E·XFL

Zilog - Z8F1601AN020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1601an020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks
- Compatible with existing Z8 code
- Expanded internal Register File allows access of up to 4KB
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C
- Pipelined instruction fetch and execution
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL
- New instructions support 12-bit linear addressing of the Register File
- Up to 10 MIPS operation
- C-Compiler friendly
- 2-9 clock cycles per instruction

For more information regarding the eZ8 CPU, refer to the *eZ8 CPU User Manual* available for download at <u>www.zilog.com</u>.

General Purpose I/O

The Z8 Encore![®] features seven 8-bit ports (Ports A-G) and one 4-bit port (Port H) for general purpose I/O (GPIO). Each pin is individually programmable.

Flash Controller

The Flash Controller programs and erases the Flash memory.

10-Bit Analog-to-Digital Converter

The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary number. The ADC accepts inputs from up to 12 different analog input sources.

UARTs

Each UART is full-duplex and capable of handling asynchronous data transfers. The UARTs support 8- and 9-bit data modes and selectable parity.

l²C

The inter-integrated circuit (I^2C^{\circledast}) controller makes the Z8 Encore![®] compatible with the I^2C protocol. The I^2C controller consists of two bidirectional bus lines, a serial data (SDA) line and a serial clock (SCL) line.

Signal and Pin Descriptions

Overview

The Z8F640x family products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information regarding the physical package specifications, please refer to the chapter Packaging on page 206.

Available Packages

Table 2 identifies the package styles that are available for each device within the Z8F640x family product line.

Part Number	40-pin PDIP	44-pin LQFP	44-pin PLCC	64-pin LQFP	68-pin PLCC	80-pin QFP
Z8F1601	Х	Х	Х			
Z8F1602				Х	Х	
Z8F2401	Х	Х	Х			
Z8F2402				Х	Х	
Z8F3201	Х	Х	Х			
Z8F3202				Х	Х	
Z8F4801	Х	Х	Х			
Z8F4802				Х	Х	
Z8F4803						Х
Z8F6401	Х	Х	Х			
Z8F6402				Х	Х	
Z8F6403						Х

Table 2. Z8F640x family Package Options

Signal Mnemonic	I/O	Description
UART Controllers		
TXD0 / TXD1	0	Transmit Data. These signals are the transmit outputs from the UARTs. The TXD signals are multiplexed with general-purpose I/O pins.
RXD0 / RXD1	Ι	Receive Data. These signals are the receiver inputs for the UARTs and IrDAs. The RXD signals are multiplexed with general-purpose I/O pins.
CTS0 / CTS1	Ι	Clear To Send. These signals are control inputs for the UARTs. The $\overline{\text{CTS}}$ signals are multiplexed with general-purpose I/O pins.
Timers (Timer 3 is u	navailab	le in the 40-and 44-pin packages)
TOOUT / TIOUT/ T2OUT / T3OUT	0	Timer Output 0-3. These signals are output pins from the timers. The Timer Output signals are multiplexed with general-purpose I/O pins. T2OUT is not supported in the 40-pin package. T3OUT is not supported in the 40- and 44-pin packages.
T0IN / T1IN/ T2IN / T3IN	Ι	Timer Input 0-3. These signals are used as the capture, gating and counter inputs. The Timer Input signals are multiplexed with general-purpose I/O pins. T3IN is not supported in the 40- and 44-pin packages.
Analog		
ANA[11:0]	Ι	Analog Input. These signals are inputs to the analog-to-digital converter (ADC). The ADC analog inputs are multiplexed with general-purpose I/O pins.
VREF	Ι	Analog-to-digital converter reference voltage input. The VREF pin should be left unconnected (or capacitively coupled to analog ground) if the internal voltage reference is selected as the ADC reference voltage.
Oscillators		
XIN	Ι	External Crystal Input. This is the input pin to the crystal oscillator. A crystal can be connected between it and the XOUT pin to form the oscillator.
XOUT	0	External Crystal Output. This pin is the output of the crystal oscillator. A crystal can be connected between it and the XIN pin to form the oscillator. When the system clock is referred to in this manual, it refers to the frequency of the signal at this pin.
RCOUT	0	RC Oscillator Output. This signal is the output of the RC oscillator. It is multiplexed with a general-purpose I/O pin.
On-Chip Debugger		
DBG	I/O	Debug. This pin is the control and data input and output to and from the On-Chip Debugger. For operation of the On-chip debugger, all power pins (V_{DD} and AV_{DD} must be supplied with power, and all ground pins (V_{SS} and AV_{SS} must be grounded. This pin is open-drain and must have an external pull-up resistor to ensure proper operation.

Table 2. Signal Descriptions (Continued)

External Pin Reset

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up. Once the $\overline{\text{RESET}}$ pin is asserted, the device progresses through the Short Reset sequence. While the $\overline{\text{RESET}}$ input pin is asserted Low, the Z8F640x family device continues to be held in the Reset state. If the $\overline{\text{RESET}}$ pin is held Low beyond the Short Reset time-out, the device exits the Reset state immediately following $\overline{\text{RESET}}$ pin deassertion. Following a Short Reset initiated by the external $\overline{\text{RESET}}$ pin, the EXT status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

Stop Mode Recovery

Stop mode is entered by execution of a STOPinstruction by the eZ8 CPU. Refer to the **Low-Power Modes** chapter for detailed Stop mode information. During Stop Mode Recovery, the Z8F640x family device is held in reset for 514 cycles of the Watch-Dog Timer oscillator followed by 16 cycles of the system clock (crystal oscillator). Stop Mode Recovery does not affect any values in the Register File, including the Stack Pointer, Register Pointer, Flags and general-purpose RAM.

The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOPbit in the Watch-Dog Timer Control Register is set to 1. Table 9 lists the Stop Mode Recovery sources and resulting actions. The text following provides more detailed information on each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action		
Stop mode	Watch-Dog Timer time-out when configured for Reset	Stop Mode Recovery		
	Watch-Dog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)		
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery		

Table 9	. Stop	Mode	Recovery	Sources	and	Resulting	Action
				~ ~ ~ ~ ~ ~ ~ ~			

Stop Mode Recovery Using Watch-Dog Timer Time-Out

If the Watch-Dog Timer times out during Stop mode, the Z8F640x family device undergoes a STOP Mode Recovery sequence. In the Watch-Dog Timer Control register, the WDTand STOP bits are set to 1. If the Watch-Dog Timer is configured to generate an interrupt upon time-out and the device is configured to respond to interrupts, the Z8F640x family device services the Watch-Dog Timer interrupt request following the normal Stop Mode Recovery sequence.

Timers

Overview

The Z8F640x family products contain three to four 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any unused UART, SPI, or I^2C peripherals may also be used to provide basic timing functionality. Refer to the respective serial communication peripheral chapters for information on using the Baud Rate Generators as timers. Timer 3 is unavailable in the 40- and 44-pin packages.

Architecture

Figure 66 illustrates the architecture of the timers.

3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART*x* Control 1 register to 1.

UART Control Register Definitions

The UART control registers support both the UARTs and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, refer to the **Infrared Encoder/ Decoder** chapter on page 95.

UARTx Transmit Data Register

Data bytes written to the UART*x* Transmit Data register (Table 50) are shifted out on the TXD*x* pin. The Write-only UART*x* Transmit Data register shares a Register File address with the Read-only UART*x* Receive Data register.

BITS	7	6	5	4	3	2	1	0	
FIELD		TXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	W	W	W	W	W	W	W	W	
ADDR				F40H ar	nd F48H				

Table 50. UARTx Transmit Data Register (UxTXD)

TXD—Transmit Data

UART transmitter data byte to be shifted out through the TXD*x* pin.

The Master and Slave are each capable of exchanging a byte of data during a sequence of eight clock cycles. In both Master and Slave SPI devices, data is shifted on one edge of the SCK and is sampled on the opposite edge where data is stable. Edge polarity is determined by the SPI phase and polarity control.

Slave Select

The active Low Slave Select (\overline{SS}) input signal is used to select a Slave SPI device. \overline{SS} must be Low prior to all data communication to and from the Slave device. \overline{SS} must stay Low for the full duration of each character transferred. The \overline{SS} signal may stay Low during the transfer of multiple characters or may deassert between each character.

When the SPI on the Z8F640x family device is configured as the only Master in an SPI system, the \overline{SS} pin can be set as either an input or an output. For communication between the Z8F640x family device SPI Master and external Slave devices, the \overline{SS} signal, as an output, can assert the \overline{SS} input pin on one of the Slave devices. Other GPIO output pins can also be employed to select external SPI Slave devices.

When the SPI on the Z8F640x family device is configured as one Master in a multi-master SPI system, the \overline{SS} pin on the should be set as an input. The \overline{SS} input signal on the Master must be High. If the \overline{SS} signal goes Low (indicating another Master is driving the SPI bus), a Mode Fault error flag is set in the SPI Status register.

SPI Clock Phase and Polarity Control

The SPI supports four combinations of serial clock phase and polarity using two bits in the SPI Control register. The clock polarity bit, CLKPOL selects an active high or active low clock and has no effect on the transfer format. Table 59 lists the SPI Clock Phase and Polarity Operation parameters. The clock phase bit, PHASE selects one of two fundamentally different transfer formats. For proper data transmission, the clock phase and polarity must be identical for the SPI Master and the SPI Slave. The Master always places data on the MOSI line a half-cycle before the clock edge (SCK signal), in order for the Slave to latch the data.

PHASE	CLKPOL	SCK Transmit Edge	SCK Receive Edge	SCK Idle State
0	0	Falling	Rising	Low
0	1	Rising	Falling	High
1	0	Rising	Falling	Low
1	1	Falling	Rising	High

Table 59.	SPI Cloc	k Phase (PHASE)	and	Clock	Polarity	(CLKPOL) ()	peration
Table 57.	DI I CIUC	K I mase (anu	CIUCIA	I ofai ity	(CDICI OD	, 0	peration

SPIEN—SPI Enable 0 = SPI disabled. 1 = SPI enabled.

SPI Status Register

The SPI Status register indicates the current state of the SPI.

Table 62.	SPI	Status	Register	(SPISTAT)
-----------	-----	--------	----------	-----------

BITS	7	6	5	4	3	2	1	0		
FIELD	IRQ	OVR	COL		Reserved	TXST	SLAS			
RESET	0	0	0		0	0	1			
R/W	R/W*	R/W*	R/W*		R		R	R		
ADDR	DDR F62H									
$R/W^* = Re$	ead access. W	rite a 1 to cle	ar the bit to 0							

IRQ—Interrupt Request

0 =No SPI interrupt request pending.

1 =SPI interrupt request is pending.

OVR-Overrun

0 = An overrun error has not occurred.

1 = An overrun error has been detected.

COL-Collision

0 = A multi-master collision (mode fault) has not occurred.

1 = A multi-master collision (mode fault) has been detected.

Reserved

These bits are reserved and must be 0.

TXST—Transmit Status

0 = No data transmission currently in progress.

1 =Data transmission currently in progress.

SLAS—Slave Select

If SPI enabled as a Slave,

 $0 = \overline{SS}$ input pin is asserted (Low)

 $1 = \overline{SS}$ input is not asserted (High).

If SPI enabled as a Master, this bit is not applicable.

I²C Controller

Overview

The I²C Controller makes the Z8F640x family device bus-compatible with the I²CTM protocol. The I²C Controller consists of two bidirectional bus lines—a serial data signal (SDA) and a serial clock signal (SCL). Features of the I²C Controller include:

- Transmit and Receive Operation in Master mode
- Maximum data rate of 400kbit/sec
- 7- and 10-bit Addressing Modes for Slaves
- Unrestricted Number of Data Bytes Transmitted per Transfer

The I²C Controller in the Z8F640x family device does not operate in Slave mode.

Operation

The I²C Controller operates in Master mode to transmit and receive data. Only a single master is supported. Arbitration between two masters must be accomplished in software. I²C supports the following operations:

- Master transmits to a 7-bit slave
- Master transmits to a 10-bit slave
- Master receives from a 7-bit slave
- Master receives from a 10-bit slave

SDA and SCL Signals

 I^2C sends all addresses, data and acknowledge signals over the SDA line, most-significant bit first. SCL is the common clock for the I^2C Controller. When the SDA and SCL pin alternate functions are selected for their respective GPIO ports, the pins are automatically configured for open-drain operation.

The master (I^2C) is responsible for driving the SCL clock signal, although the clock signal can become skewed by a slow slave device. During the high period of the clock, the slave pulls the SCL signal Low to suspend the transaction. When the slave has released the line, the I^2C Controller continues the transaction. All data is transferred in bytes and there is no

this bit to 0 when a conversion has been completed.

1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

Reserved

This bit is reserved and must be 0.

VREF

0 = Internal voltage reference generator enabled. The VREF pin should be left unconnected (or capacitively coupled to analog ground).

1 = Internal voltage reference generator disabled. An external voltage reference must be provided through the VREF pin.

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.

1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8F640x family of products. Refer to the **Signal and Pin Descriptions** chapter for information regarding the Port pins available with each package style. Do not enable unavailable analog inputs.

0000 = ANA0 0001 = ANA1 0010 = ANA2 0011 = ANA3 0100 = ANA4 0101 = ANA5 0110 = ANA6 0111 = ANA7 1000 = ANA8 1001 = ANA9 1010 = ANA10 1011 = ANA11 11XX = Reserved.

Flash Memory

Overview

The Z8F640x family features up to 64KB (65,536 bytes) of non-volatile Flash memory with read/write/erase capability. The Flash Memory can be programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes. The Flash memory also contains a High Sector that can be enabled for writes and erase separately from the rest of the Flash array. The first 2 bytes of the Flash Program memory are used as Option Bits. Refer to the **Option Bits** chapter for more information on their operation.

Table 83 describes the Flash memory configuration for each device in the Z8F640x family. Figure 84 illustrates the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash High Sector Size KB (Bytes)	High Sector Addresses
Z8F160x	16 (16,384)	32	0000H - 3FFFH	1 (1024)	3C00H - 3FFFH
Z8F240x	24 (24,576)	48	0000H - 5FFFH	2 (2048)	5800H - 5FFFH
Z8F320x	32 (32,768)	64	0000H - 7FFFH	2 (2048)	7800H - 7FFFH
Z8F480x	48 (49,152)	96	0000H - BFFFH	4 (4096)	B000H - BFFFH
Z8F640x	64 (65,536)	128	0000H - FFFFH	8 (8192)	E000H - FFFFH

Table 83. Z8F640x family Flash Memory Configurations

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a program or erase operation on the Flash memory, the user must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasure of the Flash with system clock frequencies ranging from 32KHz (32768Hz) through 20MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:.

FFREQ[15:0] = System Clock Frequency (Hz) 1000

Caution: Flash programming and erasure are not supported for system clock frequencies below 32KHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to insure proper operation of the Z8F640x family device.

Flash Code Protection Against External Access

The user code contained within the Z8F640x family device's Flash memory can be protected against external access via the On-Chip Debugger. Programming the RPOption Bit prevents reading of the user code through the On-Chip Debugger. Refer to the **Option Bits** chapter and the **On-Chip Debugger** chapter for more information.

Flash Code Protection Against Accidental Program and Erasure

The Z8F640x family device provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Option bits and the locking mechanism of the Flash Controller.

Flash Control Register Definitions

Flash Control Register

The Flash Controller must be unlocked via the Flash Control register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, writing to the Flash Control register can initiate either Page Erase or Mass Erase of the Flash memory. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the Read-only Flash Status Register.

Table 85. Flash Control Register (FCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	FCMD								
RESET	0	0	0	0	0	0	0	0	
R/W	W	W	W	W	W	W	W	W	
ADDR				FF	8H				

FCMD—Flash Command

73H = First unlock command.

8CH = Second unlock command.

95H = Page erase command (must be third command in sequence to initiate Page Erase).

63H = Mass erase command (must be third command in sequence to initiate Mass Erase).

Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0
FIELD	WDT_RES	WDT_AO		Reserved		RP	FHSWP	FWP
RESET	U	U	U	U	U	U	U	U
R/W	R/W R/W R/W R/W R/W R/W							
ADDR	Program Memory 0000H							
Note: U = Unchanged by Reset. R/W = Read/Write.								

Table 90. Option Bits At Program Memory Address 0000H

WDT_RES—Watch-Dog Timer Reset

0 = Watch-Dog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watch-Dog Timer time-out causes a Short Reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watch-Dog Timer Always On

0 = Watch-Dog Timer is automatically enabled upon application of system power. Watch-Dog Timer can not be disabled.

1 = Watch-Dog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watch-Dog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Reserved

These Option Bits are reserved for future use and must always be set to 1. This setting is the default for unprogrammed (erased) Flash.

RP-Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Electrical Characteristics

Absolute Maximum Ratings

Stresses greater than those listed in Table 100 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, unused inputs must be tied to one of the supply voltages (V_{DD} or V_{SS}).

Table 100. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
80-Pin QFP Maximum Ratings at -40°C to 70°C				
Total power dissipation		550	mW	
Maximum current into V _{DD} or out of V _{SS}		150	mA	
80-Pin QFP Maximum Ratings at 70°C to 105°C				
Total power dissipation		200	mW	
Maximum current into V _{DD} or out of V _{SS}		56	mA	
68-Pin PLCC Maximum Ratings at -40°C to 70°C				
Total power dissipation		1000	mW	
Maximum current into V _{DD} or out of V _{SS}		275	mA	

Notes:

 This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B and Port H), RESET, and where noted otherwise.

On-Chip Debugger Timing

Figure 95 and Table 109 provide timing information for DBG pins. The timing specifications presume a rise and fall time on DBG of less than 4μ s.

Figure 95. On-Chip Debugger Timing

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
DBG				
T ₁	XIN Rise to DBG Valid Delay	_	15	
T ₂	XIN Rise to DBG Output Hold Time	2	_	
T ₃	DBG to XIN Rise Input Setup Time	10	_	
T ₄	DBG to XIN Rise Input Hold Time	5	_	
	DBG frequency		System Clock / 4	

Table	109.	On-Chin	Debugger	Timing
rabic	10/1	On-Cmp	Debugger	1

Table 110. AT thinker mist actions (Continued	Table 118.	Arithmetic	Instructions	(Continued)
---	------------	------------	--------------	-------------

Mnemonic	Operands	Instruction
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 119. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
TCM	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
TMX	dst, src	Test Under Mask using Extended Addressing

Table 120. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses

Index

Symbols

185 % 185 @ 185

Numerics

10-bit ADC 4
40-lead plastic dual-inline package 206
44-lead low-profile quad flat package 207
44-lead plastic lead chip carrier package 207
64-lead low-profile quad flat package 208
68-lead plastic lead chip carrier package 209
80-lead quad flat package 210

A

absolute maximum ratings 167 AC characteristics 172 ADC 187 architecture 132 automatic power-down 133 block diagram 133 continuous conversion 134 control register 135 control register definitions 135 data high byte register 137 data low bits register 137 DMA control 135 electrical characteristics and timing 174 operation 133 single-shot conversion 133 ADCCTL register 135 ADCDH register 137 ADCDL register 137 **ADCX 187** ADD 187 add - extended addressing 187 add with carry 187 add with carry - extended addressing 187

additional symbols 185 address space 17 ADDX 187 analog signals 14 analog-to-digital converter (ADC) 132 AND 190 ANDX 190 arithmetic instructions 187 assembly language programming 182 assembly language syntax 183

B

B 185 b 184 baud rate generator, UART 85 **BCLR 188** binary number suffix 185 **BIT 188** bit 184 clear 188 manipulation instructions 188 set 188 set or clear 188 swap 188 test and jump 190 test and jump if non-zero 190 test and jump if zero 190 bit jump and test if non-zero 190 bit swap 191 block diagram 3 block transfer instructions 188 **BRK 190 BSET 188** BSWAP 188, 191 **BTJ 190 BTJNZ 190 BTJZ 190**

С

CALL procedure 190 capture mode 71 capture/compare mode 71