
Zilog - Z8F2401AN020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 24KB (24K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f2401an020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f2401an020ec-4426625
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

34
Architecture

Figure 64 illustrates a simplified block diagram of a GPIO port pin. In this figure, the abil-
ity to accommodate alternate functions and variable port current drive strength are not
illustrated.

Figure 64. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins can be used as both general-purpose I/O and to provide access
to on-chip peripheral functions such as the timers and serial communication devices. The
Port A-H Alternate Function sub-registers configure these pins for either general-purpose
I/O or alternate function operation. When a pin is configured for alternate function, control

Z8F6401 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8F6402 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F6403 80-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [3:0]

Table 10. Port Availability by Device and Package Type (Continued)

Device Packages Port A Port B Port C Port D Port E Port F Port G Port H

DQ

D Q

DQ

GND

VDD
Port Output Control

Port Data Direction

Port Output
Data Register

Port Input
Data Register

Port
Pin

DATA
Bus

System
Clock

System
Clock

Schmitt Trigger
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

36
GPIO Interrupts

Many of the GPIO port pins can be used as interrupt sources. Some port pins may be con-
figured to generate an interrupt request on either the rising edge or falling edge of the pin
input signal. Other port pin interrupts generate an interrupt when any edge occurs (both
rising and falling). Refer to the Interrupt Controller chapter for more information on
interrupts using the GPIO pins.

GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data.
Table 12 lists these Port registers. Use the Port A-H Address and Control registers together
to provide access to sub-registers for Port configuration and control.

Port D PD0 T3IN Timer 3 In (not available in 40- and 44-pin packages)

PD1 T3OUT Timer 3 Out (not available in 40- and 44-pin packages)

PD2 N/A No alternate function

PD3 N/A No alternate function

PD4 RXD1 / IRRX1 UART 1 / IrDA 1 Receive Data

PD5 TXD1 / IRTX1 UART 1 / IrDA 1 Transmit Data

PD6 CTS1 UART 1 Clear to Send

PD7 RCOUT Watch-Dog Timer RC Oscillator Output

Port E PE[7:0] N/A No alternate functions

Port F PF[7:0] N/A No alternate functions

Port G PG[7:0] N/A No alternate functions

Port H PH0 ANA8 ADC Analog Input 8

PH1 ANA9 ADC Analog Input 9

PH2 ANA10 ADC Analog Input 10

PH3 ANA11 ADC Analog Input 11

Table 11. Port Alternate Function Mapping (Continued)

Port Pin Mnemonic Alternate Function Description
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

38
PADDR[7:0]—Port Address
The Port Address selects one of the sub-registers accessible through the Port Control reg-
ister.

Port A-H Control Registers
The Port A-H Control registers set the GPIO port operation. The value in the correspond-
ing Port A-H Address register determines the control sub-registers accessible using the
Port A-H Control register (Table 14).

PCTL[7:0]—Port Control
The Port Control register provides access to all sub-registers that configure the GPIO Port
operation.

PADDR[7:0] Port Control sub-register accessible using the Port A-H Control Registers
00H No function. Provides some protection against accidental Port reconfiguration.
01H Data Direction
02H Alternate Function
03H Output Control (Open-Drain)
04H High Drive Enable
05H Stop Mode Recovery Source Enable.

06H-FFH No function.

Table 14. Port A-H Control Registers (PxCTL)

BITS 7 6 5 4 3 2 1 0

FIELD PCTL

RESET 00H

R/W R/W

ADDR FD1H, FD5H, FD9H, FDDH, FE1H, FE5H, FE9H, FEDH
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

64
If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

The steps for configuring a timer for Compare mode and initiating the count are as fol-
lows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Compare mode.
– Set the prescale value.
– Set the initial logic level (High or Low) for the Timer Output alternate function, if

desired.

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control register to enable the timer and initiate counting.

In Compare mode, the system clock always provides the timer input. The Compare time is
given by the following equation:

Gated Mode
In Gated mode, the timer counts only when the Timer Input signal is in its active state
(asserted), as determined by the TPOL bit in the Timer Control register. When the Timer
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal
deassertion generated the interrupt, read the associated GPIO input value and compare to
the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the system clock. When reaching the Reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state
(from Low to High or from High to Low) at timer reset.

The steps for configuring a timer for Gated mode and initiating the count are as follows:

1. Write to the Timer Control register to:
– Disable the timer

Compare Mode Time (s) Compare Value Start Value–() Prescale×
System Clock Frequency (Hz)

--=
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

92
The UART data rate is calculated using the following equation:

For a given UART data rate, the integer baud rate divisor value is calculated using the fol-
lowing equation:

The baud rate error relative to the desired baud rate is calculated using the following equa-
tion:

For reliable communication, the UART baud rate error must never exceed 5 percent.
Table 58 provides information on data rate errors for popular baud rates and commonly
used crystal oscillator frequencies.

Table 57. UARTx Baud Rate Low Byte Register (UxBRL)

BITS 7 6 5 4 3 2 1 0

FIELD BRL

RESET 1 1 1 1 1 1 1 1

R/W R/W R/W R/W R/W R/W R/W R/W R/w

ADDR F47H and F4FH

UART Baud Rate (bits/s) System Clock Frequency (Hz)
16 UART Baud Rate Divisor Value×
--=

UART Baud Rate Divisor Value (BRG) Round System Clock Frequency (Hz)
16 UART Data Rate (bits/s)×
--⎝ ⎠
⎛ ⎞=

UART Baud Rate Error (%) 100 Actual Data Rate Desired Data Rate–
Desired Data Rate

---⎝ ⎠
⎛ ⎞×=
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

96
Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART
is encoded as digital signals in accordance with the IrDA standard and output to the infra-
red transceiver via the TXD pin. Likewise, data received from the infrared transceiver is
passed to the Infrared Endec via the RXD pin, decoded by the Infrared Endec, and then
passed to the UART. Communication is half-duplex, which means simultaneous data
transmission and reception is not allowed.
The baud rate is set by the UART’s Baud Rate Generator and supports IrDA standard baud
rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA
specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec
data rate is calculated using the following equation:

Transmitting IrDA Data
The data to be transmitted using the infrared transceiver is first sent to the UART. The
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared
data bit is 16-clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains
low for the full 16-clock period. If the data to be transmitted is 0, a 3-clock high pulse is
output following a 7-clock low period. After the 3-clock high pulse, a 6-clock low pulse is
output to complete the full 16-clock data period. Figure 72 illustrates IrDA data transmis-
sion. When the Infrared Endec is enabled, the UART’s TXD signal is internal to the
Z8F640x family device while the IR_TXD signal is output through the TXD pin.

Infrared Data Rate (bits/s) System Clock Frequency (Hz)
16 UART Baud Rate Divisor Value×
--=
PS017610-0404 Infrared Encoder/Decoder

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

109
SPI Mode Register
The SPI Mode register configures the character bit width and the direction and value of the
SS pin.

Reserved
These bits are reserved and must be 0.

NUMBITS[2:0]—Number of Data Bits Per Character to Transfer
This field contains the number of bits to shift for each character transfer. Refer to the SPI
Data Register description for information on valid bit positions when the character length
is less than 8-bits.

000 = 8 bits
001 = 1 bit
010 = 2 bits
011 = 3 bits
100 = 4 bits
101 = 5 bits
110 = 6 bits
111 = 7 bits.

SSIO—Slave Select I/O
0 = SS pin configured as an input.
1 = SS pin configured as an output (Master mode only).

SSV—Slave Select Value
If SSIO = 1 and SPI configured as a Master:
0 = SS pin driven Low (0).
1 = SS pin driven High (1).
This bit has no effect if SSIO = 0 or SPI configured as a Slave.

Table 63. SPI Mode Register (SPIMODE)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved NUMBITS[2:0] SSIO SSV

RESET 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W

ADDR F63H
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

114
14. Software responds by setting the STOP bit of the I2C Control register.

15. If no new data is to be sent or address is to be sent, software responds by clearing the
TXI bit of the I2C Control register.

16. The I2C Controller completes transmission of the data on the SDA signal.

17. The I2C Controller sends the STOP condition to the I2C bus.

Writing a Transaction with a 10-Bit Address
1. The I2C Controller shifts the I2C Shift register out onto SDA signal.

2. The I2C Controller waits for the slave to send an Acknowledge (by pulling the SDA
signal Low). If the slave pulls the SDA signal High (Not-Acknowledge), the I2C
Controller sends a Stop signal.

3. If the slave needs to service an interrupt, it pulls the SCL signal low, which halts I2C
operation.

4. If there is no other data in the I2C Data register or the STOP bit in the I2C Control
register is set by software, then the Stop signal is sent.

The data transfer format for a 10-bit addressed slave is illustrated in the figure below.
Shaded regions indicate data transferred from the I2C Controller to slaves and unshaded
regions indicate data transferred from the slaves to the I2C Controller.

Figure 80. 10-Bit Addressed Slave Data Transfer Format

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal. The transmit operation is carried out in the same manner as 7-bit addressing.

The data transfer format for a transmit operation on a 10-bit addressed slave is as follows:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE bit by writing the first slave address byte. The least-
significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

A A Data A Data P
Slave Address

2nd ByteS A/ASlave Address
 1st 7 bits W=0
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

116
1. Software writes the I2C Data register with a 7-bit slave address followed by a 1 (read).

2. Software asserts the START bit of the I2C Control register.

3. Software asserts the NAK bit of the I2C Control register so that after the first byte of
data has been read by the I2C Controller, a Not Acknowledge is sent to the I2C slave.

4. The I2C Controller sends the START condition.

5. The I2C Controller sends the address and read bit by the SDA signal.

6. The I2C slave sends an Acknowledge by pulling the SDA signal Low during the next
high period of SCL.

7. The I2C Controller reads the first byte of data from the I2C slave.

8. The I2C Controller asserts the Receive interrupt.

9. Software responds by reading the I2C Data register.

10. The I2C Controller sends a NAK to the I2C slave.

11. A NAK interrupt is generated by the I2C Controller.

12. Software responds by setting the STOP bit of the I2C Control register.

13. A STOP condition is sent to the I2C slave.

Reading a Transaction with a 10-Bit Address
Figure 82 illustrates the receive format for a 10-bit addressed slave. The shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 82. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal.

The data transfer format for a receive operation on a 10-bit addressed slave is as follows:

1. Software writes an address 11110B followed by the two address bits and a 0 (write).

2. Software asserts the START bit of the I2C Control register.

3. The I2C Controller sends the Start condition.

S Slave Address
1st 7 bits

W=0 A Slave address
2nd Byte

A S Slave Address
1st 7 bits

R=1 A Data A Data A P
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

117
4. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

5. After the first bit has been shifted out, a Transmit interrupt is asserted.

6. Software responds by writing eight bits of address to the I2C Data register.

7. The I2C Controller completes shifting of the two address bits and a 0 (write).

8. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next
high period of SCL.

9. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

10. The I2C Controller shifts out the next eight bits of address. After the first bits are
shifted, the I2C Controller generates a Transmit interrupt.

11. Software responds by setting the START bit of the I2C Control register to generate a
repeated START.

12. Software responds by writing 11110B followed by the 2-bit slave address and a 1
(read).

13. Software responds by setting the NAK bit of the I2C Control register, so that a Not
Acknowledge is sent after the first byte of data has been read. If you want to read only
one byte, software responds by setting the NAK bit of the I2C Control register.

14. After the I2C Controller shifts out the address bits mentioned in step 9, the I2C slave
sends an acknowledge by pulling the SDA signal Low during the next high period of
SCL.

15. The I2C Controller sends the repeated START condition.

16. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

17. The I2C Controller sends 11110B followed by the 2-bit slave read and a 1 (read).

18. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next
high period of SCL.

19. The I2C slave sends a byte of data.

20. A Receive interrupt is generated.

21. Software responds by reading the I2C Data register.

22. Software responds by setting the STOP bit of the I2C Control register.

23. A NAK condition is sent to the I2C slave.

24. A STOP condition is sent to the I2C slave.
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

119
received a byte of data. When active, this bit causes the I2C Controller to generate an
interrupt. This bit is cleared by reading the I2C Data register.

ACK—Acknowledge
This bit indicates the status of the Acknowledge for the last byte transmitted or received.
When set, this bit indicates that an Acknowledge was received for the last byte transmitted
or received.

10B—10-Bit Address
This bit indicates whether a 10- or 7-bit address is being transmitted. After the START bit
is set, if the five most-significant bits of the address are 11110B, this bit is set. When set,
it is reset once the first byte of the address has been sent.

RD—Read
This bit indicates the direction of transfer of the data. It is active high during a read. The
status of this bit is determined by the least-significant bit of the I2C Shift register after the
START bit is set.

TAS—Transmit Address State
This bit is active high while the address is being shifted out of the I2C Shift register.

DSS—Data Shift State
This bit is active high while data is being transmitted to or from the I2C Shift register.

NCKI—NACK Interrupt
This bit is set high when a Not Acknowledge condition is received or sent and neither the
START nor the STOP bit is active. When set, this bit generates an interrupt that can only
be cleared by setting the START or STOP bit, allowing the user to specify whether he
wants to perform a STOP or a repeated START.

I2C Control Register
The I2C Control register enables the I2C operation.

IEN—I2C Enable
This bit enables the I2C transmitter and receiver.

Table 68. I2C Control Register (I2CCTL)

BITS 7 6 5 4 3 2 1 0

FIELD IEN START STOP BIRQ TXI NAK FLUSH FILTEN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F52H
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

130
DMA_ADC Control Register
The DMA_ADC Control register enables and sets options (DMA enable and interrupt
enable) for ADC operation.

DAEN—DMA_ADC Enable
0 = DMA_ADC is disabled and the ADC Analog Input Number (ADC_IN) is reset to 0.
1 = DMA_ADC is enabled.

IRQEN—Interrupt Enable
0 = DMA_ADC does not generate any interrupts.
1 = DMA_ADC generates an interrupt after transferring data from the last ADC Analog
Input specified by the ADC_IN field.

Reserved
These bits are reserved and must be 0.

ADC_IN—ADC Analog Input Number
These bits set the number of ADC Analog Inputs to be used in the continuous update (data
conversion followed by DMA data transfer). The conversion always begins with ADC
Analog Input 0 and then progresses sequentially through the other selected ADC Analog
Inputs.
0000 = ADC Analog Input 0 updated.
0001 = ADC Analog Inputs 0-1 updated.
0010 = ADC Analog Inputs 0-2 updated.
0011 = ADC Analog Inputs 0-3 updated.
0100 = ADC Analog Inputs 0-4 updated.
0101 = ADC Analog Inputs 0-5 updated.
0110 = ADC Analog Inputs 0-6 updated.
0111 = ADC Analog Inputs 0-7 updated.
1000 = ADC Analog Inputs 0-8 updated.
1001 = ADC Analog Inputs 0-9 updated.
1010 = ADC Analog Inputs 0-10 updated.
1011 = ADC Analog Inputs 0-11 updated.
1100-1111 = Reserved.

Table 78. DMA_ADC Control Register (DMAACTL)

BITS 7 6 5 4 3 2 1 0

FIELD DAEN IRQEN Reserved ADC_IN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FBEH
PS017610-0404 Direct Memory Access Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

136
this bit to 0 when a conversion has been completed.
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already
in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

Reserved
This bit is reserved and must be 0.

VREF
0 = Internal voltage reference generator enabled. The VREF pin should be left uncon-
nected (or capacitively coupled to analog ground).
1 = Internal voltage reference generator disabled. An external voltage reference must be
provided through the VREF pin.

CONT
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system
clock cycles.
1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select
These bits select the analog input for conversion. Not all Port pins in this list are available
in all packages for the Z8F640x family of products. Refer to the Signal and Pin Descrip-
tions chapter for information regarding the Port pins available with each package style.
Do not enable unavailable analog inputs.
0000 = ANA0
0001 = ANA1
0010 = ANA2
0011 = ANA3
0100 = ANA4
0101 = ANA5
0110 = ANA6
0111 = ANA7
1000 = ANA8
1001 = ANA9
1010 = ANA10
1011 = ANA11
11XX = Reserved.
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

137
ADC Data High Byte Register
The ADC Data High Byte register contains the upper eight bits of the 10-bit ADC output.
During a conversion, this value is invalid. Access to the ADC Data High Byte register is
read-only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_H—ADC Data High Byte
This byte contains the upper eight bits of the 10-bit ADC output. These bits are not valid
during a conversion. These bits are undefined after a Reset.

ADC Data Low Bits Register
The ADC Data Low Bits register contains the lower two bits of the conversion value. Dur-
ing a conversion this value is invalid. Access to the ADC Data Low Bits register is read-
only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_L—ADC Data Low Bits
These are the least significant two bits of the 10-bit ADC output. During a conversion, this
value is invalid. These bits are undefined after a Reset.

Reserved
These bits are reserved and are always undefined.

Table 81. ADC Data High Byte Register (ADCD_H)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_H

RESET X

R/W R

ADDR F72H

Table 82. ADC Data Low Bits Register (ADCD_L)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_L Reserved

RESET X X

R/W R R

ADDR F73H
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

138
Flash Memory
Overview

The Z8F640x family features up to 64KB (65,536 bytes) of non-volatile Flash memory
with read/write/erase capability. The Flash Memory can be programmed and erased in-cir-
cuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64
bytes. The Flash memory also contains a High Sector that can be enabled for writes and
erase separately from the rest of the Flash array. The first 2 bytes of the Flash Program
memory are used as Option Bits. Refer to the Option Bits chapter for more information on
their operation.

Table 83 describes the Flash memory configuration for each device in the Z8F640x fam-
ily. Figure 84 illustrates the Flash memory arrangement.

Table 83. Z8F640x family Flash Memory Configurations

Part Number
Flash Size
KB (Bytes)

Flash
Pages

Program Memory
Addresses

 Flash High Sector Size
KB (Bytes)

High Sector
Addresses

Z8F160x 16 (16,384) 32 0000H - 3FFFH 1 (1024) 3C00H - 3FFFH

Z8F240x 24 (24,576) 48 0000H - 5FFFH 2 (2048) 5800H - 5FFFH

Z8F320x 32 (32,768) 64 0000H - 7FFFH 2 (2048) 7800H - 7FFFH

Z8F480x 48 (49,152) 96 0000H - BFFFH 4 (4096) B000H - BFFFH

Z8F640x 64 (65,536) 128 0000H - FFFFH 8 (8192) E000H - FFFFH
PS017610-0404 Flash Memory

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

160
• Read Data Memory (0DH)—The Read Data Memory command reads from Data
Memory. This command is equivalent to the LDE and LDEI instructions. Data can be
read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the
Z8F640x family device is not in Debug mode, this command returns FFH for the data.

DBG <-- 0DH
DBG <-- Data Memory Address[15:8]
DBG <-- Data Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG --> 1-65536 data bytes

• Read Program Memory CRC (0EH)—The Read Program Memory CRC command
computes and returns the CRC (cyclic redundancy check) of Program Memory using
the 16-bit CRC-CCITT polynomial. If the Z8F640x family device is not in Debug
mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read
commands, there is a delay from issuing of the command until the OCD returns the
data. The OCD reads the Program Memory, calculates the CRC value, and returns the
result. The delay is a function of the Program Memory size and is approximately equal
to the system clock period multiplied by the number of bytes in the Program Memory.

DBG <-- 0EH
DBG --> CRC[15:8]
DBG --> CRC[7:0]

• Step Instruction (10H)—The Step Instruction command steps one assembly
instruction at the current Program Counter (PC) location. If the Z8F640x family
device is not in Debug mode or the Read Protect Option Bit is enabled, the OCD
ignores this command.

DBG <-- 10H

• Stuff Instruction (11H)—The Stuff Instruction command steps one assembly
instruction and allows specification of the first byte of the instruction. The remaining
0-4 bytes of the instruction are read from Program Memory. This command is useful
for stepping over instructions where the first byte of the instruction has been
overwritten by a Breakpoint. If the Z8F640x family device is not in Debug mode or
the Read Protect Option Bit is enabled, the OCD ignores this command.

DBG <-- 11H
DBG <-- opcode[7:0]

• Execute Instruction (12H)—The Execute Instruction command allows sending an
entire instruction to be executed to the eZ8 CPU. This command can also step over
Breakpoints. The number of bytes to send for the instruction depends on the opcode. If
the Z8F640x family device is not in Debug mode or the Read Protect Option Bit is
enabled, this command reads and discards one byte.

DBG <-- 12H
DBG <-- 1-5 byte opcode
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

161
• Write Watchpoint (20H)—The Write Watchpoint command sets and configures the
debug Watchpoint. If the Z8F640x family device is not in Debug mode or the Read
Protect Option Bit is enabled, the WPTCTL bits are all set to zero.

DBG <-- 20H
DBG <-- WPTCTL[7:0]
DBG <-- WPTADDR[7:0]
DBG <-- WPTDATA[7:0]

• Read Watchpoint (21H)—The Read Watchpoint command reads the current
Watchpoint registers.

DBG <-- 21H
DBG --> WPTCTL[7:0]
DBG --> WPTADDR[7:0]
DBG --> WPTDATA[7:0]

On-Chip Debugger Control Register Definitions

OCD Control Register
The OCD Control register controls the state of the On-Chip Debugger. This register enters
or exits Debug mode and enables the BRK instruction. It can also reset the Z8F640x fam-
ily device.

A “reset and stop” function can be achieved by writing 81H to this register. A “reset and
go” function can be achieved by writing 41H to this register. If the Z8F640x family device
is in Debug mode, a “run” function can be implemented by writing 40H to this register.

DBGMODE—Debug Mode
Setting this bit to 1 causes the Z8F640x family device to enter Debug mode. When in
Debug mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the
eZ8 CPU to start running again. This bit is automatically set when a BRK instruction is
decoded and Breakpoints are enabled or when a Watchpoint Debug Break is detected. If
the Read Protect Option Bit is enabled, this bit can only be cleared by resetting the
Z8F640x family device, it cannot be written to 0.
0 = The Z8F640x family device is operating in normal mode.
1 = The Z8F640x family device is in Debug mode.

Table 94. OCD Control Register (OCDCTL)

BITS 7 6 5 4 3 2 1 0

FIELD DBGMODE BRKEN DBGACK Reserved RST

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R R R R R/W
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

173
On-Chip Peripheral AC and DC Electrical Characteristics
Table 103. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

Symbol Parameter

TA = -400C to 1050C

Units ConditionsMinimum Typical1 Maximum

VPOR Power-On Reset Voltage
Threshold

2.40 2.70 2.90 V VDD = VPOR

VVBO Voltage Brown-Out Reset
Voltage Threshold

2.30 2.60 2.85 V VDD = VVBO

VPOR to VVBO hysteresis 50 100 – mV

Starting VDD voltage to
ensure valid Power-On
Reset.

– VSS – V

TANA Power-On Reset Analog
Delay

– 50 – µs VDD > VPOR; TPOR Digital
Reset delay follows TANA

TPOR Power-On Reset Digital
Delay

– 10.2 – ms 512 WDT Oscillator cycles
(50KHz) + 70 System Clock
cycles (20MHz)

TVBO Voltage Brown-Out Pulse
Rejection Period

– 10 – ns VDD < VVBO to generate a Reset.

TRAMP Time for VDD to transition
from VSS to VPOR to ensure
valid Reset

0.10 – 100 ms

1 Data in the typical column is from characterization at 3.3V and 00C. These values are provided for design guidance
only and are not tested in production.

Table 104. Flash Memory Electrical Characteristics and Timing

Parameter

VDD = 3.0 - 3.6V
TA = -400C to 1050C

Units NotesMinimum Typical Maximum

Flash Byte Read Time 50 – – ns

Flash Byte Program Time 20 – 40 µs

Flash Page Erase Time 10 – – ms
PS017610-0404 Electrical Characteristics

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

193
BTJZ bit, src, dst if src[bit] = 0
 PC ← PC + X

r F6 - - - - - - 3 3

Ir F7 3 4

CALL dst SP ← SP -2
@SP ← PC
PC ← dst

IRR D4 - - - - - - 2 6

DA D6 3 3

CCF C ← ~C EF * - - - - - 1 2

CLR dst dst ← 00H R B0 - - - - - - 2 2

IR B1 2 3

COM dst dst ← ~dst R 60 - * * 0 - - 2 2

IR 61 2 3

CP dst, src dst - src r r A2 * * * * - - 2 3

r Ir A3 2 4

R R A4 3 3

R IR A5 3 4

R IM A6 3 3

IR IM A7 3 4

CPC dst, src dst - src - C r r 1F A2 * * * * - - 3 3

r Ir 1F A3 3 4

R R 1F A4 4 3

R IR 1F A5 4 4

R IM 1F A6 4 3

IR IM 1F A7 4 4

CPCX dst, src dst - src - C ER ER 1F A8 * * * * - - 5 3

ER IM 1F A9 5 3

CPX dst, src dst - src ER ER A8 * * * * - - 4 3

ER IM A9 4 3

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address Mode
Opcode(s)

(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

Flags Notation: * = Value is a function of the result of the operation.
- = Unaffected
X = Undefined

0 = Reset to 0
1 = Set to 1
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

215
Precharacterization Product
The product represented by this document is newly introduced and ZiLOG has not com-
pleted the full characterization of the product. The document states what ZiLOG knows
about this product at this time, but additional features or nonconformance with some
aspects of the document might be found, either by ZiLOG or its customers in the course of
further application and characterization work. In addition, ZiLOG cautions that delivery
might be uncertain at times, due to start-up yield issues.
ZiLOG, Inc.
532 Race Street
San Jose, CA 95126
Telephone (408) 558-8500
FAX 408 558-8300
Internet: www.zilog.com

Document Information
Document Number Description

The Document Control Number that appears in the footer on each page of this document
contains unique identifying attributes, as indicated in the following table:
PS Product Specification
0176 Unique Document Number
01 Revision Number
0702 Month and Year Published
PS017610-0404 Document Information

