

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2401vn020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Manual Objectives

This Product Specification provides detailed operating information for the Z8F640x, Z8F480x, Z8F320x, Z8F240x, and Z8F160x devices within the Z8 Encore![™] Microcontroller (MCU) family of products. Within this document, the Z8F640x, Z8F480x, Z8F320x, Z8F240x, and Z8F160x are referred to collectively as Z8 Encore![™] or the Z8F640x family unless specifically stated otherwise.

About This Manual

ZiLOG recommends that the user read and understand everything in this manual before setting up and using the product. However, we recognize that there are different styles of learning. Therefore, we have designed this Product Specification to be used either as a *how to* procedural manual or a reference guide to important data.

Intended Audience

This document is written for ZiLOG customers who are experienced at working with microcontrollers, integrated circuits, or printed circuit assemblies.

Manual Conventions

The following assumptions and conventions are adopted to provide clarity and ease of use:

Courier Typeface

Commands, code lines and fragments, bits, equations, hexadecimal addresses, and various executable items are distinguished from general text by the use of the Courier typeface. Where the use of the font is not indicated, as in the Index, the name of the entity is presented in upper case.

• Example: FLAGS[1] is smrf.

Hexadecimal Values

Hexadecimal values are designated by uppercase *H* suffix and appear in the Courier typeface.

• Example: R1 is set to F8H.

Brackets

The square brackets, [], indicate a register or bus.

• Example: for the register R1[7:0], R1 is an 8-bit register, R1[7] is the most significant bit, and R1[0] is the least significant bit.

15

Signal Mnemonic	I/O	Description
Reset		
RESET	Ι	RESET. Generates a Reset when asserted (driven Low).
Power Supply		
VDD	Ι	Power Supply.
AVDD	Ι	Analog Power Supply.
VSS	Ι	Ground.
AVSS	Ι	Analog Ground.

Table 2. Signal Descriptions (Continued)

Pin Characteristics

Table 3 provides detailed information on the characteristics for each pin available on the Z8F640x family products. Data in Table 3 is sorted alphabetically by the pin symbol mnemonic.

Table 3. Pin Characteristics of the Z8F640x family

N/A N/A I/O N/A	N/A N/A I	N/A N/A N/A	N/A N/A	No No	No No	N/A N/A
I/O	Ι			No	No	N/A
		N/A				1 1/ / 1
N/A			Yes	No	Yes	Yes
	N/A	N/A	N/A	No	No	N/A
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable
e	I/O I/O I/O	VO I VO I VO I VO I	I/O I N/A I/O I N/A I/O I N/A I/O I N/A	I/OIN/AYesI/OIN/AYesI/OIN/AYesI/OIN/AYes	I/OIN/AYesNoI/OIN/AYesNoI/OIN/AYesNoI/OIN/AYesNo	I/OIN/AYesNoYesI/OIN/AYesNoYesI/OIN/AYesNoYes

External Pin Reset

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up. Once the $\overline{\text{RESET}}$ pin is asserted, the device progresses through the Short Reset sequence. While the $\overline{\text{RESET}}$ input pin is asserted Low, the Z8F640x family device continues to be held in the Reset state. If the $\overline{\text{RESET}}$ pin is held Low beyond the Short Reset time-out, the device exits the Reset state immediately following $\overline{\text{RESET}}$ pin deassertion. Following a Short Reset initiated by the external $\overline{\text{RESET}}$ pin, the EXT status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

Stop Mode Recovery

Stop mode is entered by execution of a STOP instruction by the eZ8 CPU. Refer to the **Low-Power Modes** chapter for detailed Stop mode information. During Stop Mode Recovery, the Z8F640x family device is held in reset for 514 cycles of the Watch-Dog Timer oscillator followed by 16 cycles of the system clock (crystal oscillator). Stop Mode Recovery does not affect any values in the Register File, including the Stack Pointer, Register Pointer, Flags and general-purpose RAM.

The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOP bit in the Watch-Dog Timer Control Register is set to 1. Table 9 lists the Stop Mode Recovery sources and resulting actions. The text following provides more detailed information on each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action
Stop mode	Watch-Dog Timer time-out when configured for Reset	Stop Mode Recovery
	Watch-Dog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery

Stop Mode Recovery Using Watch-Dog Timer Time-Out

If the Watch-Dog Timer times out during Stop mode, the Z8F640x family device undergoes a STOP Mode Recovery sequence. In the Watch-Dog Timer Control register, the WDT and STOP bits are set to 1. If the Watch-Dog Timer is configured to generate an interrupt upon time-out and the device is configured to respond to interrupts, the Z8F640x family device services the Watch-Dog Timer interrupt request following the normal Stop Mode Recovery sequence.

Port A-H Data Direction Sub-Registers

The Port A-H Data Direction sub-register is accessed through the Port A-H Control register by writing 01H to the Port A-H Address register (Table 15).

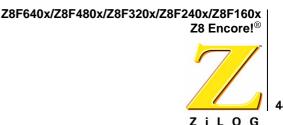
Table 15. Port A-H Data Direction Sub-Registers

BITS	7	6	5	4	3	2	1	0
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		If 01H in Po	rt A-H Addre	ss Register, a	ccessible via	Port A-H Cor	ntrol Register	

DD[7:0]—Data Direction

These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 =Output. Data in the Port A-H Output Data register is driven onto the port pin. 1 =Input. The port pin is sampled and the value written into the Port A-H Input Data Register. The output driver is tri-stated.


Port A-H Alternate Function Sub-Registers

The Port A-H Alternate Function sub-register (Table 16) is accessed through the Port A-H Control register by writing 02H to the Port A-H Address register. The Port A-H Alternate Function sub-registers select the alternate functions for the selected pins. Refer to the **GPIO Alternate Functions** section to determine the alternate function associated with each port pin.

Caution: Do not enable alternate function for GPIO port pins which do not have an associated alternate function. Failure to follow this guideline may result in unpredictable operation.

BITS	7	6	5	4	3	2	1	0
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		If 02H in Po	rt A-H Addre	ss Register, a	ccessible via	Port A-H Cor	trol Register	

Table 16. Port A-H Alternate Function Sub-Registers

Interrupt Controller

Overview

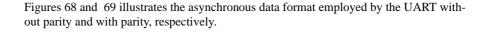
The interrupt controller on the Z8F640x family device prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt controller on the Z8F640x family device include the following:

- 24 unique interrupt vectors:
 - 12 GPIO port pin interrupt sources
 - 12 on-chip peripheral interrupt sources
- Flexible GPIO interrupts
 - 8 selectable rising and falling edge GPIO interrupts
 - 4 dual-edge interrupts
- 3 levels of individually programmable interrupt priority
- Watch-Dog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt control has no effect on operation. Refer to the eZ8 CPU User Manual for more information regarding interrupt servicing by the eZ8 CPU. The eZ8 CPU User Manual is available for download at www.zilog.com.

Interrupt Vector Listing


Table 22 lists all of the interrupts available on the Z8F640x family device in order of priority. The interrupt vector is stored with the most significant byte (MSB) at the even Program Memory address and the least significant byte (LSB) at the following odd Program Memory address.

Priority	Program Memory Vector Address	Interrupt Source	Interrupt Assertion Type
Highest	0002h	Reset (not an interrupt)	Not applicable
	0004h	Watch-Dog Timer	Continuous assertion
	0006h	Illegal Instruction Trap (not an interrupt)	Not applicable
	0008h	Timer 2	Single assertion (pulse)
	000Ah	Timer 1	Single assertion (pulse)
	000Ch	Timer 0	Single assertion (pulse)
	000Eh	UART 0 receiver	Continuous assertion
	0010h	UART 0 transmitter	Continuous assertion
	0012h	I ² C	Continuous assertion
	0014h	SPI	Continuous assertion
	0016h	ADC	Single assertion (pulse)
	0018h	Port A7 or Port D7, rising or falling input edge	Single assertion (pulse)
	001Ah	Port A6 or Port D6, rising or falling input edge	Single assertion (pulse)
	001Ch	Port A5 or Port D5, rising or falling input edge	Single assertion (pulse)
	001Eh	Port A4 or Port D4, rising or falling input edge	Single assertion (pulse)
	0020h	Port A3 or Port D3, rising or falling input edge	Single assertion (pulse)
	0022h	Port A2 or Port D2, rising or falling input edge	Single assertion (pulse)
	0024h	Port A1 or Port D1, rising or falling input edge	Single assertion (pulse)
	0026h	Port A0 or Port D0, rising or falling input edge	Single assertion (pulse)
	0028h	Timer 3 (not available in 40/44-pin packages)	Single assertion (pulse)
	002Ah	UART 1 receiver	Continuous assertion
	002Ch	UART 1 transmitter	Continuous assertion
	002Eh	DMA	Single assertion (pulse)
	0030h	Port C3, both input edges	Single assertion (pulse)
	0032h	Port C2, both input edges	Single assertion (pulse)
	0034h	Port C1, both input edges	Single assertion (pulse)
Lowest	0036h	Port C0, both input edges	Single assertion (pulse)

Table 22. Interrupt Vectors in Order of Priority

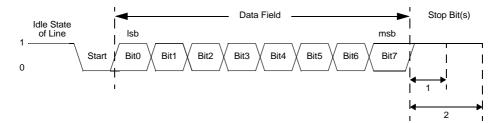


Figure 68. UART Asynchronous Data Format without Parity

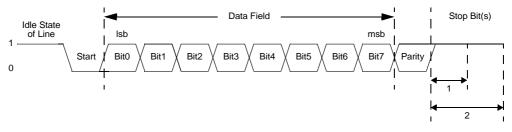


Figure 69. UART Asynchronous Data Format with Parity

Transmitting Data using the Polled Method

Follow these steps to transmit data using the polled method of operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions, if desired.
- 4. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if desired, and select either even or odd parity.
 - Set or clear the CTSE bit to enable or disable control from the receiver using the $\overline{\text{CTS}}$ pin.

89

BITS	7	6	5	4	3	2	1	0	
FIELD		Reserved							
RESET	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
ADDR				F44H ar	d F4CH				

Table 53. UARTx Status 1 Register (UxSTAT1)

Reserved

These bits are reserved and must be 0.

MPRX—Multiprocessor Receive

This status bit is for the receiver and reflects the actual status of the last multiprocessor bit received. Reading from the UART Data register resets this bit to 0.

UARTx Control 0 and Control 1 Registers

The UART*x* Control 0 and Control 1 registers (Tables 54 and 55) configure the properties of the UART's transmit and receive operations. The UART Control registers must ben be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F42H ar	nd F4AH			

Table 54. UARTx Control 0 Register (UxCTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

- 0 = Receiver disabled.
- 1 =Receiver enabled.

10.0 MHz System	Clock			5.5296 MHz Syst	em Clock		
Desired Rate	BRG Divisor	Actual Rate	Error	Desired Rate	BRG Divisor	Actual Rate	Error
(kHz)	(Decimal)	(kHz)	(%)	(kHz)	(Decimal)	(kHz)	(%)
1250.0	N/A	N/A	N/A	1250.0	N/A	N/A	N/A
625.0	1	625.0	0.00	625.0	N/A	N/A	N/A
250.0	3	208.33	-16.67	250.0	1	345.6	38.24
115.2	5	125.0	8.51	115.2	3	115.2	0.00
57.6	11	56.8	-1.36	57.6	6	57.6	0.00
38.4	16	39.1	1.73	38.4	9	38.4	0.00
19.2	33	18.9	0.16	19.2	18	19.2	0.00
9.60	65	9.62	0.16	9.60	36	9.60	0.00
4.80	130	4.81	0.16	4.80	72	4.80	0.00
2.40	260	2.40	-0.03	2.40	144	2.40	0.00
1.20	521	1.20	-0.03	1.20	288	1.20	0.00
0.60	1042	0.60	-0.03	0.60	576	0.60	0.00
0.30	2083	0.30	0.02	0.30	1152	0.30	0.00

Table 58. UART Baud Rates (Continued)

3.579545 MHz System Clock

Desired Rate	BRG Divisor	Actual Rate	Error	Desired Rate	BRG Divisor	Actual Rate	Error
(kHz)	(Decimal)	(kHz)	(%)	(kHz)	(Decimal)	(kHz)	(%)
1250.0	N/A	N/A	N/A	1250.0	N/A	N/A	N/A
625.0	N/A	N/A	N/A	625.0	N/A	N/A	N/A
250.0	1	223.72	-10.51	250.0	N/A	N/A	N/A
115.2	2	111.9	-2.90	115.2	1	115.2	0.00
57.6	4	55.9	-2.90	57.6	2	57.6	0.00
38.4	6	37.3	-2.90	38.4	3	38.4	0.00
19.2	12	18.6	-2.90	19.2	6	19.2	0.00
9.60	23	9.73	1.32	9.60	12	9.60	0.00
4.80	47	4.76	-0.83	4.80	24	4.80	0.00
2.40	93	2.41	0.23	2.40	48	2.40	0.00
1.20	186	1.20	0.23	1.20	96	1.20	0.00
0.60	373	0.60	-0.04	0.60	192	0.60	0.00
0.30	746	0.30	-0.04	0.30	384	0.30	0.00
				-			

1.8432 MHz System Clock

1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the trigger source.

DLE—DMAx Loop Enable

0 = DMAx reloads the original Start Address and is then disabled after the End Address data is transferred.

1 = DMAx, after the End Address data is transferred, reloads the original Start Address and continues operating.

DDIR—DMAx Data Transfer Direction

0 =Register File \rightarrow on-chip peripheral control register.

1 = on-chip peripheral control register \rightarrow Register File.

IRQEN—DMAx Interrupt Enable

0 = DMAx does not generate any interrupts.

1 = DMAx generates an interrupt when the End Address data is transferred.

WSEL-Word Select

0 = DMAx transfers a single byte per request.

1 = DMAx transfers a two-byte word per request. The address for the on-chip peripheral control register must be an even address.

RSS-Request Trigger Source Select

The Request Trigger Source Select field determines the peripheral that can initiate a DMA request transfer. The corresponding interrupts do not need to be enabled within the Interrupt Controller to initiate a DMA transfer. However, if the Request Trigger Source can enable or disable the interrupt request sent to the Interrupt Controller, the interrupt request must be enabled within the Request Trigger Source block.

- 000 = Timer 0.
- 001 = Timer 1.
- 010 = Timer 2.
- 011 = Timer 3.

100 = DMA0 Control register: UART0 Received Data register contains valid data. DMA1 Control register: UART0 Transmit Data register empty.

101 = DMA0 Control register: UART1 Received Data register contains valid data. DMA1 Control register: UART1 Transmit Data register empty.

110 = DMA0 Control register: I²C Receiver Interrupt. DMA1 Control register: I²C Transmitter Interrupt register empty.

111 = Reserved.

DMAx I/O Address Register

The DMAx I/O Address register contains the low byte of the on-chip peripheral address for data transfer. The full 12-bit Register File address is given by {FH, DMAx_IO[7:0]}.

Table 76 provides an example of the Register File addresses if the DMA_ADC Address register contains the value 72H.

ADC Analog Input	Register File Address (Hex) ¹
0	720H-721H
1	722H-723H
2	724H-725H
3	726H-727H
4	728H-729H
5	72AH-72BH
6	72CH-72DH
7	72EH-72FH
8	730H-731H
9	732H-733H
10	734H-735H
11	736H-737H
1	

Table 76. DMA_ADC Register File Address Example

¹ DMAA_ADDR set to 72H.

Table 77. DMA_ADC Address Register (DMAA_ADDR)

BITS	7	6	5	4	3	2	1	0			
FIELD		DMAA_ADDR 1									
RESET	Х	X X X X X		Х	Х	Х					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR				FB	DH						

DMAA_ADDR—DMA_ADC Address

These bits specify the seven most-significant bits of the 12-bit Register File addresses used for storing the ADC output data. The ADC Analog Input Number defines the five least-significant bits of the Register File address. Full 12-bit address is {DMAA_ADDR[7:1], 4-bit ADC Analog Input Number, 0}.

Reserved This bit is reserved and must be 0.

131

DMA Status Register

The DMA Status register indicates the DMA channel that generated the interrupt and the ADC Analog Input that is currently undergoing conversion. Reads from this register reset the Interrupt Request Indicator bits (IRQA, IRQ1, and IRQ0) to 0. Therefore, software interrupt service routines that read this register must process all three interrupt sources from the DMA.

Table 79. DMA_ADC Status Register (DMAA_STAT)

BITS	7	6	5	4	3	2	1	0	
FIELD		CAD	C[3:0]		Reserved	IRQA	IRQ1	IRQ0	
RESET	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
ADDR				FB	FH				

CADC[3:0]—Current ADC Analog Input

This field identifies the Analog Input that the ADC is currently converting.

Reserved

This bit is reserved and must be 0.

IRQA—DMA_ADC Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

 $0 = DMA_ADC$ is not the source of the interrupt from the DMA Controller.

1 = DMA_ADC completed transfer of data from the last ADC Analog Input and generated an interrupt.

IRQ1—DMA1 Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

0 = DMA1 is not the source of the interrupt from the DMA Controller.

1 = DMA1 completed transfer of data to/from the End Address and generated an interrupt.

IRQ0—DMA0 Interrupt Request Indicator

This bit is automatically reset to 0 each time a read from this register occurs.

0 = DMA0 is not the source of the interrupt from the DMA Controller.

1 = DMA0 completed transfer of data to/from the End Address and generated an interrupt.

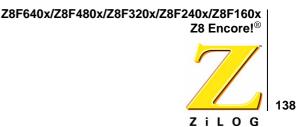
- Set CONT to 1 to select continuous conversion.
- Write to VREF to enable or disable the internal voltage reference generator.
- Set CEN to 1 to start the conversions.
- 3. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations:
 - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation.
 - An interrupt request is sent to the Interrupt Controller to indicate the *first* conversion is complete. An interrupt request is not sent for subsequent conversions in continuous operation.
- 4. Thereafter, the ADC writes a new 10-bit data result to {ADCD_H[7:0], ADCD_L[7:6]} every 256 system clock cycles.
- 5. To disable continuous conversion, clear the CONT bit in the ADC Control register to 0.

DMA Control of the ADC

The Direct Memory Access (DMA) Controller can control operation of the ADC including analog input selection and conversion enable. For more information on the DMA and configuring for ADC operations refer to the **Direct Memory Access Controller** chapter.

ADC Control Register Definitions

ADC Control Register


The ADC Control register selects the analog input channel and initiates the analog-to-digital conversion.

BITS	7	6	5	4	3	0						
FIELD	CEN	Reserved	VREF	CONT	ANAIN[3:0]							
RESET	0	0	0	0	0000							
R/W	R/W	R/W	R/W	R/W	R/W							
ADDR				F7	0H							

Table 80.	ADC	Control	Register	(ADCCTL)
-----------	-----	---------	----------	----------

CEN—Conversion Enable

0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears

Flash Memory

Overview

The Z8F640x family features up to 64KB (65,536 bytes) of non-volatile Flash memory with read/write/erase capability. The Flash Memory can be programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes. The Flash memory also contains a High Sector that can be enabled for writes and erase separately from the rest of the Flash array. The first 2 bytes of the Flash Program memory are used as Option Bits. Refer to the **Option Bits** chapter for more information on their operation.

Table 83 describes the Flash memory configuration for each device in the Z8F640x family. Figure 84 illustrates the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash High Sector Size KB (Bytes)	High Sector Addresses
Z8F160x	16 (16,384)	32	0000H - 3FFFH	1 (1024)	3C00H - 3FFFH
Z8F240x	24 (24,576)	48	0000H - 5FFFH	2 (2048)	5800H - 5FFFH
Z8F320x	32 (32,768)	64	0000H - 7FFFH	2 (2048)	7800H - 7FFFH
Z8F480x	48 (49,152)	96	0000H - BFFFH	4 (4096)	B000H - BFFFH
Z8F640x	64 (65,536)	128	0000H - FFFFH	8 (8192)	E000H - FFFFH

Table 83. Z8F640x family Flash Memory Configurations

Flash Status Register

The Flash Status register indicates the current state of the Flash Controller. This register can be read at any time. The Read-only Flash Status Register shares its Register File address with the Write-only Flash Control Register.

BITS	7	6	5	4	3	2	1	0			
FIELD	Rese	erved			FSTAT						
RESET	0	0	0	0	0						
R/W	R	R	R	R	R	R	R	R			
ADDR		FF8H									

Reserved

These bits are reserved and must be 0.

FSTAT—Flash Controller Status

000000 = Flash Controller locked.


000001 = First unlock command received.

000010 = Flash Controller unlocked (second unlock command received).

001xxx = Program operation in progress.

010xxx = Page erase operation in progress.

100xxx = Mass erase operation in progress.

Option Bits

Overview

Option Bits allow user configuration of certain aspects of Z8F640x family device operation. The feature configuration data is stored in the Program Memory and read during Reset. The features available for control via the Option Bits are:

- Watch-Dog Timer time-out response selection-interrupt or Short Reset.
- Watch-Dog Timer enabled at Reset.
- The ability to prevent unwanted read access to user code in Program Memory.
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory.

Operation

Option Bit Configuration By Reset

Each time the Option Bits are programmed or erased, the Z8F640x family device must be Reset for the change to take place. During any reset operation (System Reset, Short Reset, or Stop Mode Recovery), the Option Bits are automatically read from the Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the Z8F640x family device. Option Bit control of the Z8F640x family device is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Option Bit Address Space

The first two bytes of Program Memory at addresses 0000H and 0001H are reserved for the user Option Bits. The byte at Program Memory address 0000H is used to configure user options. The byte at Program Memory address 0001H is reserved for future use and must be left in its unprogrammed state.

178

On-Chip Debugger Timing

Figure 95 and Table 109 provide timing information for DBG pins. The timing specifications presume a rise and fall time on DBG of less than 4μ s.

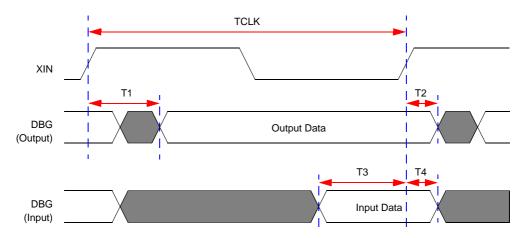


Figure 95. On-Chip Debugger Timing

		Dela	y (ns)
Parameter	Abbreviation	Minimum	Maximum
DBG			
T ₁	XIN Rise to DBG Valid Delay	_	15
T ₂	XIN Rise to DBG Output Hold Time	2	_
T ₃	DBG to XIN Rise Input Setup Time	10	_
T ₄	DBG to XIN Rise Input Hold Time	5	_
	DBG frequency		System Clock / 4

Table	109.	On-Chip	Debugger	Timing
Inoie	10/1	on omp	Debugger	

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

204

							Le	ower Nil	ble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Opcode Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR	3.4 OR IR2,R1	3.3 OR	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	R2,R1 3.3 AND R2,R1	3.4 AND IR2,R1	R1,IM 3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						1.2 WDT
6	R1 2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						STOP
XeH) ol	2.2 PUSH	2.3 PUSH IR2	2.3 TM	2.4 TM	3.3 TM	3.4 TM	3.3 TM	3.4 TM	4.3 TMX	4.3 TMX						1.2 HALT
Upper Nibble (Hex) 8 2	R2 2.5 DECW RR1	2.6 DECW IRR1	r1,r2 2.5 LDE	r1,lr2 2.9 LDEI	82,R1 3.2 LDX	3.3 LDX	81,IM 3.4 LDX	3.5 LDX	3.4 LDX	3.4 LDX						1.2 DI
1 9	2.2 RL R1	2.3 RL IR1	r1,Irr2 2.5 LDE r2,Irr1	1r1,1rr2 2.9 LDEI 1r2,1rr1	r1,ER2 3.2 LDX r2,ER1	1r1,ER2 3.3 LDX Ir2,ER1	3.4 LDX	3.5 LDX IR2,IRR1	r1,rr2,X 3.3 LEA	3.5 LEA						1.2 El
A	2.5 INCW	2.6 INCW	2.3 CP	2.4 CP	3.3 CP	3.4 CP	3.3 CP	3.4 CP	r1,r2,X 4.3 CPX	4.3 CPX						1.4 RET
В	2.2 CLR	IRR1 2.3 CLR IR1	r1,r2 2.3 XOR	r1,lr2 2.4 XOR	82,R1 3.3 XOR	3.4 XOR	81,IM 3.3 XOR	3.4 XOR	4.3 XORX	4.3 XORX						1.5 IRET
С	R1 2.2 RRC R1	2.3 RRC IR1	r1,r2 2.5 LDC r1,lrr2	r1,lr2 2.9 LDCI lr1,lrr2	R2,R1 2.3 JP IRR1	2.9 LDC	R1,IM	IR1,IM 3.3 LD r1,r2,X	3.2 PUSHX ER2	IM,ER1						1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,lrr1	2.9 LDCI Ir2,Irr1	2.6	Ir1,Irr2 2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR	2.3 RR IR1	2.2 BIT	2.3 LD	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	R1 2.2 SWAP R1	2.3 SWAP IR1	p,b,r1 2.6 TRAP Vector	r1,lr2 2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ	3.4 BTJ p,b,lr1,X	EKZ,EK1	IIVI,ER1		V				

Figure 101. First Opcode Map

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

Figure 105 illustrates the 64-pin LQFP (low-profile quad flat package) available for the Z8F1602, Z8F2402, Z8F3202, Z8F4802, and Z8F6402 devices.

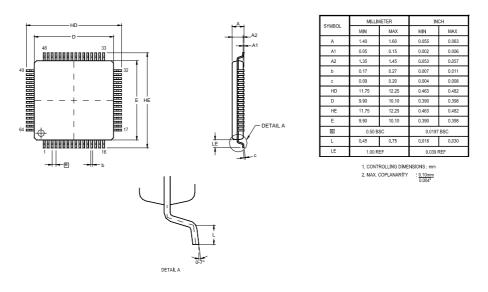


Figure 106. 64-Lead Low-Profile Quad Flat Package (LQFP)

register 109, 126, 184 ADC control (ADCCTL) 135 ADC data high byte (ADCDH) 137 ADC data low bits (ADCDL) 137 baud low and high byte (I2C) 121 baud rate high and low byte (SPI) 110 control (SPI) 107 control, I2C 119 data, SPI 106 DMA status (DMAA_STAT) 131 DMA_ADC address 128 DMA_ADC control DMAACTL) 130 DMAx address high nibble (DMAxH) 126 DMAx control (DMAxCTL) 124 DMAx end/address low byte (DMAxEND) 128 DMAx start/current address low byte register (DMAxSTART) 128 flash control (FCTL) 144 flash high and low byte (FFREQH and FREEQL) 147 flash page select (FPS) 146 flash status (FSTAT) 145 GPIO port A-H address (PxADDR) 37 GPIO port A-H alternate function sub-registers 39 GPIO port A-H control address (PxCTL) 38 GPIO port A-H data direction sub-registers 39 I2C baud rate high (I2CBRH) 121 I2C control (I2CCTL) 119 I2C data (I2CDATA) 118 I2C status 118 I2C status (I2CSTAT) 118 I2Cbaud rate low (I2CBRL) 121 mode, SPI 109 OCD control 161 OCD status 162 OCD watchpoint address 164 OCD watchpoint control 163 OCD watchpoint data 164 SPI baud rate high byte (SPIBRH) 110 SPI baud rate low byte (SPIBRL) 110 SPI control (SPICTL) 107 SPI data (SPIDATA) 106 SPI status (SPISTAT) 108

status, I2C 118 status, SPI 108 UARTx baud rate high byte (UxBRH) 91 UARTx baud rate low byte (UxBRL) 92 UARTx Control 0 (UxCTL0) 89 UARTx control 1 (UxCTL1) 90 UARTx receive data (UxRXD) 87 UARTx status 0 (UxSTAT0) 87 UARTx status 1 (UxSTAT1) 89 UARTx transmit data (UxTXD) 86 watch-dog timer control (WDTCTL) 75 watch-dog timer reload high byte (WDTH) 76 watch-dog timer reload low byte (WDTL) 77 watch-dog timer reload upper byte (WDTU) 76 register file 17 register file address map 20 register pair 184 register pointer 185 reset and stop mode characteristics 25 and stop mode recovery 25 carry flag 188 controller 5 sources 26 **RET 190** return 190 return information 216 RL 191 **RLC 191** rotate and shift instructions 191 rotate left 191 rotate left through carry 191 rotate right 191 rotate right through carry 191 RP 185 RR 184, 191 rr 184 **RRC 191**

S

SBC 188 SCF 188, 189 SCK 101