
E·XFL

Zilog - Z8F1602AR020SC00TR Datasheet

Welcome to E-XFL.COM

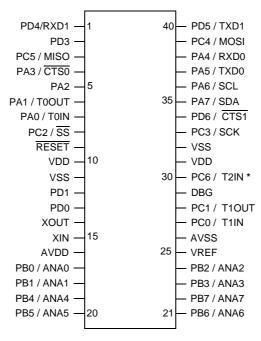
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	46
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f1602ar020sc00tr


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configurations

Figures 56 through 61 illustrate the pin configurations for all of the packages available in the Z8 Encore!® MCU family. Refer to Table 2 for a description of the signals.

Note: Timer 3 is not supported.

Figure 56. Z8Fxx01 in 40-Pin Dual Inline Package (DIP)

* T2OUT is not supported.

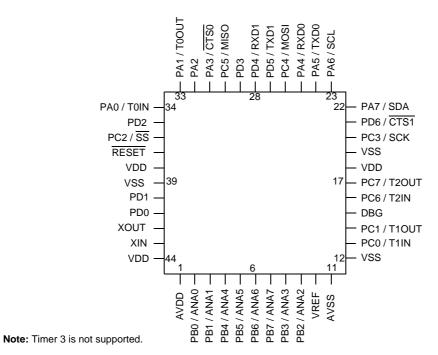


Figure 58. Z8Fxx01 in 44-Pin Low-Profile Quad Flat Package (LQFP)

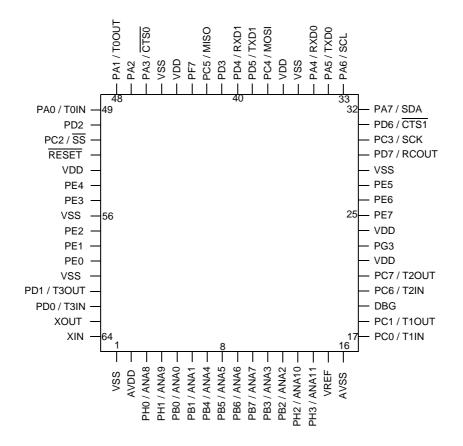


Figure 59. Z8Fxx02 in 64-Pin Low-Profile Quad Flat Package (LQFP)

Signal Descriptions

Table 2 describes the Z8F640x family signals. Refer to the section **Pin Configurations on page 7** to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description
General-Purpose I/C) Ports A	-Н
PA[7:0]	I/O	Port A[7:0]. These pins are used for general-purpose I/O.
PB[7:0]	I/O	Port B[7:0]. These pins are used for general-purpose I/O.
PC[7:0]	I/O	Port C[7:0]. These pins are used for general-purpose I/O.
PD[7:0]	I/O	Port D[7:0]. These pins are used for general-purpose I/O.
PE[7:0]	I/O	Port E[7:0]. These pins are used for general-purpose I/O.
PF[7:0]	I/O	Port F[7:0]. These pins are used for general-purpose I/O.
PG[7:0]	I/O	Port G[7:0]. These pins are used for general-purpose I/O.
PH[3:0]	I/O	Port H[3:0]. These pins are used for general-purpose I/O.
I ² C Controller		
SCL	0	Serial Clock. This is the output clock for the I ² C. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SCL function, this pin is open-drain.
SDA	I/O	Serial Data. This open-drain pin is used to transfer data between the I ² C and a slave. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SDA function, this pin is open-drain.
SPI Controller		
SS	I/O	Slave Select. This signal can be an output or an input. If the Z8 Encore! is the SPI master, this pin may be configured as the Slave Select output. If the Z8 Encore! is the SPI slave, this pin is the input slave select. It is multiplexed with a general-purpose I/O pin.
SCK	I/O	SPI Serial Clock. The SPI master supplies this pin. If the Z8 Encore! is the SPI master, this pin is an output. If the Z8 Encore! is the SPI slave, this pin is an input. It is multiplexed with a general-purpose I/O pin.
MOSI	I/O	Master Out Slave In. This signal is the data output from the SPI master device and the data input to the SPI slave device. It is multiplexed with a general-purpose I/O pin.
MISO	I/O	Master In Slave Out. This pin is the data input to the SPI master device and the data output from the SPI slave device. It is multiplexed with a general-purpose I/O pin.

Table 2. Signal Descriptions

Signal Mnemonic	I/O	Description
Reset		
RESET	Ι	RESET. Generates a Reset when asserted (driven Low).
Power Supply		
VDD	Ι	Power Supply.
AVDD	Ι	Analog Power Supply.
VSS	Ι	Ground.
AVSS	Ι	Analog Ground.

Table 2. Signal Descriptions (Continued)

Pin Characteristics

Table 3 provides detailed information on the characteristics for each pin available on the Z8F640x family products. Data in Table 3 is sorted alphabetically by the pin symbol mnemonic.

Table 3. Pin Characteristics of the Z8F640x family

N/A N/A I/O N/A	N/A N/A I	N/A N/A N/A	N/A N/A	No No	No No	N/A N/A
I/O	Ι			No	No	N/A
		N/A				1 1/ 2 1
N/A			Yes	No	Yes	Yes
	N/A	N/A	N/A	No	No	N/A
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
e	I/O I/O I/O	VO I VO I VO I VO I	I/O I N/A I/O I N/A I/O I N/A I/O I N/A	I/OIN/AYesI/OIN/AYesI/OIN/AYesI/OIN/AYes	I/OIN/AYesNoI/OIN/AYesNoI/OIN/AYesNoI/OIN/AYesNo	I/OIN/AYesNoYesI/OIN/AYesNoYesI/OIN/AYesNoYes

AF[7:0]—Port Alternate Function enabled

0 = The port pin is in normal mode and the DDx bit in the Port A-H Data Direction subregister determines the direction of the pin.

1 = The alternate function is selected. Port pin operation is controlled by the alternate function.

Port A-H Output Control Sub-Registers

The Port A-H Output Control sub-register (Table 17) is accessed through the Port A-H Control register by writing 03H to the Port A-H Address register. Setting the bits in the Port A-H Output Control sub-registers to 1 configures the specified port pins for opendrain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

BITS	7	6	5	4	3	2	1	0
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		If 03H in Po	rt A-H Addre	ss Register, a	ccessible via	Port A-H Cor	trol Register	

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and disables the drains if set to 1.

0 = The drains are enabled for any output mode.

1 = The drain of the associated pin is disabled (open-drain mode).

BITS	7	6	5	4	3	2	1	0			
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		If 05H in Port A-H Address Register, accessible via Port A-H Control Register									

Table 19. Port A-H STOP Mode Recovery Source Enable Sub-Registers

PSMRE[7:0]—Port STOP Mode Recovery Source Enabled

0 = The Port pin is not configured as a STOP Mode Recovery source. Transitions on this pin during Stop mode do not initiate STOP Mode Recovery.

1 = The Port pin is configured as a STOP Mode Recovery source. Any logic transition on this pin during Stop mode initiates STOP Mode Recovery.

Port A-H Input Data Registers

Reading from the Port A-H Input Data registers (Table 20) returns the sampled values from the corresponding port pins. The Port A-H Input Data registers are Read-only.

BITS	7	6	5	4	3	2	1	0		
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0		
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR		FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH								

Table 20. Port A-H Input Data Registers (PxIN)

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low).

1 = Input data is logical 1 (High).

IRQ0 Enable High and Low Bit Registers

The IRQ0 Enable High and Low Bit registers (Tables 27 and 28) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register. Table 26 describes the priority control for IRQ0.

IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 26. IRQ0 Enable and Priority Encoding

where *x* indicates the register bits from 0 through 7.

Table 27. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0			
FIELD	T2ENH	T1ENH	T0ENH	UORENH	U0TENH	I2CENH	SPIENH	ADCENH			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FC1H									

T2ENH—Timer 2 Interrupt Request Enable High Bit T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit I2CENH—I²C Interrupt Request Enable High Bit SPIENH—SPI Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

BITS	7	6	5	4	3	2	1	0			
FIELD	PAD7ENH	PAD6ENH	PAD5ENH	PAD4ENH	PAD3ENH	PAD2ENH	PAD1ENH	PAD0ENH			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FC4H									

Table 30. IRQ1 Enable High Bit Register (IRQ1ENH)

PAD*x*ENH—Port A or Port D Bit[*x*] Interrupt Request Enable High Bit Refer to the Interrupt Port Select register for selection of either Port A or Port D as the interrupt source.

Table 31. IRQ1 Enable Low Bit Register (IRQ1ENL)

BITS	7	6	5	4	3	2	1	0			
FIELD	PAD7ENL	PAD6ENL	PAD5ENL	PAD4ENL	PAD3ENL	PAD2ENL	PAD1ENL	PAD0ENL			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FC5H									

PADxENL—Port A or Port D Bit[x] Interrupt Request Enable Low Bit Refer to the Interrupt Port Select register for selection of either Port A or Port D as the interrupt source.

IRQ2 Enable High and Low Bit Registers

The IRQ2 Enable High and Low Bit registers (Tables 33 and 34) form a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is generated by setting bits in each register. Table 32 describes the priority control for IRQ2.

Table 32. IRQ2 Enable and Priority Encoding

IRQ2ENH[x]	IRQ2ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

where *x* indicates the register bits from 0 through 7.

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encorel[®]

58

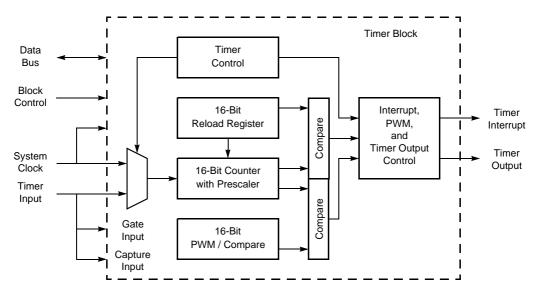


Figure 66. Timer Block Diagram

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

One-Shot Mode

In One-Shot mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. Then, the timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If it is desired to have the Timer Output make a permanent state change upon One-Shot time-

information on approximate time-out delays for the minimum and maximum WDT reload values.

Table 45. Watch-Dog Timer Approximate Time-Out Delays

WDT Reload Value	WDT Reload Value	* *	te Time-Out Delay WDT oscillator frequency)
(Hex)	(Decimal)	Typical	Description
000004	4	80µs	Minimum time-out delay
FFFFFF	16,777,215	335.5s	Maximum time-out delay

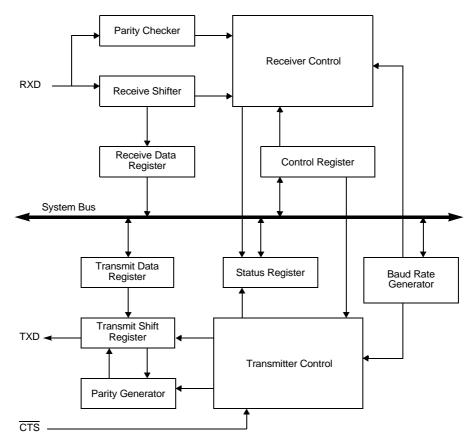
Watch-Dog Timer Refresh

When first enabled, the Watch-Dog Timer is loaded with the value in the Watch-Dog Timer Reload registers. The Watch-Dog Timer then counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watch-Dog Timer Reload registers. Counting resumes following the reload operation.

When the Z8F640x family device is operating in Debug Mode (via the On-Chip Debugger), the Watch-Dog Timer is continuously refreshed to prevent spurious Watch-Dog Timer time-outs.

Watch-Dog Timer Time-Out Response

The Watch-Dog Timer times out when the counter reaches 000000H. A time-out of the Watch-Dog Timer generates either an interrupt or a Short Reset. The WDT_RES Option Bit determines the time-out response of the Watch-Dog Timer. Refer to the **Option Bits** chapter for information regarding programming of the WDT_RES Option Bit.


WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watch-Dog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Watch-Dog Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watch-Dog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watch-Dog Timer counter is not automatically returned to its Reload Value.

WDT Interrupt in Stop Mode

If configured to generate an interrupt when a time-out occurs and the Z8F640x family device is in STOP mode, the Watch-Dog Timer automatically initiates a STOP Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watch-Dog Timer Control register are set to 1 following WDT time-out in STOP

Operation

Data Format

The UART always transmits and receives data in an 8-bit data format, least-significant bit first. An even or odd parity bit can be optionally added to the data stream. Each character begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits.

- 5. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data register becomes available to receive new data.
- 6. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmit the data.
- 7. To transmit additional bits, return to Step 5.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data register to accept new data for transmission. Follow these steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the desired priority.
- 5. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions, if desired.
- 6. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if desired, and select either even or odd parity.
 - Set or clear the CTSE bit to enable or disable control from the receiver via the $\overline{\text{CTS}}$ pin.
- 7. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. When the UART Transmit interrupt is detected, the associated interrupt service routine (ISR) should perform the following:

- 8. Write the data byte to the UART Transmit Data register. The transmitter will automatically transfer the data to the Transmit Shift register and transmit the data.
- 9. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.
- 10. Execute the IRET instruction to return from the interrupt-service routine and wait for the Transmit Data register to again become empty.

Table 76 provides an example of the Register File addresses if the DMA_ADC Address register contains the value 72H.

ADC Analog Input	Register File Address (Hex) ¹
0	720H-721H
1	722H-723H
2	724H-725H
3	726H-727H
4	728H-729H
5	72AH-72BH
6	72CH-72DH
7	72EH-72FH
8	730H-731H
9	732H-733H
10	734H-735H
11	736H-737H
1	

Table 76. DMA_ADC Register File Address Example

¹ DMAA_ADDR set to 72H.

Table 77. DMA_ADC Address Register (DMAA_ADDR)

BITS	7	6	5	4	3	2	1	0
FIELD	DMAA_ADDR						Reserved	
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FBDH							

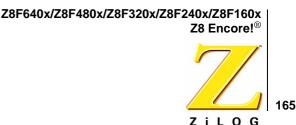
DMAA_ADDR—DMA_ADC Address

These bits specify the seven most-significant bits of the 12-bit Register File addresses used for storing the ADC output data. The ADC Analog Input Number defines the five least-significant bits of the Register File address. Full 12-bit address is {DMAA_ADDR[7:1], 4-bit ADC Analog Input Number, 0}.

Reserved This bit is reserved and must be 0.

ister. When the Watchpoint event occurs, the Z8F640x family device enters Debug mode and the DBGMODE bit in the OCDCTL register becomes 1.

Runtime Counter


The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles between Breakpoints. The counter starts counting when the On-Chip Debugger leaves Debug mode and stops counting when it enters Debug mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the DBG interface. During normal operation of the Z8F640x family device, only a subset of the OCD commands are available. In Debug mode, all OCD commands become available unless the user code and control registers are protected by programming the Read Protect Option Bit (RP). The Read Protect Option Bit prevents the code in memory from being read out of the Z8F640x family device. When this option is enabled, several of the OCD commands are disabled. Table 93 contains a summary of the On-Chip Debugger commands. Each OCD command is described in further detail in the bulleted list following Table 93. Table 93 indicates those commands that operate when the Z8F640x family device is not in Debug mode (normal operation) and those commands that are disabled by programming the Read Protect Option Bit.

Debug Command	Command Byte	Enabled when NOT in Debug mode?	Disabled by Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	-	-
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	-	Disabled
Read Program Counter	07H	-	Disabled
Write Register	08H	-	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled

Table 93. On-Chip Debugger Commands

On-Chip Oscillator

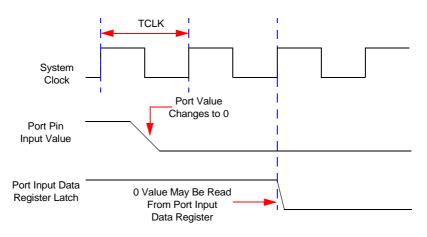
The Z8F640x family devices feature an on-chip oscillator for use with an external 1-20MHz crystal. This oscillator generates the primary system clock for the internal eZ8 CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32kHz-20MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected. The Z8F640x family device does *not* contain in internal clock divider. The frequency of the signal on the X_{IN} input pin determines the frequency of the system clock. The Z8F640x family device on-chip oscillator does not support external RC networks or ceramic resonators.

20MHz Crystal Oscillator Operation

Figure 90 illustrates a recommended configuration for connection with an external 20MHz, fundamental-mode, parallel-resonant crystal. Recommended crystal specifications are provided in Table 99. Resistor R₁ limits total power dissipation by the crystal. Printed circuit board layout should add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

AC Characteristics

The section provides information on the AC characteristics and timing of the Z8 Encore!TM. All AC timing information assumes a standard load of 50pF on all outputs.


Table 102. AC Characteristics

		$V_{DD} = 3.0 - 3.6V$ $T_A = -40^{\circ}C$ to $105^{\circ}C$			
Symbol	Parameter	Minimum	Maximum	Units	Conditions
F _{sysclk}	System Clock Frequency	-	20.0	MHz	Read-only from Flash memory.
		0.032768	20.0	MHz	Program or erasure of the Flash memory.
F _{XTAL}	Crystal Oscillator Frequency	1.0	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an external clock driver.
T _{XIN}	System Clock Period	50	-	ns	$T_{CLK} = 1/F_{sysclk}$
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50ns
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50ns

General Purpose I/O Port Input Data Sample Timing

Figure 93 illustrates timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is then available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

Figure 93. Port Input Sample Timing

Table 107. GPIO Port Input Timing

		Dela	y (ns)
Parameter	Abbreviation	Minimum	Maximum
T _{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	-
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	5	-
T _{SMR}	GPIO Port Pin Pulse Width to Insure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1µs	

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
сс	Condition Code	—	See Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
Ir	Indirect Working Register	@Rn	n = 0 - 15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
p	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 - 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 115. Notational Shorthand

Table 116 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

205

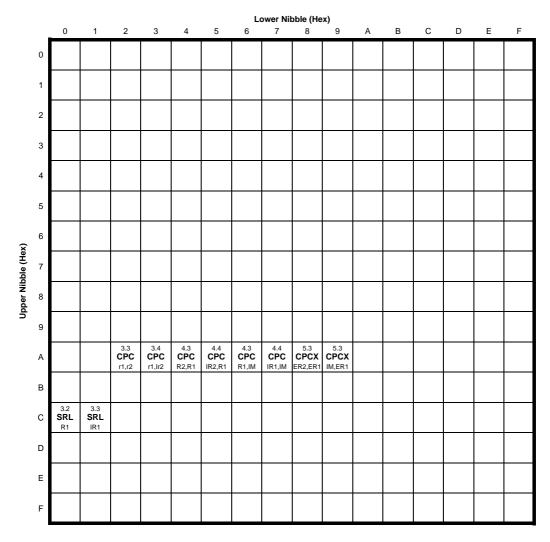


Figure 102. Second Opcode Map after 1FH