

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1601pm020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

Table 101.	Absolute Maximum Ratings
Table 102.	DC Characteristics
Table 103.	AC Characteristics
Table 104.	Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing
Table 105.	Flash Memory Electrical Characteristics and Timing 173
Table 106.	Watch-Dog Timer Electrical Characteristics and Timing 174
Table 107.	Analog-to-Digital Converter Electrical Characteristics and Timing
Table 108.	GPIO Port Input Timing
Table 109.	GPIO Port Output Timing 177
Table 110.	On-Chip Debugger Timing 178
Table 111.	SPI Master Mode Timing 179
Table 112.	SPI Slave Mode Timing 180
Table 113.	I2C Timing 181
Table 114.	Assembly Language Syntax Example 1
Table 115.	Assembly Language Syntax Example 2 183
Table 116.	Notational Shorthand
Table 117.	Additional Symbols
Table 118.	Condition Codes
Table 119.	Arithmetic Instructions
Table 120.	Bit Manipulation Instructions
Table 121.	Block Transfer Instructions
Table 122.	CPU Control Instructions 189
Table 123.	Load Instructions
Table 124.	Logical Instructions
Table 125.	Program Control Instructions 190
Table 126.	Rotate and Shift Instructions
Table 127.	eZ8 CPU Instruction Summary 191
Table 128.	Opcode Map Abbreviations 203
Table 129.	Ordering Information

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
FCE	Interrupt Port Select	IRQPS	00	55
FCF	Interrupt Control	IRQCTL	00	56
GPIO Port A				
FD0	Port A Address	PAADDR	00	37
FD1	Port A Control	PACTL	00	38
FD2	Port A Input Data	PAIN	XX	42
FD3	Port A Output Data	PAOUT	00	43
GPIO Port B				
FD4	Port B Address	PBADDR	00	37
FD5	Port B Control	PBCTL	00	38
FD6	Port B Input Data	PBIN	XX	42
FD7	Port B Output Data	PBOUT	00	43
GPIO Port C	-			
FD8	Port C Address	PCADDR	00	37
FD9	Port C Control	PCCTL	00	38
FDA	Port C Input Data	PCIN	XX	42
FDB	Port C Output Data	PCOUT	00	43
GPIO Port D	Ĩ			
FDC	Port D Address	PDADDR	00	37
FDD	Port D Control	PDCTL	00	38
FDE	Port D Input Data	PDIN	XX	42
FDF	Port D Output Data	PDOUT	00	43
GPIO Port E	Ĩ			
FE0	Port E Address	PEADDR	00	37
FE1	Port E Control	PECTL	00	38
FE2	Port E Input Data	PEIN	XX	42
FE3	Port E Output Data	PEOUT	00	43
GPIO Port F	×			
FE4	Port F Address	PFADDR	00	37
FE5	Port F Control	PFCTL	00	38
FE6	Port F Input Data	PFIN	XX	42
FE7	Port F Output Data	PFOUT	00	43
GPIO Port G	1			
FE8	Port G Address	PGADDR	00	37
FE9	Port G Control	PGCTL	00	38
FEA	Port G Input Data	PGIN	XX	42
FEB	Port G Output Data	PGOUT	00	43
GPIO Port H				
FEC	Port H Address	PHADDR	00	37
XX=Undefined	1 011 11 / 1001000	THEDR		51

Table 6. Register File Address Map (Continued)

Power-On Reset

The Z8F640x family products contain an internal Power-On Reset (POR) circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the POR Counter is enabled and counts 514 cycles of the Watch-Dog Timer oscillator. After the POR counter times out, the XTAL Counter is enabled to count a total of 16 system clock pulses. The Z8F640x family device is held in the Reset state until both the POR Counter and XTAL counter have timed out. After the device exits the Power-On Reset state, the eZ8 CPU fetches the Reset vector. Following Power-On Reset, the POR status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

Figure 62 illustrates Power-On Reset operation. Refer to the **Electrical Characteristics** chapter for the POR threshold voltage (V_{POR}).

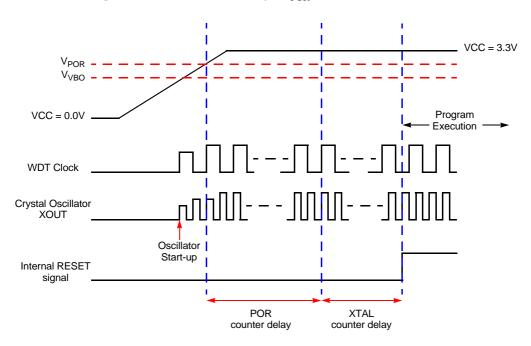


Figure 62. Power-On Reset Operation (not to scale)

Voltage Brown-Out Reset

The devices in the Z8F640x family provide low Voltage Brown-Out (VBO) protection. The VBO circuit senses when the supply voltage drops to an unsafe level (below the VBO

Port Register Mnemonic	Port Register Name
PxADDR	Port A-H Address Register (Selects sub-registers)
PxCTL	Port A-H Control Register (Provides access to sub-registers)
PxIN	Port A-H Input Data Register
PxOUT	Port A-H Output Data Register
Port Sub-Register Mnemonic	Port Register Name
PxDD	Data Direction
PxAF	Alternate Function
PxOC	Output Control (Open-Drain)
PxHDE	High Drive Enable
PxSMRE	STOP Mode Recovery Source Enable

Table 12. GPIO Port Registers and Sub-Registers

Port A-H Address Registers

The Port A-H Address registers select the GPIO Port functionality accessible through the Port A-H Control registers. The Port A-H Address and Control registers combine to provide access to all GPIO Port control (Table 13).

Table 13. Port A-H GPIO Address Registers (PxADDR)

BITS	7	6	5	4	3	2	1	0		
FIELD		PADDR[7:0]								
RESET		00H								
R/W		R/W								
ADDR		FĽ	00H, FD4H, I	FD8H, FDCH	, FE0H, FE4I	H, FE8H, FE0	СН			

Port A-H Output Data Register

The Port A-H Output Data register (Table 21) writes output data to the pins.

BITS 7 6 5 4 3 2 1 0 POUT7 POUT6 POUT5 POUT4 POUT3 POUT2 POUT1 POUT0 FIELD 0 0 0 0 0 0 0 0 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH ADDR

Table 21. Port A-H Output Data Register (PxOUT)

POUT[7:0]—Port Output Data

These bits contain the data to be driven out from the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function operation.

0 =Drive a logical 0 (Low).

1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control register bit to 1.

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) register (Table 25) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

Table 25. Interrupt Request 2 Register (IRQ2)

BITS	7	6	5	4	3	2	1	0	
FIELD	T3I	U1RXI	UITXI	DMAI	PC3I	PC2I	PC1I	PC0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		FC6H							

T3I—Timer 3 Interrupt Request

- 0 = No interrupt request is pending for Timer 3.
- 1 = An interrupt request from Timer 3 is awaiting service.

U1RXI—UART 1 Receive Interrupt Request

- 0 = No interrupt request is pending for the UART1 receiver.
- 1 = An interrupt request from UART1 receiver is awaiting service.
- U1TXI-UART 1 Transmit Interrupt Request
- 0 = No interrupt request is pending for the UART 1 transmitter.
- 1 = An interrupt request from the UART 1 transmitter is awaiting service.

DMAI—DMA Interrupt Request

- 0 = No interrupt request is pending for the DMA.
- 1 = An interrupt request from the DMA is awaiting service.

PCxI—Port C Pin x Interrupt Request

- 0 = No interrupt request is pending for GPIO Port C pin *x*.
- 1 = An interrupt request from GPIO Port C pin x is awaiting service.

where *x* indicates the specific GPIO Port C pin number (0 through 3).

BITS	7	6	5	4	3	2	1	0		
FIELD	T3ENH	U1RENH	UITENH	DMAENH	C3ENH	C2ENH	C1ENH	C0ENH		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FC7H								

 Table 33. IRQ2 Enable High Bit Register (IRQ2ENH)

T3ENH—Timer 3 Interrupt Request Enable High Bit U1RENH—UART 1 Receive Interrupt Request Enable High Bit U1TENH—UART 1 Transmit Interrupt Request Enable High Bit DMAENH—DMA Interrupt Request Enable High Bit C3ENH—Port C3 Interrupt Request Enable High Bit C2ENH—Port C2 Interrupt Request Enable High Bit C1ENH—Port C1 Interrupt Request Enable High Bit C0ENH—Port C0 Interrupt Request Enable High Bit

 Table 34. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	T3ENL	U1RENL	UITENL	DMAENL	C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC8H							

T3ENL—Timer 3 Interrupt Request Enable Low Bit

U1RENL-UART 1 Receive Interrupt Request Enable Low Bit

U1TENL-UART 1 Transmit Interrupt Request Enable Low Bit

DMAENL—DMA Interrupt Request Enable Low Bit

C3ENL—Port C3 Interrupt Request Enable Low Bit

C2ENL—Port C2 Interrupt Request Enable Low Bit

C1ENL—Port C1 Interrupt Request Enable Low Bit

COENL-Port CO Interrupt Request Enable Low Bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 35) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port input pin. The

- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Counting begins on the first appropriate transition of the Timer Input signal. No interrupt is generated by this first edge.

In Capture/Compare mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = (Capture Value – Start Value) × Prescale System Clock Frequency (Hz)

Reading the Timer Count Values

The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte register is read, the contents of the Timer Low Byte register are placed in a holding register. A subsequent read from the Timer Low Byte register returns the value in the holding register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte register returns the actual value in the counter.

Timer Output Signal Operation

Timer Output is a GPIO Port pin alternate function. Generally, the Timer Output is toggled every time the counter is reloaded.

Timer Control Register Definitions

Timers 0–2 are available in all packages. Timer 3 is available only in the 64-, 68- and 80-pin packages.

Timer 0-3 High and Low Byte Registers

The Timer 0-3 High and Low Byte (TxH and TxL) registers (Tables 38 and 39) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TMRL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TMRL reads the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are

Timer 0-3 Control Registers

The Timer 0-3 Control (TxCTL) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

BITS 7 4 3 2 1 0 6 5 TEN TPOL PRES TMODE FIELD 0 0 0 0 0 0 0 0 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W F07H, F0FH, F17H, F1FH ADDR

Table 44. Timer 0-3 Control Register (TxCTL)

TEN-Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL-Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

One-Shot mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Continuous mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Counter mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

PWM mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

mode. Refer to the **Reset and Stop Mode Recovery** chapter for more information on STOP Mode Recovery.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and executing code from the vector address.

WDT Reset in Normal Operation

If configured to generate a Reset when a time-out occurs, the Watch-Dog Timer forces the Z8F640x family device into the Short Reset state. The WDT status bit in the Watch-Dog Timer Control register is set to 1. Refer to the **Reset and Stop Mode Recovery** chapter for more information on Short Reset.

WDT Reset in Stop Mode

If configured to generate a Reset when a time-out occurs and the Z8F640x family device is in STOP mode, the Watch-Dog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Watch-Dog Timer Control register are set to 1 following WDT time-out in STOP mode. Refer to the **Reset and Stop Mode Recovery** chapter for more information.

Watch-Dog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watch-Dog Timer Control register (WDTCTL) unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. The follow sequence is required to unlock the Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watch-Dog Timer Control register (WDTCTL)
- 2. Write AAH to the Watch-Dog Timer Control register (WDTCTL)
- 3. Write the Watch-Dog Timer Reload Upper Byte register (WDTU)
- 4. Write the Watch-Dog Timer Reload High Byte register (WDTH)
- 5. Write the Watch-Dog Timer Reload Low Byte register (WDTL)

All three Watch-Dog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur, unless the sequence is restarted. The value in the Watch-Dog Timer Reload registers is loaded into the counter when the Watch-Dog Timer is first enabled and every time a WDT instruction is executed.

mitter and receiver sections, a Baud Rate (clock) Generator and a control unit. The transmitter and receiver sections use the same clock.

During an SPI transfer, data is sent and received simultaneously by both the Master and the Slave SPI devices. Separate signals are required for data and the serial clock. When an SPI transfer occurs, a multi-bit (typically 8-bit) character is shifted out one data pin and an multi-bit character is simultaneously shifted in on a second data pin. An 8-bit shift register in the Master and another 8-bit shift register in the Slave are connected as a circular buffer. The SPI shift register is single-buffered in the transmit and receive directions. New data to be transmitted cannot be written into the shift register until the previous transmission is complete and receive data (if valid) has been read.

SPI Signals

The four basic SPI signals are:

- MISO (Master-In, Slave-Out)
- MOSI (Master-Out, Slave-In)
- SCK (SPI Serial Clock)
- \overline{SS} (Slave Select)

The following paragraphs discuss these SPI signals. Each signal is described in both Master and Slave modes.

Master-In, Slave-Out

The Master-In, Slave-Out (MISO) pin is configured as an input in a Master device and as an output in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. The MISO pin of a Slave device is placed in a high-impedance state if the Slave is not selected. When the SPI is not enabled, this signal is in a highimpedance state.

Master-Out, Slave-In

The Master-Out, Slave-In (MOSI) pin is configured as an output in a Master device and as an input in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. When the SPI is not enabled, this signal is in a high-impedance state.

Serial Clock

The Serial Clock (SCK) is used to synchronize data movement both in and out of the device through its MOSI and MISO pins. In Master mode, the SPI's Baud Rate Generator creates the serial clock. The Master drives the serial clock out its own SCK pin to the Slave's SCK pin. When the SPI is configured as a Slave, the SCK pin is an input and the clock signal from the Master synchronizes the data transfer between the Master and Slave devices. Slave devices ignore the SCK signal, unless the \overline{SS} pin is asserted.

102

The Master and Slave are each capable of exchanging a byte of data during a sequence of eight clock cycles. In both Master and Slave SPI devices, data is shifted on one edge of the SCK and is sampled on the opposite edge where data is stable. Edge polarity is determined by the SPI phase and polarity control.

Slave Select

The active Low Slave Select (\overline{SS}) input signal is used to select a Slave SPI device. \overline{SS} must be Low prior to all data communication to and from the Slave device. \overline{SS} must stay Low for the full duration of each character transferred. The \overline{SS} signal may stay Low during the transfer of multiple characters or may deassert between each character.

When the SPI on the Z8F640x family device is configured as the only Master in an SPI system, the \overline{SS} pin can be set as either an input or an output. For communication between the Z8F640x family device SPI Master and external Slave devices, the \overline{SS} signal, as an output, can assert the \overline{SS} input pin on one of the Slave devices. Other GPIO output pins can also be employed to select external SPI Slave devices.

When the SPI on the Z8F640x family device is configured as one Master in a multi-master SPI system, the \overline{SS} pin on the should be set as an input. The \overline{SS} input signal on the Master must be High. If the \overline{SS} signal goes Low (indicating another Master is driving the SPI bus), a Mode Fault error flag is set in the SPI Status register.

SPI Clock Phase and Polarity Control

The SPI supports four combinations of serial clock phase and polarity using two bits in the SPI Control register. The clock polarity bit, CLKPOL, selects an active high or active low clock and has no effect on the transfer format. Table 59 lists the SPI Clock Phase and Polarity Operation parameters. The clock phase bit, PHASE, selects one of two fundamentally different transfer formats. For proper data transmission, the clock phase and polarity must be identical for the SPI Master and the SPI Slave. The Master always places data on the MOSI line a half-cycle before the clock edge (SCK signal), in order for the Slave to latch the data.

PHASE	CLKPOL	SCK Transmit Edge	SCK Receive Edge	SCK Idle State
0	0	Falling	Rising	Low
0	1	Rising	Falling	High
1	0	Rising	Falling	Low
1	1	Falling	Rising	High

Table 59. SPI Clock Phase	(PHASE)	and Clock Polarit	v (CLKPOL) Operation
Tuble 57. BIT Clock I hase	(1 111 10 1)	and Clock I blain	y (Chill Oh) Operation

SPIEN—SPI Enable 0 = SPI disabled. 1 = SPI enabled.

SPI Status Register

The SPI Status register indicates the current state of the SPI.

Table 62	SPI	Status	Register	(SPISTAT)
----------	-----	--------	----------	-----------

BITS	7	6	5	4	3	2	1	0				
FIELD	IRQ	OVR	COL	Reserved			TXST	SLAS				
RESET	0	0	0	0			0	1				
R/W	R/W*	R/W*	R/W*		R			R				
ADDR	R F62H											
$R/W^* = Re$	ead access. W	rite a 1 to cle	$R/W^* = Read access.$ Write a 1 to clear the bit to 0.									

IRQ—Interrupt Request

0 =No SPI interrupt request pending.

1 =SPI interrupt request is pending.

OVR-Overrun

0 = An overrun error has not occurred.

1 = An overrun error has been detected.

COL-Collision

0 = A multi-master collision (mode fault) has not occurred.

1 = A multi-master collision (mode fault) has been detected.

Reserved

These bits are reserved and must be 0.

TXST—Transmit Status

0 = No data transmission currently in progress.

1 =Data transmission currently in progress.

SLAS—Slave Select

If SPI enabled as a Slave,

 $0 = \overline{SS}$ input pin is asserted (Low)

 $1 = \overline{SS}$ input is not asserted (High).

If SPI enabled as a Master, this bit is not applicable.

SPI Baud Rate High and Low Byte Registers

The SPI Baud Rate High and Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator. The reload value must be greater than or equal to 0002H for proper SPI operation (maximum baud rate is system clock frequency divided by 4). The SPI baud rate is calculated using the following equation:

SPI Baud Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{2 \times \text{BRG}[15:0]}$

BITS	7	6	5	4	3	2	1	0
FIELD				BF	RH			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F6	6H			

 Table 64. SPI Baud Rate High Byte Register (SPIBRH)

BRH = SPI Baud Rate High Byte

Most significant byte, BRG[15:8], of the SPI Baud Rate Generator's reload value.

Table 65. SPI Baud Rate Low Byte Register (SPIBRL)

BITS	7	6	5	4	3	2	1	0
FIELD				BI	RL			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/w
ADDR		F67H						

BRL = SPI Baud Rate Low Byte

Least significant byte, BRG[7:0], of the SPI Baud Rate Generator's reload value.

START-Send Start Condition

This bit sends the Start condition. Once asserted, it is cleared by the I²C Controller after it sends the START condition or by deasserting the IEN bit. After this bit is set, the Start condition is sent if there is data in the I²C Data or I²C Shift register. If there is no data in one of these registers, the I²C Controller waits until data is loaded. If this bit is set while the I²C Controller is shifting out data, it generates a START condition after the byte shifts and the acknowledge phase completed. If the STOP bit is also set, it also waits until the STOP condition is sent before the START condition. If this bit is 1, it cannot be cleared to 0 by writing to the register. This bit clears when the I²C is disabled.

STOP-Send Stop Condition

This bit causes the I^2C Controller to issue a Stop condition after the byte in the I^2C Shift register has completed transmission or after a byte has been received in a receive operation. Once set, this bit is reset by the I^2C Controller after a Stop condition has been sent or by deasserting the IEN bit. If this bit is 1, it cannot be cleared to 0 by writing to the register. This bit clears when the I^2C is disabled.

BIRQ-Baud Rate Generator Interrupt Request

This bit causes an interrupt to occur every time the baud rate generator counts down to zero. This bit allows the I^2C Controller to be used as an additional counter when it is not being used elsewhere. This bit must only be set when the I^2C Controller is disabled.

TXI-Enable TDRE interrupts

This bit enables interrupts when the I²C Data register is empty on the I²C Controller.

NAK—Send NAK

This bit sends a Not Acknowledge condition after the next byte of data has been read from the I^2C slave. Once asserted, it is deasserted after a Not Acknowledge is sent or the IEN bit is deasserted.

FLUSH-Flush Data

Setting this bit to 1 clears the I²C Data register and sets the TDRE bit to 1. This bit allows flushing of the I²C Data register when an NAK is received after the data has been sent to the I²C Data register. Reading this bit always returns 0.

FILTEN—I²C Signal Filter Enable

Setting this bit to 1 enables low-pass digital filters on the SDA and SCL input signals. These filters reject any input pulse with periods less than a full system clock cycle. The filters introduce a 3-system clock cycle latency on the inputs.

122

ZILOG

Direct Memory Access Controller

Overview

The Z8F640x family device's Direct Memory Access (DMA) Controller provides three independent Direct Memory Access channels. Two of the channels (DMA0 and DMA1) transfer data between the on-chip peripherals and the Register File. The third channel (DMA_ADC) controls the Analog-to-Digital Converter (ADC) operation and transfers the Single-Shot mode ADC output data to the Register File.

Operation

DMA0 and DMA1 Operation

DMA0 and DMA1, referred to collectively as DMAx, transfer data either from the on-chip peripheral control registers to the Register File, or from the Register File to the on-chip peripheral control registers. The sequence of operations in a DMAx data transfer is:

- 1. DMAx trigger source requests a DMA data transfer.
- 2. DMAx requests control of the system bus (address and data) from the eZ8 CPU.
- 3. After the eZ8 CPU acknowledges the bus request, DMAx transfers either a single byte or a two-byte word (depending upon configuration) and then returns system bus control back to the eZ8 CPU.
- 4. If Current Address equals End Address:
 - DMAx reloads the original Start Address
 - If configured to generate an interrupt, DMA*x* sends an interrupt request to the Interrupt Controller
 - If configured for single-pass operation, DMAx resets the DEN bit in the DMAx Control register to 0 and the DMA is disabled.

If Current Address does not equal End Address, the Current Address increments by 1 (single-byte transfer) or 2 (two-byte word transfer).

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

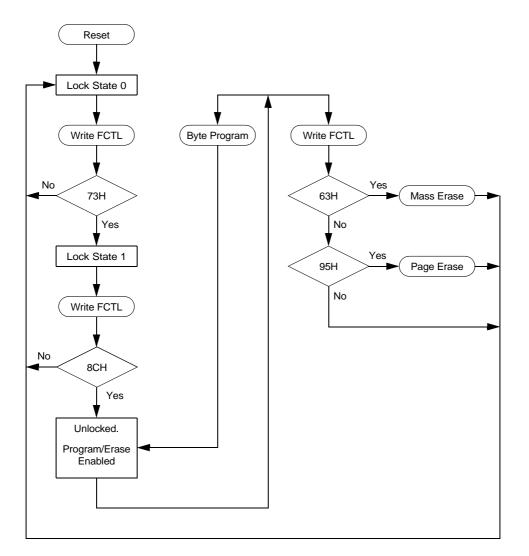


Figure 85. Flash Controller Operation Flow Chart

- Power-on reset
- Voltage Brownout reset
- Asserting the $\overline{\text{RESET}}$ pin Low to initiate a Reset.
- Driving the DBG pin Low while the Z8F640x family device is in Stop mode initiates a System Reset.

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits (Figure 89)

START D0 D1 D2 D3 D4 D5 D6 D7	STOP
---	------

Figure 89. OCD Data Format

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger has an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits). The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

The Auto-Baud Detector/Generator is clocked by the Z8F640x family device system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation, the maximum recommended baud rate is the system clock frequency divided by 8. The theoretical maximum baud rate is the system clock frequency divided by 4. This theoretical maximum is possible for low noise designs with clean signals. Table 92 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (kbits/s)	Minimum Baud Rate (kbits/s)
20.0	2500	39.1
1.0	125.0	1.96
0.032768 (32KHz)	4.096	0.064

Table 92. OCD Baud-Rate Limits

Table 118. Arithmetic Instructions (Continued)
--

Mnemonic	Operands	Instruction
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 119. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
TCM	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
TMX	dst, src	Test Under Mask using Extended Addressing

Table 120. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

extended addressing register 184 external pin reset 29 eZ8 CPU features 3 eZ8 CPU instruction classes 187 eZ8 CPU instruction notation 183 eZ8 CPU instruction set 182 eZ8 CPU instruction summary 191

F

FCTL register 144 features, Z8 Encore![®] 1 first opcode map 204 FLAGS 185 flags register 185 flash controller 4 option bit address space 148 option bit configuration - reset 148 program memory address 0000H 149 program memory address 0001H 150 flash memory 138 arrangement 139 byte programming 142 code protection 141 configurations 138 control register definitions 144 controller bypass 143 electrical characteristics and timing 173 flash control register 144 flash option bits 142 flash status register 145 flow chart 140 frequency high and low byte registers 147 mass erase 143 operation 139 operation timing 141 page erase 143 page select register 146 FPS register 146 FSTAT register 145

G

gated mode 71 general-purpose I/O 33 GPIO 4, 33 alternate functions 34 architecture 34 control register definitions 36 input data sample timing 176 interrupts 36 port A-H address registers 37 port A-H alternate function sub-registers 39 port A-H control registers 38 port A-H data direction sub-registers 39 port A-H high drive enable sub-registers 41 port A-H input data registers 42 port A-H output control sub-registers 40 port A-H output data registers 43 port A-H stop mode recovery sub-registers 41 port availability by device 33 port input timing 176 port output timing 177

H

H 185 HALT 189 HALT mode 31, 189 hexadecimal number prefix/suffix 185

I

I²C 4 10-bit address read transaction 116 10-bit address transaction 114 10-bit addressed slave data transfer format 114 10-bit receive data format 116 7-bit address transaction 112 7-bit address, reading a transaction 115 7-bit addressed slave data transfer format 113 7-bit receive data transfer format 115 baud high and low byte registers 121 C status register 118 control register definitions 118