
E·XFL

Zilog - Z8F1601AN020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1601an020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

External Pin Reset 29)
Stop Mode Recovery	
Stop Mode Recovery Using Watch-Dog Timer Time-Out 29)
Stop Mode Recovery Using a GPIO Port Pin Transition 30)
Low-Power Modes	L
Overview	l
Stop Mode	l
Halt Mode	L
General-Purpose I/O 33	3
Overview	3
GPIO Port Availability By Device	3
Architecture	1
GPIO Alternate Functions 34	ł
GPIO Interrupts	5
GPIO Control Register Definitions	5
Port A-H Address Registers	
Port A-H Control Registers	
Port A-H Input Data Registers	2
Port A-H Output Data Register 43	3
Interrupt Controller	l
Overview	1
Interrupt Vector Listing	ł
Architecture	
Operation	
Master Interrupt Enable 46	5
Interrupt Vectors and Priority 47	
Interrupt Assertion Types 47	
Interrupt Control Register Definitions	
Interrupt Request 0 Register	
Interrupt Request 1 Register 49	
Interrupt Request 2 Register 50	
IRQ0 Enable High and Low Bit Registers	
IRQ1 Enable High and Low Bit Registers	
IRQ2 Enable High and Low Bit Registers	
Interrupt Edge Select Register54	
Interrupt Port Select Register 55	
Interrupt Control Register 56	
Timers	
Overview	
Architecture	
Operation	3

Use of All Uppercase Letters

The use of all uppercase letters designates the names of states and commands.

- Example 1: The bus is considered BUSY after the Start condition.
- Example 2: A START command triggers the processing of the initialization sequence.

Bit Numbering

Bits are numbered from 0 to n-1 where n indicates the total number of bits. For example, the 8 bits of a register are numbered from 0 to 7.

Safeguards

It is important that all users understand the following safety terms, which are defined here.

Indicates a procedure or file may become corrupted if the user does not follow directions.

Trademarks

ZiLOG, eZ8, Z8 Encore!, and Z8 are trademarks of <u>ZiLOG, Inc.</u> in the U.S.A. and other countries. All other trademarks are the property of their respective corporations.

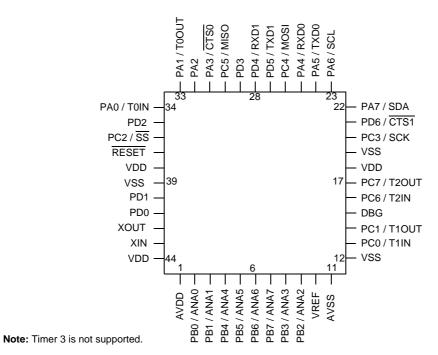


Figure 58. Z8Fxx01 in 44-Pin Low-Profile Quad Flat Package (LQFP)

Signal Descriptions

Table 2 describes the Z8F640x family signals. Refer to the section **Pin Configurations on page 7** to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description				
General-Purpose I/O Ports A-H						
PA[7:0]	I/O	Port A[7:0]. These pins are used for general-purpose I/O.				
PB[7:0]	I/O	Port B[7:0]. These pins are used for general-purpose I/O.				
PC[7:0]	I/O	Port C[7:0]. These pins are used for general-purpose I/O.				
PD[7:0]	I/O	Port D[7:0]. These pins are used for general-purpose I/O.				
PE[7:0]	I/O	Port E[7:0]. These pins are used for general-purpose I/O.				
PF[7:0]	I/O	Port F[7:0]. These pins are used for general-purpose I/O.				
PG[7:0]	I/O	Port G[7:0]. These pins are used for general-purpose I/O.				
PH[3:0]	I/O	Port H[3:0]. These pins are used for general-purpose I/O.				
I ² C Controller						
SCL	0	Serial Clock. This is the output clock for the I ² C. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SCL function, this pin is open-drain.				
SDA	I/O	Serial Data. This open-drain pin is used to transfer data between the I ² C and a slave. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SDA function, this pin is open-drain.				
SPI Controller						
SS	I/O	Slave Select. This signal can be an output or an input. If the Z8 Encore! is the SPI master, this pin may be configured as the Slave Select output. If the Z8 Encore! is the SPI slave, this pin is the input slave select. It is multiplexed with a general-purpose I/O pin.				
SCK	I/O	SPI Serial Clock. The SPI master supplies this pin. If the Z8 Encore! is the SPI master, this pin is an output. If the Z8 Encore! is the SPI slave, this pin is an input. It is multiplexed with a general-purpose I/O pin.				
MOSI	I/O	Master Out Slave In. This signal is the data output from the SPI master device and the data input to the SPI slave device. It is multiplexed with a general-purpose I/O pin.				
MISO	I/O	Master In Slave Out. This pin is the data input to the SPI master device and the data output from the SPI slave device. It is multiplexed with a general-purpose I/O pin.				

Table 2. Signal Descriptions

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
Timer 3 (not av	ailable in 40- and 44- Pin Packages)			
F18	Timer 3 High Byte	ТЗН	00	66
F19	Timer 3 Low Byte	T3L	01	66
F1A	Timer 3 Reload High Byte	T3RH	FF	67
F1B	Timer 3 Reload Low Byte	T3RL	FF	67
F1C	Timer 3 PWM High Byte	T3PWMH	00	69
F1D	Timer 3 PWM Low Byte	T3PWML	00	69
F1E	Reserved	_	XX	
F1F	Timer 3 Control	T3CTL	00	70
F20-F3F	Reserved	_	XX	
UART 0				
F40	UART0 Transmit Data	U0TXD	XX	86
	UART0 Receive Data	U0RXD	XX	87
F41	UART0 Status 0	U0STAT0	0000011Xb	87
F42	UART0 Control 0	U0CTL0	00	89
F43	UART0 Control 1	U0CTL1	00	89
F44	UART0 Status 1	U0STAT1	00	87
F45	Reserved	_	XX	
F46	UART0 Baud Rate High Byte	U0BRH	FF	91
F47	UARTO Baud Rate Low Byte	U0BRL	FF	91
UART 1	· · · · · · · · · · · · · · · · · · ·			
F48	UART1 Transmit Data	UITXD	XX	86
	UART1 Receive Data	U1RXD	XX	87
F49	UART1 Status 0	U1STAT0	0000011Xb	87
F4A	UART1 Control 0	U1CTL0	00	89
F4B	UART1 Control 1	U1CTL1	00	89
F4C	UART1 Status 1	U1STAT1	00	87
F4D	Reserved	_	XX	
F4E	UART1 Baud Rate High Byte	U1BRH	FF	91
F4F	UART1 Baud Rate Low Byte	U1BRL	FF	91
I ² C				
F50	I ² C Data	I2CDATA	00	118
F51	I ² C Status	I2CSTAT	80	118
F52	I ² C Control	I2CCTL	00	119
F53	I ² C Baud Rate High Byte	I2CBRH	FF	121
F54	I ² C Baud Rate Low Byte	I2CBRL	FF	121
F55-F5F	Reserved	_	XX	
	al Interface (SPI)			
F60	SPI Data	SPIDATA	XX	106

Table 6. Register File Address Map (Continued)

System and Short Resets

During a System Reset, the Z8F640x family device is held in Reset for 514 cycles of the Watch-Dog Timer oscillator followed by 16 cycles of the system clock (crystal oscillator). A Short Reset differs from a System Reset only in the number of Watch-Dog Timer oscillator cycles required to exit Reset. A Short Reset requires only 66 Watch-Dog Timer oscillator cycles. Unless specifically stated otherwise, System Reset and Short Reset are referred to collectively as Reset.

During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watch-Dog Timer oscillator continue to run. The system clock begins operating following the Watch-Dog Timer oscillator cycle count. The eZ8 CPU and on-chip peripherals remain idle through the 16 cycles of the system clock.

Upon Reset, control registers within the Register File that have a defined Reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address.

Reset Sources

Table 8 lists the reset sources and type of Reset as a function of the Z8F640x family device operating mode. The text following provides more detailed information on the individual Reset sources. Please note that Power-On Reset / Voltage Brown-Out events always have priority over all other possible reset sources to insure a full system reset occurs.

Operating Mode	Reset Source	Reset Type
Normal or Halt modes	Power-On Reset / Voltage Brown-Out	System Reset
	Watch-Dog Timer time-out when configured for Reset	Short Reset
	RESET pin assertion	Short Reset
	On-Chip Debugger initiated Reset (OCDCTL[1] set to 1)	System Reset except the On-Chip Debugger is unaffected by the reset
Stop mode	Power-On Reset / Voltage Brown-Out	System Reset
	RESET pin assertion	System Reset
	DBG pin driven Low	System Reset

Table 8. Reset Sources and Resulting Reset Type

Architecture

Figure 65 illustrates a block diagram of the interrupt controller.

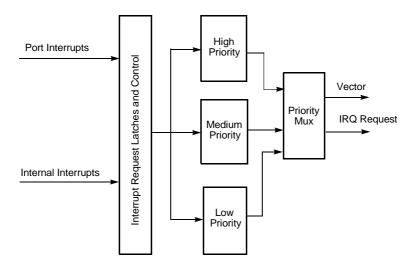


Figure 65. Interrupt Controller Block Diagram

Operation

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

Interrupts are globally enabled by any of the following actions:

- Execution of an EI (Enable Interrupt) instruction
- Execution of an IRET (Return from Interrupt) instruction
- Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:

- Execution of a DI (Disable Interrupt) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control register
- Reset

IRQ0 Enable High and Low Bit Registers

The IRQ0 Enable High and Low Bit registers (Tables 27 and 28) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register. Table 26 describes the priority control for IRQ0.

IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 26. IRQ0 Enable and Priority Encoding

where *x* indicates the register bits from 0 through 7.

Table 27. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	T2ENH	T1ENH	T0ENH	UORENH	U0TENH	I2CENH	SPIENH	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC1H							

T2ENH—Timer 2 Interrupt Request Enable High Bit T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit I2CENH—I²C Interrupt Request Enable High Bit SPIENH—SPI Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

Capture mode

0 = Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

Compare mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Gated mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

Capture/Compare mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PRES—Prescale value.

The timer input clock is divided by 2^{PRES}, where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This insures proper clock division each time the Timer is restarted.

- 000 = Divide by 1
- 001 = Divide by 2
- 010 = Divide by 4
- 011 = Divide by 8
- 100 = Divide by 16
- 101 = Divide by 32
- 110 = Divide by 64
- 111 = Divide by 128

TMODE—Timer mode

- 000 =One-Shot mode
- 001 = Continuous mode
- 010 =Counter mode
- 011 = PWM mode
- 100 = Capture mode
- 101 = Compare mode
- 110 = Gated mode
- 111 = Capture/Compare mode

0 = No parity error has occurred.

1 = A parity error has occurred.

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, then reading the UART Receive Data register clears this bit.

0 = No overrun error occurred.

1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

0 = No framing error occurred.

1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all zeros then this bit is set to 1. Reading the UART Receive Data register clears this bit.

0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

CTS—CTS signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal.

mitter and receiver sections, a Baud Rate (clock) Generator and a control unit. The transmitter and receiver sections use the same clock.

During an SPI transfer, data is sent and received simultaneously by both the Master and the Slave SPI devices. Separate signals are required for data and the serial clock. When an SPI transfer occurs, a multi-bit (typically 8-bit) character is shifted out one data pin and an multi-bit character is simultaneously shifted in on a second data pin. An 8-bit shift register in the Master and another 8-bit shift register in the Slave are connected as a circular buffer. The SPI shift register is single-buffered in the transmit and receive directions. New data to be transmitted cannot be written into the shift register until the previous transmission is complete and receive data (if valid) has been read.

SPI Signals

The four basic SPI signals are:

- MISO (Master-In, Slave-Out)
- MOSI (Master-Out, Slave-In)
- SCK (SPI Serial Clock)
- \overline{SS} (Slave Select)

The following paragraphs discuss these SPI signals. Each signal is described in both Master and Slave modes.

Master-In, Slave-Out

The Master-In, Slave-Out (MISO) pin is configured as an input in a Master device and as an output in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. The MISO pin of a Slave device is placed in a high-impedance state if the Slave is not selected. When the SPI is not enabled, this signal is in a highimpedance state.

Master-Out, Slave-In

The Master-Out, Slave-In (MOSI) pin is configured as an output in a Master device and as an input in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. When the SPI is not enabled, this signal is in a high-impedance state.

Serial Clock

The Serial Clock (SCK) is used to synchronize data movement both in and out of the device through its MOSI and MISO pins. In Master mode, the SPI's Baud Rate Generator creates the serial clock. The Master drives the serial clock out its own SCK pin to the Slave's SCK pin. When the SPI is configured as a Slave, the SCK pin is an input and the clock signal from the Master synchronizes the data transfer between the Master and Slave devices. Slave devices ignore the SCK signal, unless the \overline{SS} pin is asserted.

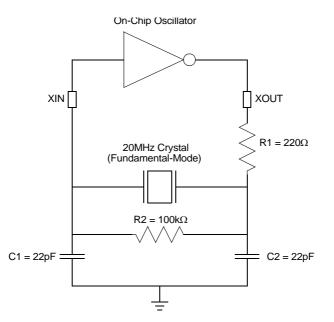


Figure 90. Recommended Crystal Oscillator Configuration (20MHz operation)

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	25	Ω	Maximum
Load Capacitance (CL)	20	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 99. Recommended Crystal Oscillator Specifications (20MHz Operation)

		V _I T _A =	$D_D = 3.0 - 3.0 - 3.0 - 40^{\circ}$ C to 1	.6V 05 ⁰ C		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
	DC Offset Error	-50	_	25	mV	40-pin PDIP, 44-pin LQFP, 44-pin PLCC, and 68-pin PLCC packages.
V _{REF}	Internal Reference Voltage	-	2.0	_	V	
	Single-Shot Conversion Time	_	5129	-	cycles	System clock cycles
	Continuous Conversion Time	_	256	_	cycles	System clock cycles
	Sampling Rate	System Clock / 256		Hz		
	Signal Input Bandwidth	-	-	3.5	kHz	
R _S	Analog Source Impedance	-	-	10 ¹	kΩ	
Zin	Input Impedance		150		kΩ	20MHz system clock. Input impedance increases with lower system clock frequency.
V _{REF}	External Reference Voltage			AVDD	V	AVDD <= VDD. When using an external reference voltage, decoupling capacitance should be placed from VREF to AVSS.

Table 106. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

¹ Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.

General Purpose I/O Port Output Timing

Figure 94 and Table 108 provide timing information for GPIO Port pins.

Figure 94. GPIO Port Output Timing

Table 108. GPIO Port Output Timing

		Delay (ns)	
Parameter	Abbreviation	Minimum	Maximum
T ₁	XIN Rise to Port Output Valid Delay	_	15
T ₂	XIN Rise to Port Output Hold Time	2	-

SPI Master Mode Timing

Figure 96 and Table 110 provide timing information for SPI Master mode pins. Timing is shown with SCK rising edge used to source MOSI output data, SCK falling edge used to sample MISO input data. Timing on the SS output pin(s) is controlled by software.

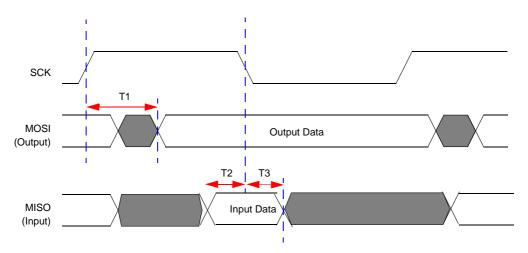


Figure 96. SPI Master Mode Timing

Table	110.	SPI	Master	Mode	Timing
-------	------	-----	--------	------	--------

		Dela	y (ns)
Parameter	Abbreviation	Minimum	Maximum
T ₁	SCK Rise to MOSI output Valid Delay	-5	+5
T ₂	MISO input to SCK (receive edge) Setup Time	20	
T ₃	MISO input to SCK (receive edge) Hold Time	0	

Notation	Description	Operand	Range							
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).							
сс	Condition Code	_	See Condition Codes overview in the eZ8 CPU Use Manual.							
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH							
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH							
IM	Immediate Data	#Data	Data is a number between 00H to FFH							
Ir	Indirect Working Register	@Rn	n = 0 - 15							
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH							
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14							
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH							
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.							
r	Working Register	Rn	n = 0 - 15							
R	Register	Reg	Reg. represents a number in the range of 00H to FFH							
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 which is an offset relative to the address of the next instruction							
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14							
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH							
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH							
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.							

Table 115. Notational Shorthand

Table 116 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Mnemonic	Operands	Instruction							
CCF	_	Complement Carry Flag							
DI	—	Disable Interrupts							
EI	_	Enable Interrupts							
HALT	_	Halt Mode							
NOP	_	No Operation							
RCF	—	Reset Carry Flag							
SCF	_	Set Carry Flag							
SRP	src	Set Register Pointer							
STOP	—	Stop Mode							
WDT	_	Watch-Dog Timer Refresh							

Table 121. CPU Control Instructions

Table 122. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Assembly		Address Mode		Opcode(s)	Flags						Fotob	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	V	D	Н		Cycles
POP dst	$dst \leftarrow @SP$ $SP \leftarrow SP + 1$	R		50	-	-	-	-	-	-	2	2
		IR		51	-						2	3
POPX dst	$dst \leftarrow @SP \\ SP \leftarrow SP + 1$	ER		D8	-	-	-	-	-	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	-	-	-	-	-	-	2	2
	$@SP \leftarrow src$	IR		71	-						2	3
PUSHX src	$SP \leftarrow SP - 1$ @SP \leftarrow src	ER		C8	-	-	-	-	-	-	3	2
RCF	C ← 0			CF	0	-	-	-	-	-	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	-	-	-	-	1	4
RL dst	C	R		90	*	*	*	*	-	-	2	2
		IR		91	-						2	3
RLC dst	C	R		10	*	*	*	*	-	-	2	2
		IR		11							2	3
RR dst		R		E0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 dst	IR		E1	-						2	3
RRC dst	► D7D6D5D4D3D2D1D0 ► C	R		C0	*	*	*	*	-	-	2	2
		IR		C1	-						2	3
Flags Notation:	 * = Value is a function of the result of the operation. - = Unaffected X = Undefined 				0 = Reset to 0 $1 = Set to 1$							

Table 126. eZ8 CPU Instruction Summary (Continued)

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

205

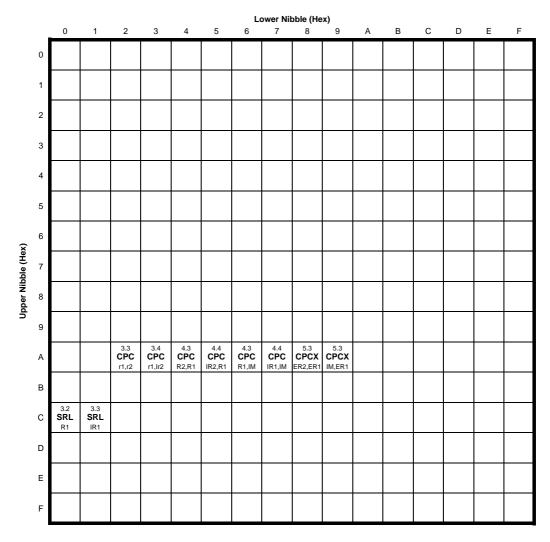


Figure 102. Second Opcode Map after 1FH

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are reporting a specific problem, include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.