input.
6	I/O	М	P2[5]	
7	I/O	М	P2[3]	Direct switched capacitor block input.
8	I/O	М	P2[1]	Direct switched capacitor block input.
9	I/O	М	P1[7]	I ² C SCL
10	I/O	М	P1[5]	I ² C SDA
11	I/O	М	P1[3]	
12	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK.
13	Power		GND	Ground connection.
14	U	SB	D+	
15	U	SB	D-	
16	Po	wer	V_{DD}	Supply voltage.
17	I/O	М	P1[0]	I ² C SCL, ISSP-SDATA.
18	I/O	М	P1[2]	
19	I/O	М	P1[4]	
20	I/O	М	P1[6]	
21	I/O	М	P2[0]	Direct switched capacitor block input.
22	I/O	М	P2[2]	Direct switched capacitor block input.
23	I/O	М	P2[4]	External analog ground (AGND) input.
24	I/O	М	P0[0]	Analog column mux input.
25	I/O	М	P0[2]	Analog column mux input and column output.
26	I/O	М	P0[4]	Analog column mux input and column output.
27	I/O	М	P0[6]	Analog column mux input.
28	Po	wer	V_{DD}	Supply voltage.

Figure 4. CY7C64215 28-Pin enCoRe III Device

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	PMA0_WA	40	RW	ASC10CR0	80	RW	USBIO_CR2	CO	RW
PRT0DM1	01	RW	PMA1_WA	41	RW	ASC10CR1	81	RW	USB_CR1	C1	#
PRT0IC0	02	RW	PMA2_WA	42	RW	ASC10CR2	82	RW			
PRT0IC1	03	RW	PMA3_WA	43	RW	ASC10CR3	83	RW			-
PRT1DM0	04	RW	PMA4_WA	44	RW	ASD11CR0	84	RW	EP1_CR0	C4	#
PRT1DM1	05	RW	PMA5_WA	45	RW	ASD11CR1	85	RW	EP2_CR0	C5	#
PRT1IC0	06	RW	PMA6_WA	46	RW	ASD11CR2	86	RW	EP3_CR0	C6	#
PRT1IC1	07	RW	PMA7_WA	47	RW	ASD11CR3	87	RW	EP4_CR0	C7	#
PRT2DM0	08	RW	_	48			88	1		C8	
PRT2DM1	09	RW		49			89	1		C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СВ	
PRT3DM0	0C	RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	-
PRT3IC0	0E	RW		4E			8E	1		CE	
PRT3IC1	0F	RW		4F			8F			CF	-
PRT4DM0	10	RW	PMA0_RA	50	RW		90	ł	GDI_O_IN	D0	RW
PRT4DM1	11	RW	PMA1 RA	51	RW	ASD20CR1	91	RW	GDI E IN	D1	RW
PRT4IC0	12	RW	PMA2_RA	52	RW	ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	PMA3_RA	53	RW	ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	PMA4_RA	55	RW	ASC21CR0	94	RW	552_00	D3	+
PRT5DM0	14	RW	PMA5_RA	55	RW	ASC21CR1	95	RW		D4 D5	───
PRT5IC0	16	RW	PMA6_RA	56	RW	ASC21CR2	96	RW		D5	───
PRT5IC1	10	RW	PMA7_RA	57	RW	ASC21CR3	97	RW		D7	<u> </u>
11(15)01	18	1.00		58	1	700210103	98	1	MUX_CR0	D8	RW
	19	-		59			99	-	MUX_CR1	D0	RW
	19 1A	-		59 5A			99 9A	-	MUX_CR2	DA	RW
	1A 1B			5A 5B			9A 9B		MUX_CR3	DA	RW
PRT7DM0		RW		5D 5C			9D 9C		MUX_CR3	DC	RVV
	1C										DW/
PRT7DM1	1D	RW		5D			9D		OSC_GO_EN OSC_CR4	DD	RW
PRT7IC0 PRT7IC1	1E	RW		5E			9E			DE	RW
	1F	RW		5F	DW		9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0 OSC_CR1	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1			E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
DDDALEN	23	DW	AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW	AND 004	65	RW		A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0	2B	514		6B	514		AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW	l	AC		MUX_CR4	EC	RW
DCB03IN	2D	RW	TMP_DR1	6D	RW	l	AD		MUX_CR5	ED	RW
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79		1	B9	İ		F9	
	3A			7A	1		BA	Ì		FA	1
	3B		1	7B	1	1	BB	İ		FB	1
	3C	İ	1	7C		1	BC			FC	1
	3D	İ	1	7D		I	BD		DAC_CR	FD	RW
	3E		1	7E	1	1	BE	1	 CPU_SCR1	FE	#
	3F	l	1	7F	1	1	BF		CPU SCR0	FF	#
		and should not b			1	# Access is bit specifi		1		1	1

Absolute Maximum Ratings

Table 5. Absolute Maximum Ratings

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{STG}	Storage temperature	-55	-	+100	°C	Higher storage temperatures reduces data retention time.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	-
T _{BAKETIME}	Bake time	See package label	_	72	Hours	-
T _A	Ambient temperature with power applied	0	_	+70	°C	-
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	_	+6.0	V	-
V _{IO}	DC input voltage	V _{SS} – 0.5	_	V _{DD} + 0.5	V	-
V _{IO2}	DC voltage applied to tristate	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	-
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	-
I _{MAIO}	Maximum current into any port pin configured as an analog driver	-50	-	+50	mA	-
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch up current	_	_	200	mA	-

Operating Temperature

Table 6. Operating Temperature

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{AC}	Commercial ambient temperature	0	-	+70	°C	-
T _{AI}	Industrial ambient temperature	-40	Ι	+85	°C	USB operation requires the use of an external clock oscillator and the 56-pin QFN package.
Т	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See "Thermal Impedance" on page 32. The user must limit the power consumption to comply with this requirement.

DC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.15 V to 3.5 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 8. DC GPIO Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	-
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	-
V _{OH}	High output level	V _{DD} – 1.0	-	_	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I _{OH} budget.
V _{OL}	Low output level	-	_	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined I _{OL} budget.
I _{ОН}	High-level source current	10	_	_	mA	-
I _{OL}	Low-level sink current	25	-	I	mA	-
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.15 to 5.25.
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.15 to 5.25.
V _H	Input hysteresis	-	60	-	mV	-
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

DC Full-Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges when the IMO is selected as system clock: 4.75 V to 5.25 V and 0 °C \leq T_A \leq 70 °C, or 3.15 V to 3.5 V and 0 °C \leq T_A \leq 70 °C, respectively.

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges when an external clock is selected as the system clock: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.15 V to 3.5 V and $-40 \degree C \le T_A \le 85 \degree C$.

Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 9. DC Full Speed (12 Mbps) USB Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
USB Interfa	ace					
V _{DI}	Differential input sensitivity	0.2	-	-	V	(D+) – (D–)
V _{CM}	Differential input common mode range	0.8	-	2.5	V	-
V _{SE}	Single-ended receiver threshold	0.8	-	2.0	V	-
C _{IN}	Transceiver capacitance	-	-	20	pF	-
I _{IO}	High Z state data line leakage	-10	-	10	μA	0 V < V _{IN} < 3.3 V.
R _{EXT}	External USB series resistor	23	-	25	Ω	In series with each USB pin.
V _{UOH}	Static output high, driven	2.8	-	3.6	V	15 k Ω ± 5% to ground. Internal pull-up enabled.
V _{UOHI}	Static output high, idle	2.7	-	3.6	V	15 k $\Omega \pm 5\%$ to ground. Internal pull-up enabled.
V _{UOL}	Static output low	-	-	0.3	V	15 k Ω ± 5% to ground. Internal pull-up enabled.
Z _O	USB driver output impedance	28	-	44	Ω	Including R _{EXT} resistor.
V _{CRS}	D+/D– crossover voltage	1.3	-	2.0	V	-

DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.15 V to 3.5 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 10. 5 V DC Analog Output Buffer Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
CL	Load Capacitance	_	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	-
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	-
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	-
R _{OUTOB}	Output resistance Power = low Power = high		0.6 0.6		W W	-
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1			V V	-
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high		-	0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	-
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high		1.1 2.6	5.1 8.8	mA mA	-
PSRR _{OB}	Supply voltage rejection ratio	53	64	-	dB	$(0.5 \times V_{DD} - 1.3) \le V_{OUT} \le (V_{DD} - 2.3).$

Table 11. 3.3 V DC Analog Output Buffer Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
CL	Load Capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	-
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	-
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	-
R _{OUTOB}	Output resistance Power = low Power = high		1 1		W W	-
V _{OHIGHOB}	High output voltage swing (Load = 1 K Ω to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0			V V	-
V _{OLOWOB}	Low output voltage swing (Load = 1 K Ω to V _{DD} /2) Power = low Power = high			0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	-
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high	_	0.8 2.0	2.0 4.3	mA mA	-
PSRR _{OB}	Supply voltage rejection ratio	34	64	-	dB	$(0.5 \times V_{DD} - 1.0) \le V_{OUT} \le (0.5 \times V_{DD} + 0.9).$

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ }^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85 \text{ }^{\circ}\text{C}$, or 3.15 V to 3.5 V and $-40 \text{ }^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85 \text{ }^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The guaranteed specifications are measured through the analog continuous time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.229	V _{DD} /2 + 1.290	V _{DD} /2 + 1.346	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.038	V _{DD} /2	V _{DD} /2 + 0.040	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.356	V _{DD} /2 – 1.295	V _{DD} /2 – 1.218	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.220	V _{DD} /2 + 1.292	V _{DD} /2 + 1.348	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.036	V _{DD} /2	$V_{DD}/2 + 0.036$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	V _{DD} /2 – 1.297	V _{DD} /2 – 1.225	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.293	V _{DD} /2 + 1.351	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.036	V _{DD} /2	$V_{DD}/2 + 0.036$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	V _{DD} /2 – 1.298	V _{DD} /2 – 1.228	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.219	V _{DD} /2 + 1.293	V _{DD} /2 + 1.353	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.037	V _{DD} /2 - 0.001	$V_{DD}/2 + 0.036$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.359	V _{DD} /2 – 1.299	V _{DD} /2 – 1.229	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.092	P2[4]+P2[6]- 0.011	P2[4]+P2[6]+ 0.064	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4]-P2[6]+ 0.007	P2[4]-P2[6]+ 0.056	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.078	P2[4]+P2[6]- 0.008	P2[4]+P2[6]+ 0.063	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4]-P2[6]+ 0.004	P2[4]-P2[6]+ 0.043	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4]+P2[6]- 0.006	P2[4]+P2[6]+ 0.062	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.032	P2[4]-P2[6]+ 0.003	P2[4]-P2[6]+ 0.038	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4]+P2[6]- 0.006	P2[4]+P2[6]+ 0.062	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.034	P2[4]-P2[6]+ 0.002	P2[4]-P2[6]+ 0.037	V

Table 12. 5-V DC Analog Reference Specifications

Table 12. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.291	P2[4] + 1.354	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.335	P2[4] – 1.294	P2[4] – 1.237	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.221	P2[4] + 1.293	P2[4] + 1.358	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.337	P2[4] – 1.297	P2[4] – 1.243	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.222	P2[4] + 1.294	P2[4] + 1.360	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.338	P2[4] – 1.298	P2[4] – 1.245	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.221	P2[4] + 1.294	P2[4] + 1.362	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.340	P2[4] – 1.298	P2[4] – 1.245	V
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.513	2.593	2.672	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.302	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.008	V _{SS} + 0.038	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.674	V
		V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.028	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.676	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.024	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.677	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.264	1.300	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.021	V
0b111	RefPower = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.028	4.144	4.242	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.028	2.076	2.125	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.008	V _{SS} + 0.034	V
	RefPower = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.032	4.142	4.245	V
	Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.025	V
	RefPower = medium	V _{REFHI}	Ref High	3.2 × Bandgap	4.034	4.143	4.247	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower = medium	V _{REFHI}	Ref High	3.2 × Bandgap	4.036	4.144	4.249	V
	Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.019	V

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.15 V to 3.5 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 16. DC Programming Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
V _{DDP}	V_{DD} for programming and erase	4.5	5.0	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V_{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3.15	_	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	15	30	mA	-
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	-
V _{IHP}	Input high voltage during programming or Verify	2.1	-	-	V	_
I _{ILP}	Input current when applying Vilp to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying Vihp to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	_	V _{SS} +0.75	V	-
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	_	V _{DD}	V	-
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[8]	_	_	_	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[9]	1,800,000	-	_	_	Erase/write cycles.
Flash _{DR}	Flash data retention	10	_	_	Years	-

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.15 V to 3.5 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 17. DC I²C Specifications ^[10]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$3.15~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	$3.15~V \leq V_{DD} \leq 5.25~V$

Notes

- 8. The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0V to 3.6V and 4.75V to 5.25V.
- 9. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 for more information.

10. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the mentioned specifications.

AC Electrical Characteristics

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.15 V to 3.5 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 18. AC Chip-Level Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
F _{IMO245V}	IMO frequency for 24 MHz (5 V)	23.04	24	24.96 ^[11, 12]	MHz	Trimmed for 5 V operation using factory trim values.
F _{IMO243V}	IMO frequency for 24 MHz (3.3 V)	22.08	24	25.92 ^[11,13]	MHz	Trimmed for 3.3 V operation using factory trim values.
F _{IMOUSB}	IMO frequency with USB frequency locking enabled and USB traffic present	23.94	24	24.06 ^[12]	MHz	USB operation for system clock source from the IMO is limited to $0^{\circ}C \leq T_A \leq 70^{\circ}C$.
F _{CPU1}	CPU frequency (5 V nominal)	0.090	24	24.96 ^[11,12]	MHz	SLIMO mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.086	12	12.96 ^[12,13]	MHz	SLIMO mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.92 ^[11,12,14]	MHz	Refer to the AC Digital Block Specifica- tions on page 26.
F _{BLK3}	Digital PSoC block frequency (3.3 V nominal)	0	24	25.92 ^[12,14]	MHz	_
F _{32K1}	ILO frequency	15	32	64	kHz	_
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing.
DC _{ILO}	ILO duty cycle	20	50	80	%	_
DC _{24M}	24-MHz duty cycle	40	50	60	%	
Step24M	24-MH trim step size	_	50	_	kHz	_
Fout48M	48-MHz output frequency	46.08	48.0	49.92 ^[11,13]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output	-	-	12.96	MHz	_
SR _{POWER_UP}	Power supply slew rate	-	_	250	V/ms	_
T _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	_
T _{jit_IMO} ^[15]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	1200	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	_	900	6000	ps	N = 32.
	24 MHz IMO period jitter (RMS)	-	200	900	ps	

Notes

11. 4.75 V < V_{DD} < 5.25 V.
12. Accuracy derived from Internal Main Oscillator with appropriate trim for V_{DD} range.
13. 3.0 V < V_{DD} < 3.6 V. See application note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3 V.

14. See the individual user module data sheets for information on maximum frequencies for user modules.

15. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.15 V to 3.5 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 22. AC External Clock Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
F _{OSCEXT}	Frequency for USB applications	23.94	24	24.06		USB operation in the extended Industrial temperature range (–40 °C \leq T _A \leq 85 °C) requires that the system clock is sourced from an external clock oscillator.
-	Duty cycle	47	50	53	%	-
_	Power-up to IMO switch	150	-	-	μS	-

AC Analog Output Buffer Specifications

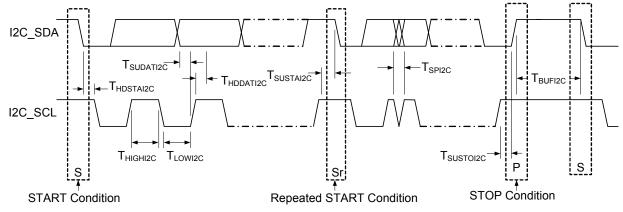
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.15 V to 3.5 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 23. 5 V AC Analog Output Buffer Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{ROB}	Rising settling time to 0.1%, 1 V Step, 100-pF load Power = low Power = high			2.5 2.5	μS μS	-
T _{SOB}	Falling settling time to 0.1%, 1 V Step, 100-pF load Power = low Power = high			2.2 2.2	μs μs	-
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100-pF load Power = low Power = high	0.65 0.65			V/μs V/μs	-
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100-pF load Power = low Power = high	0.65 0.65			V/μs V/μs	-
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3-dB BW, 100-pF load Power = low Power = high	0.8 0.8			MHz MHz	-
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3-dB BW, 100-pF load Power = low Power = high	300 300		_ _	kHz kHz	-

Table 24. 3.3 V AC Analog Output Buffer Specifications

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{ROB}	Rising settling time to 0.1%, 1 V Step, 100-pF load Power = low Power = high			3.8 3.8	μS μS	-
Τ _{SOB}	Falling settling time to 0.1%, 1 V Step, 100-pF load Power = low Power = high			2.6 2.6	μS μS	-
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100-pF load Power = low Power = high	0.5 0.5		_ _	V/μs V/μs	-
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100-pF load Power = low Power = high	0.5 0.5		-	V/μs V/μs	-
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3dB BW, 100-pF load Power = low Power = high	0.7 0.7		_ _	MHz MHz	-
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3dB BW, 100-pF load Power = low Power = high	200 200	_ _	- -	kHz kHz	-


AC I²C Specifications

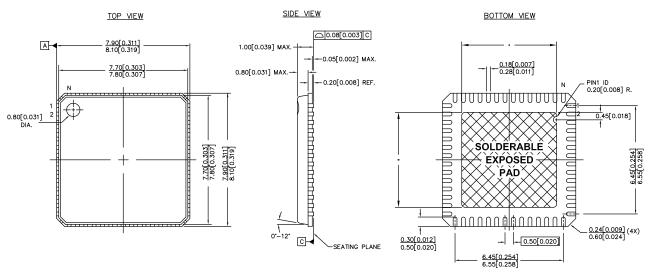
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.15 V to 3.5 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26.	. AC Characteristics of t	he I ² C SDA and SC	L Pins for V _{DD}
-----------	---------------------------	--------------------------------	----------------------------

Deremeter	Description	Standar	Standard-Mode		Fast-Mode		Notes
Parameter		Min	Max	Min	Max	Unit	NOLES
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	-
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	_	μS	-
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS	-
T _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS	-
T _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS	-
T _{HDDATI2C}	Data hold time	0	-	0	-	μS	-
T _{SUDATI2C}	Data setup time	250	-	100 ^[17]	-	ns	-
T _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS	-
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	_	μS	-
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	0	50	ns	-

Note

^{17.} A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement $T_{SUDATI2C} \ge 250$ ns must then be met. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + T_{SUDATI2C} = 1000 + 250 = 1250$ ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.



Packaging Information

This section illustrates the package specification for the CY7C64215 enCoRe III, along with the thermal impedance for the package. **Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Package Diagrams

Figure 8. 56-pin QFN (8 × 8 × 1.0 mm) 4.5 × 5.21 E-Pad (Subcon Punch Type Package) Package Outline, 001-12921

NOTES:

- 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.162g
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LF56A	STANDARD
LY56A	PB-FREE

001-12921 *C

Thermal Impedance

Table 27. Thermal Impedance for the Package

Package	Typical θ _{JA} ^[18]
56-pin QFN ^[19]	20 °C/W
28-pin SSOP	96 ^o C/W

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 28. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
56-pin QFN	260 °C	20 s
28-pin SSOP	260 °C	20 s

Notes 18. $T_J = T_A + POWER \times \theta_{JA}$ 19. To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.

Acronyms

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	PCB	printed circuit board
API	application programming interface	PGA	programmable gain amplifier
CPU	central processing unit	POR	power-on reset
CRC	cyclic redundancy check	PPOR	precision power-on reset
СТ	continuous time	PSoC [®]	Programmable System-on-Chip™
DAC	digital-to-analog converter	PWM	pulse-width modulator
DC	direct current	QFN	quad flat no leads
EEPROM	electrically erasable programmable read-only memory	RF	radio frequency
GPIO	general purpose I/O	SC	switched capacitor
ICE	in-circuit emulator	SLIMO	slow IMO
IDE	integrated development environment	SPI™	serial peripheral interface
ILO	internal low speed oscillator	SRAM	static random-access memory
IMO	internal main oscillator	SROM	supervisory read-only memory
I/O	input/output	SSOP	shrink small-outline package
ISSP	In-System Serial Programming	UART	universal asynchronous receiver / transmitter
LVD	low voltage detect	USB	universal serial bus
MAC	multiply-accumulate	WDT	watchdog timer

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC[®] Programmable System-on-Chip Technical Reference Manual (TRM) (001-14463)

Design Aids – Reading and Writing $PSoC^{\$}$ Flash – AN2015 (001-40459)

buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.
duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.

flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.			
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.			
frequency	The number of cycles or events per unit of time, for a periodic function.			
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.			
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.			
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).			
input/output (I/O)	A device that introduces data into or extracts data from a system.			
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.			
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.			
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.			
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.			
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.			
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.			
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .			
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.			
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.			
modulator	A device that imposes a signal on a carrier.			

SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.			
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.			
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal. 			
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.			
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.			
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.			
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.			
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.			
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.			
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.			

WORKAROUND

To make certain that the index register properly increments, set the CPU_Clock to SysClk/2 (12 MHz) during the read of the PMA buffer. An example for the clock adjustment method follows:

PSoC Designer 4.3 User Module workaround: PSoC Designer Release 4.3 and subsequent releases include a revised full-speed USB User Module with the revised firmware workaround included (see the following example).

```
24-Mhz read PMA workaround
;;
M8C SetBank1
mov A, reg[OSC CR0]
push A
and A, 0xf8 ;clear the clock bits (briefly chg the cpu_clk to 3Mhz)
or A, 0x02 ;will set clk to 12Mhz
mov reg[OSC CR0], A ; clk is now set at 12Mhz
M8C SetBank0
.loop:
   mov A, reg[PMA0 DR] ; Get the data from the PMA space
   mov [X], A ; save it in data array
   inc X ; increment the pointer
   dec [USB APITemp+1] ; decrement the counter
   jnz .loop ; wait for count to zero out
;;
;; 24Mhz read PMA workaround (back to previous clock speed)
::
pop A ; recover previous reg[OSC CR0] value
M8C SetBank1
mov reg[OSC CR0], A ; clk is now set at previous value
M8C SetBank0
;;
;; end 24Mhz read PMA workaround
```

Fix Status

There is no planned silicon fix; use workaround.

Document History Page

Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change
**	131325	See ECN	XGR	New data sheet.
*A	385256	See ECN	BHA	Changed status from Advance Information to Preliminary. Added standard data sheet items. Changed Part number from CY7C642xx to CY7C64215.
*B	2547630	08/04/08	AZIEL / PYRS	Operational voltage range for USB specified under "Full Speed USB (12Mbps)". CMP_GO_EN1 register removed as it has no functionality on Radon. Figure "CPU Frequency" adjusted to show invalid operating region for USB with footnote describing reason. DC electrical characteristic, V _{DD} . Note added describing where USB hardware is non-functional.
*C	2620679	12/12/08	CMCC / PYRS	Added Package Handling information. Deleted note regarding link to amkor.com for MLF package dimensions.
*D	2717887	06/11/2009	DPT	Added 56 -Pin Sawn QFN (8 X 8 mm) package diagram and added CY7C64215-56LTXC part information in the Ordering Information table.
*E	2852393	01/15/2010	BHA / XUT	 Added external clock oscillator option and Industrial Temperature information to the Features, Pin Information, Electrical Specifications, Operating Temper ature, DC Electrical Characteristics, AC Electrical Characteristics, and Ordering Information sections. Updated DC GPIO, AC Chip, and AC Programming Specifications follows: Replaced TRAMP (time) with SRPOWER_UP (slew rate) specification. Added I_{OH}, I_{OL}, DCILO, F32K_U, TPOWERUP, TERASEALL, TPROGRAM_HOT, and TPROGRAM_COLD specifications. Updated V_{DD} ranges on Figure 5 and Table 8. Added notes for VM and VDI on Table 10. Removed TR/TF from Table 20. Update Ordering Information for: CY7C64215-56LFXCT, CY7C64215-28PVXCT, CY7C64215-56LFXCT, CY7C64215-28PVXCT, CY7C64215-56LTXIT Tape and Reel. Updated 28-Pin SSOP and 56-Pin QFN PUNCH and SAWN package diagrams. Updated copyright and Sales, Solutions, and Legal Information URLs.
*F	2892683	03/15/2010	NJF	Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings Updated AC Chip-Level Specifications Removed inactive parts from Ordering Information Updated note in Packaging Information.
*G	3070717	10/25/2010	XUT	Removed reference to CYFISPI in Features. Updated datasheet as per Cypress style guide and new datasheet template.
*H	3090908	11/19/10	CSAI	Updated AC Chip-Level Specifications table. Added DC I ² C Specification.
*	3143408	01/17/11	NJF	Added DC I ² C Specifications table. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-08036 Rev. *M

Revised August 28, 2014

Page 45 of 45

PSoC Designer™ and enCoRe™ are trademarks and PSoC[®] is a registered trademark of Cypress Semiconductor Corporation.

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.