
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1601an020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal and Pin Descriptions

Overview

The Z8F640x family products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information regarding the physical package specifications, please refer to the chapter Packaging on page 206.

Available Packages

Table 2 identifies the package styles that are available for each device within the Z8F640x family product line.

	-					
Part Number	40-pin PDIP	44-pin LQFP	44-pin PLCC	64-pin LQFP	68-pin PLCC	80-pin QFP
Z8F1601	Х	Х	Х			
Z8F1602				Х	Х	
Z8F2401	Х	Х	Х			
Z8F2402				Х	Х	
Z8F3201	Х	Х	Х			
Z8F3202				Х	Х	
Z8F4801	Х	Х	Х			
Z8F4802				Х	Х	
Z8F4803						Х
Z8F6401	Х	Х	Х			
Z8F6402				Х	Х	
Z8F6403						Х

Table 2.Z8F640x family Package Options

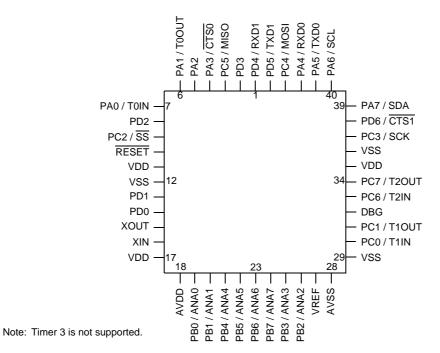


Figure 57. Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)

8

Signal Mnemonic	I/O	Description
Reset		
RESET	I	RESET. Generates a Reset when asserted (driven Low).
Power Supply		
VDD	Ι	Power Supply.
AVDD	Ι	Analog Power Supply.
VSS	I	Ground.
AVSS	I	Analog Ground.

Table 2. Signal Descriptions (Continued)

Pin Characteristics

Table 3 provides detailed information on the **acter** ristics for each pin available on the Z8F640x family products. Data in Table 3 is sorted alphabetically by the pin symbol mnemonic.

Table 3. Pin Characteristics of the **Z8F640x family**

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-up or Pull-down	Schmitt Trigger Input	Open Drain Output									
AVSS	N/A	N/A	N/A	N/A	No	No	N/A									
AVDD	N/A	N/A	N/A	N/A	No	No	N/A									
DBG	I/O	I	N/A	Yes	No	Yes	Yes									
VSS	N/A	N/A	N/A	N/A	No	No	N/A									
PA[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable									
PB[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable									
PC[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable									
PD[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable									
PE7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable									
x represents i	nteger 0, 1,	to indicate	multiple pins v	vith symbol	mnemonics	that differ o	<i>x</i> represents integer 0, 1, to indicate multiple pins with symbol mnemonics that differ only by the integer									

General-Purpose I/O

Overview

The Z8F640x family products support a maximuf seven 8-bit ports (Ports A-G) and one 4-bit port (Port H) for general-purposeuit/output (I/O) operations. Each port contains control and data registers. The GPIOtcod registers are used to determine data direction, open-drain, outputrive current and alternate pin functions. Each port pin is individually programmable.

GPIO Port Availability By Device

Not all Z8F640x family products support all 8 ports (A-H). Table 10 lists the port pins available with each device and package type.

Device	Packages	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H
Z8F1601	40-pin	[7:0]	[7:0]	[6:0]	[6:3, 1:0]	-	-	-	-
Z8F1601	44-pin	[7:0]	[7:0]	[7:0]	[6:0]				
Z8F1602	64- and 68-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7]	[3]	[3:0]
Z8F2401	40-pin	[7:0]	[7:0]	[6:0]	[6:3, 1:0]	-	-	-	-
Z8F2401	44-pin	[7:0]	[7:0]	[7:0]	[6:0]	-	-	-	-
Z8F2402	64- and 68-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7]	[3]	[3:0]
Z8F3201	40-pin	[7:0]	[7:0]	[6:0]	[6:3, 1:0]	-	-	-	-
Z8F3201	44-pin	[7:0]	[7:0]	[7:0]	[6:0]	-	-	-	-
Z8F3202	64- and 68-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7]	[3]	[3:0]
Z8F4801	40-pin	[7:0]	[7:0]	[6:0]	[6:3, 1:0]	-	-	-	-
Z8F4801	44-pin	[7:0]	[7:0]	[7:0]	[6:0]	-	-	-	-
Z8F4802	64- and 68-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7]	[3]	[3:0]
Z8F4803	80-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[3:0]
Z8F6401	40-pin	[7:0]	[7:0]	[6:0]	[6:3, 1:0]	-	-	-	-

Port A-H Data Direction Sub-Registers

The Port A-H Data Direction sub-registeraiscessed through the Port A-H Control register by writing 01H to the Port A+ Address register (Table 15).

Table 15. Port A-H Data Direction Sub-Registers

BITS	7	6	5	4	3	2	1	0		
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0		
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		If 01H in Port A-H Address Register, accessible via Port A-H Control Register								

DD[7:0]—Data Direction

These bits control the direction of the asatecial port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 = Output. Data in the Port A-H Output **ta** egister is driven onto the port pin.

1 = Input. The port pin is sampled and the value written into the Port A-H Input Data Register. The output driver is tri-stated.

Port A-H Alternate Function Sub-Registers

The Port A-H Alternate Function sub-register (Table 16) is accessed through the Port A-H Control register by writing 2H to the Port A-H Address register. The Port A-H Alternate Function sub-registers select the alternate functions for the selected pins. Refer to the **GPIO Alternate Functions** section to determine the alternate function associated with each port pin.

Caution: Do not enable alternate function **GPIO** port pins which do not have an associated alternate function. Failur**édto**w this guideline may result in unpredictable operation.

BITS	7	6	5	4	3	2	1	0		
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		If 02H in Port A-H Address Register, accessible via Port A-H Control Register								

Table 16. Port A-H Alternate Function Sub-Registers

57

Timers

Overview

The Z8F640x family products contain three douf 16-bit reloadable timers that can be used for timing, event counting, or generation pulse-width modulated (PWM) signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock tigag, or capture signal. External input pin signal frequency is limited to a maximum fone-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in tbhapter, the Baud RaGenerators for any unused UART, SPI, $o^2 \mathbb{C}$ peripherals may also be used to provide basic timing functionality. Refer to the respective serial communication peripheral chapters for information on using the Baud Rate Generators as timers. Timer 3 is unavailable in the 40- and 44-pin packages.

Architecture

Figure 66 illustrates the architecture of the timers.

out, first set the POL bit in the Timer Control Register to the start value before beginning One-Shot mode. Then, after starting the timer **set** to the opposite bit value.

The steps for configuring a timer for One-Shoulde and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for One-Shot mode.
 - Set the prescale value.
 - If using the Timer Output alternate functioset the initial output level (High or Low).
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If desired, enable the timer interrupt **ared** the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, cogfire the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In One-Shot mode, the system clock always vides the timer input. The timer period is given by the following equation:

One-Shot Mode Time-Out Period (s) = (Reload Value – Start Value) × Prescale System Clock Frequency (Hz)

Continuous Mode

In Continuous mode, the timer counts up **to 16**-bit Reload value stored in the Timer Reload High and Low Byte registers. The **time**put is the system clock. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset **to 1H** and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon timer Reload.

The steps for configuring a timer for Continuous de and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Continuous mode.
 - Set the prescale value.

set to 2-byte transfers, the temporary holdingister for the Timer Reload High Byte is not bypassed.

BITS	7	6	5	4	3	2	1	0		
FIELD	TRH									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F02H, F0AH, F12H, F1AH								

Table 40. Timer 0-3 Reload High Byte Register (TxRH)

Table 41. Timer 0-3 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0		
FIELD	TRL									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F03H, F0BH, F13H, F1BH								

TRH and TRL—Timer Reload Register High and Low

These two bytes form the 16-bit Reload val(TeRH[7:0], TRL[7:0]}. This value is used to set the maximum count value which initiates a timer reload to H. In Compare mode, these two byte form the 16-bit Compare value.

86

3. Enable the Baud Rate Generator timer **fionc** and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

UART Control Register Definitions

The UART control registers support both the RWs and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, refer **Infrared Encoder**/ **Decoder** chapter on page 95.

UART x Transmit Data Register

Data bytes written to the UARTTransmit Data register (Table 50) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the Read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0		
FIELD	TXD									
RESET	х	х	х	х	Х	х	х	х		
R/W	W	W	W	W	W	W	W	W		
ADDR		F40H and F48H								

Table 50. UARTx Transmit Data Register (UxTXD)

TXD—Transmit Data

UART transmitter data byte to be shifted out through the **T** XID.

89

BITS	7	6	5	4	3	2	1	0		
FIELD		Reserved								
RESET	0	0	0	0	0	0	0	0		
R/W	R	R	R	R	R	R	R	R		
ADDR				F44H a	nd F4CH					

Table 53. UARTx Status 1 Register (UxSTAT1)

Reserved

These bits are reserved and must be 0.

MPRX—Multiprocessor Receive

This status bit is for the receiver and reflectes actual status of the last multiprocessor bit received. Reading from the UART Dategister resets this bit to 0.

UART x Control 0 and Control 1 Registers

The UARTx Control 0 and Control 1 registers (Test 54 and 55) configure the properties of the UART's transmit and receive operation be UART Control registers must ben be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F42H and F4AH							

Table 54. UARTx Control 0 Register (UxCTL0)

TEN—Transmit Enable

This bit enables or disables the transmittee enable is also controlled by the Cational and the CTSE bit. If the CTS signal is low and the TSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

- 0 = Receiver disabled.
- 1 = Receiver enabled.

Table 58. UART Baud Rates

20.0 MHz System Clock

Desired Rate	Desired Rate BRG Divisor		Error
(kHz)	(Decimal)	(kHz)	(%)
1250.0	1	1250.0	0.00
625.0	2	625.0	0.00
250.0	5	250.0	0.00
115.2	11	113.6	-1.36
57.6	22	56.8	-1.36
38.4	33	37.9	-1.36
19.2	65	19.2	0.16
9.60	130	9.62	0.16
4.80	260	4.81	0.16
2.40	521	2.40	-0.03
1.20	1042	1.20	-0.03
0.60	2083	0.60	0.02
0.30	4167	0.30	-0.01

Desired Rate	BRG Divisor	Actual Rate	Error		
(kHz)	(Decimal)	(kHz)	(%)		
1250.0	1	1152.0	-7.84%		
625.0	2	576.0	-7.84%		
250.0	5	230.4	-7.84%		
115.2	10	115.2	0.00		
57.6	20	57.6	0.00		
38.4	30	38.4	0.00		
19.2	60	19.2	0.00		
9.60	120	9.60	0.00		
4.80	240	4.80	0.00		
2.40	480	2.40	0.00		
1.20	960	1.20	0.00		
0.60	1920	0.60	0.00		
0.30	3840	0.30	0.00		

18.432 MHz System Clock

11.0592 MHz System Clock

16.667 MHz System Clock

Desired Rate	BRG Divisor	Actual Rate	Error	Desired Rate	BRG Divisor	Actual Rate	Error
(kHz)	(Decimal)	(kHz)	(%)	(kHz)	(Decimal)	(kHz)	(%)
1250.0	1	1041.69	-16.67	1250.0	N/A	N/A	N/A
625.0	2	520.8	-16.67	625.0	1	691.2	10.59
250.0	4	260.4	4.17	250.0	3	230.4	-7.84
115.2	9	115.7	0.47	115.2	6	115.2	0.00
57.6	18	57.87	0.47	57.6	12	57.6	0.00
38.4	27	38.6	0.47	38.4	18	38.4	0.00
19.2	54	19.3	0.47	19.2	36	19.2	0.00
9.60	109	9.56	-0.45	9.60	72	9.60	0.00
4.80	217	4.80	-0.83	4.80	144	4.80	0.00
2.40	434	2.40	0.01	2.40	288	2.40	0.00
1.20	868	1.20	0.01	1.20	576	1.20	0.00
0.60	1736	0.60	0.01	0.60	1152	0.60	0.00
0.30	3472	0.30	0.01	0.30	2304	0.30	0.00

If the current ADC Analog Input is not theighest numbered input to be converted, DMA_ADC initiates data conversion in the thigher numbered ADC Analog Input.

Configuring DMA_ADC for Data Transfer

Follow these steps to configure and enable DMA_ADC:

- 1. Write the DMA_ADC Address register with the 7 most-significant bits of the Register File address for data transfers.
- 2. Write to the DMA_ADC Control register to complete the following:
 - Enable the DMA_ADC interrupt request, if desired
 - Select the number of ADC Analog Inputs to convert
 - Enable the DMA_ADC channel
- Caution:
 When using the DMA_ADC to perform conversions on multiple ADC inputs and the DC_IN field in the DMA_ADC Control Register is greater than 000b, the Analog-to-Digital Converter must be configured for Single-Shot mode.

Continuous mode operation of the ADC **carly** be used in conjunction with DMA_ADC if the ADC_IN field in the DMA_ADC Control Register is reset to 000b to enable conversion on ADC Analog Input 0 only.

DMA Control Register Definitions

DMA x Control Register

The DMAx Control register is used to enabled select the mode of operation for DMA

BITS	7	6	5	4	3	2	1	0
FIELD	DEN	DLE	DDIR	IRQEN	WSEL		RSS	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FB0H, FB8H							

Table 71. DMAx Control Register (DMAxCTL)

DEN—DMAx Enable

0 = DMAx is disabled and data traffer requests are disregarded.

Analog-to-Digital Converter

Overview

The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary number. The features of the sigma-delta ADC include:

- 12 analog input sources are multiplexed with general-purpose I/O ports
- Interrupt upon conversion complete
- Internal voltage reference generator
- Direct Memory Access (DMA) controller pæutomatically initiate data conversion and transfer of the data from 1 to 12 of the analog inputs.

Architecture

Figure 83 illustrates the three major function blacks (converter, analog multiplexer, and voltage reference generator) of the ADC. THEC converts an analog input signal to its digital representation. The 12-input analog multiplexer selects one of the 12 analog input sources. The ADC requires an input reference for the conversion. The voltage reference for the conversion may be input throthe external VREF pin or generated internally by the voltage reference generator.

Debug Command	Command Byte	Enabled when NOT in Debug mode?	Disabled by Read Protect Option Bit
Write Program Memory	0AH	-	Disabled
Read Program Memory	0BH	-	Disabled
Write Data Memory	0CH	-	Yes
Read Data Memory	0DH	-	-
Read Program Memory CR	C 0EH	-	-
Reserved	0FH	-	-
Step Instruction	10H	-	Disabled
Stuff Instruction	11H	-	Disabled
Execute Instruction	12H	-	Disabled
Reserved	13H - 1FH	-	-
Write Watchpoint	20H	-	Disabled
Read Watchpoint	21H	-	-
Reserved	22H - FFH	-	-

Table 93. On-Chip Debugger Commands

In the following bulleted list of OCD Commands and commands sent from the host to the On-Chip Debugger are identified by G <-- Command/Data'. Data sent from the On-Chip Debugger back to the host is identified by C'--> Data'

• Read OCD Revision (00H)—The Read OCD Revisiorommand is used to determine the version of the On-Clopebugger. If OCD commands are added, removed, or changed, this vision number changes.

```
DEG <-- 00H
DEG --> OCDREV[15:8] (Major revision number)
DEG --> OCDREV[7:0] (Minor revision number)
```

• **Read OCD Status Register (02H)**—The Read OCD Status Register command is used to read the OCDSTAT register.

```
DBG <-- 02H
DBG --> OCDSTAT[7:0]
```

• Read Runtime Counter (03H)—The Runtime Counter is used to count Z8 Encore! system clock cycles in between Breakpoints. The 16-bit Runtime Counter counts up from 0000H and stops at the maximum counteofFH. The Runtime Counter is overwritten during the Write Memory, Readtemory, Write Register, Read Register, Read Memory CRC, Step InstructionufSInstruction, and Execute Instruction commands.

Parameter	Minimum	Maximum	Units	Notes
68-Pin PLCC Maximum Ratings at 70 ⁰ C to 105 ⁰ C				
Total power dissipation		500	mW	
Maximum current into $ ot\!$		140	mA	
64-Pin LQFP Maximum Ratings at -40°C to 70°C				
Total power dissipation		1000	mW	
Maximum current into $ ot\!$		275	mA	
64-Pin LQFP Maximum Ratings at 70 ⁰ C to 105 ⁰ C				
Total power dissipation		540	mW	
Maximum current into		150	mA	
44-Pin PLCC Maximum Ratings at -40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into $ ot\!$		200	mA	
44-Pin PLCC Maximum Ratings at 70 ⁰ C to 105 ⁰ C				
Total power dissipation		295	mW	
Maximum current into \mathcal{Y}_D or out of V_{SS}		83	mA	
44-pin LQFP Maximum Ratings at -40°C to 70°C				
Total power dissipation		750	mW	
Maximum current into \mathcal{Y}_D or out of V_{SS}		200	mA	
44-pin LQFP Maximum Ratings at 70 ⁰ C to 105 ⁰ C				
Total power dissipation		410	mW	
Maximum current into \mathcal{Y}_D or out of V_{SS}		114	mA	
40-Pin PDIP Maximum Ratings at -40°C to 70°C				
Total power dissipation		1000	mW	
Maximum current into $ ot\!$		275	mA	
40-Pin PDIP Maximum Ratings at 70°C to 105°C				
Total power dissipation		540	mW	
Maximum current into		150	mA	
Natao				

Notes:

 This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B and Port H), RESET, and where noted otherwise. 168

AC Characteristics

The section provides information on th€ characteristics and timing of the Z8 Encore!™. All AC timing information assumes a standard load of 50pF on all outputs.

Table 102. AC Characteristics

		$V_{DD} = 3$ $T_A = -40^{\circ}$	$V_{DD} = 3.0 - 3.6V$ $T_A = -40^{\circ}C$ to $105^{\circ}C$		
Symbol	Parameter	Minimum	Maximum	Units	Conditions
F _{syscik}	System Clock Frequency	-	20.0	MHz	Read-only from Flash memory.
		0.032768	20.0	MHz	Program or erasure of the Flash memory.
F _{XTAL}	Crystal Oscillator Frequency	1.0	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an external clock driver.
T _{XIN}	System Clock Period	50	-	ns	T _{CLK} = 1/F _{sysclk}
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50ns
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50ns

On-Chip Debugger Timing

Figure 95 and Table 109 provide timing information for DBG pins. The timing specifications presume a rise and fall time on DBG of less that 4

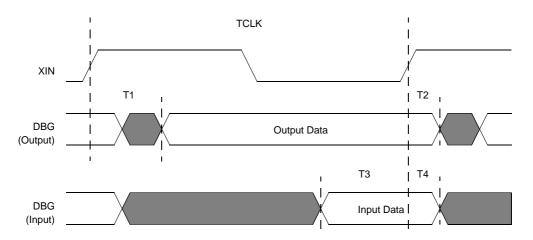


Figure 95. On-Chip Debugger Timing

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
DBG					
T ₁	XIN Rise to DBG Valid Delay	-	15		
T ₂	XIN Rise to DBG Output Hold Time	2	-		
T ₃	DBG to XIN Rise Input Setup Time	10	_		
T ₄	DBG to XIN Rise Input Hold Time	5	_		
	DBG frequency		System Clock / 4		

Table	109.	On-Chip	Debugger	Timing
		on omp	200000000	

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry
RR	dst	Rotate Right
RRC	dst	Rotate Right through Carry
SRA	dst	Shift Right Arithmetic
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

Table 125. Rotate and Shift Instructions

eZ8 CPU Instruction Summary

Table 126 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instructiont de, and the number of CPU clock cycles required for the instruction.

Assembly Mnemonic	Symbolic Operation	Address Mode		Opcode (s)	Flags						- Fetch	Instr	
		dst	src	(Hex)	С	Z	ł	S	v	D	Н	I Cycles	
ADC dst, src	dst– dst + src + C	r	r	12	*		۲	*	*	0	*	2	3
		r	lr	13	•							2	4
		R	R	14	•							3	3
		R	IR	15	•							3	4
		R	IM	16	•							3	3
		IR	IM	17	•							3	4
ADCX dst, src	dst– dst + src + C	ER	ER	18	,	*	*	*	*	0	*	4	3
		ER	IM	19	•							4	3
Flags Notation:	* = Value is a function - = Unaffected X = Undefined	n of the re	esult of	the operatio	n.	-			to	:o 0 1			

Table 126. eZ8 CPU Instruction Summary

Part	Flash KB (Bytes)	RAM KB (Bytes)	Max. Speed (MHz)	Temp (⁰ C)	Voltage (V)	Package	Part Number					
Z8 Encore! [®] with 48KB Flash, Extended Temperature												
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	PDIP-40	Z8F4801PM020EC					
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	LQFP-44	Z8F4801AN020EC					
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	PLCC-44	Z8F4801VN020EC					
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	LQFP-64	Z8F4802AR020EC					
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	PLCC-68	Z8F4802VS020EC					
Z8 Encore®	48 (49,152)	4 (4096)	20	-40 to +105	3.0 - 3.6	QFP-80	Z8F4803FT020EC					
Z8 Encore! [®] with 64KB Flash, Extended Temperature												
Z8 Encore®	64 (65,536)	4 (4096)	20	-40 to +105	3.0 - 3.6	PDIP-40	Z8F6401PM020EC					
Z8 Encore®	64 (65,536)	4 (4096)	20	-40 to +105	3.0 - 3.6	LQFP-44	Z8F6401AN020EC					
Z8 Encore®	64 (65,536)	4 (4096)	20	-40 to +105	3.0 - 3.6	PLCC-44	Z8F6401VN020EC					
Z8 Encore®	64 (65,536)	4 (4096)	20	-40 to +105	3.0 - 3.6	LQFP-64	Z8F6402AR020EC					
Z8 Encore!v	64 (65,536	6) 4 (4096)) 20	-40 to +105	3.0 - 3.6	PLCC-68	Z8F6402VS020EC					
Z8 Encore®	64 (65,536)	4 (4096)	20	-40 to +105	3.0 - 3.6	QFP-80	Z8F6403FT020EC					
Z8 Encore! [®] Development Tools												
Z8 Encore [®]	Developer K	it					Z8ENCORE000ZCO					

Table 128. Ordering Information (Continued)

Contact ZILOG's worldwide customer support for more information on ordering the Z8 Encore?. The customer support notice is open from 7 a.nto 7 p.m. Pacific Time.

The customer support toll-free number **Z**akCOG is 1-877-ZiLOGCS (1-877-945-6427). For Z8 Encore[®] the customer support toll-free nber is 1-866-498-3636. The FAX number for the customer support center is 1-603-316-0345. Customers can also gain access to customer support using the ZiLOG website. Z8 Encentes its own web page at www.zilog.com/z8encore

For customer service, navigate your browser to:

http://register.zilog.com/login.asp?login = servicelogin

For technical support, navigate your browser to:

http://register.zilog.com/login.asp?login = supportlogin

register109, 126, 184 ADC control (ADCCTL)135 ADC data high byte (ADCDH) 37 ADC data low bits (ADCDL)137 baud low and high byte (I2CI)21 baud rate high and low byte (SPI)0 control (SPI)107 control, I2C119 data, SPI106 DMA status (DMAA_STAT)131 DMA ADC address128 DMA_ADC control DMAACTL) 130 DMAx address high nibble (DMAxH)26 DMAx control (DMAxCTL) 124 DMAx end/address low byte (DMAxEND)28 DMAx start/current address low byte register (DMAxSTART) 128 flash control (FCTL)144 flash high and low byte (FFREQH and FREEQL)147 flash page select (FP\$46 flash status (FSTAT)45 GPIO port A-H address (PxADDR3)7 GPIO port A-H alternate function sub-register39 GPIO port A-H control address (PxCTB) GPIO port A-H data direction sub-registes I2C baud rate high (I2CBRH)21 I2C control (I2CCTL)119 I2C data (I2CDATA)118 I2C status118 I2C status (I2CSTAT)18 I2Cbaud rate low (I2CBRL)21 mode, SPI109 OCD control161 OCD status 62 OCD watchpoint addrests64 OCD watchpoint control 63 OCD watchpoint data64 SPI baud rate high byte (SPIBRH)0 SPI baud rate low byte (SPIBRL)0 SPI control (SPICTL)107 SPI data (SPIDATA)106 SPI status (SPISTAT)08

status, I2CI18 status, SP108 UARTx baud rate high byte (UxBRH9)1 UARTx baud rate low byte (UxBRL92 UARTx Control 0 (UxCTL0)89 UARTx control 1 (UxCTL1)90 UARTx receive data (UxRXD§7 UARTx status 0 (UxSTAT087 UARTx status 1 (UxSTAT189 UARTx transmit data (UxTXD86 watch-dog timer control (WDTCTL75 watch-dog timer reload high byte (WDTF/6) watch-dog timer reload low byte (WDTIZ)7 watch-dog timer reload upper byte (WDTKB register file17 register file address mago register pair 84 register pointer 85 reset and stop mode characterist25 and stop mode recove25 carry flag188 controller5 sources₂₆ **RET 190** return190 return information216 RL 191 **RLC 191** rotate and shift instructions91 rotate left191 rotate left through carry91 rotate right191 rotate right through carr/v91 **RP185** RR 184, 191 rr 184 RRC 191

S

SBC 188 SCF 188, 189 SCK 101 225