
Zilog - Z8F2402VS020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 46

Program Memory Size 24KB (24K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 68-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f2402vs020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f2402vs020ec-4426629
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

4

• Software stack allows much greater depth in subroutine calls and interrupts than
hardware stacks

• Compatible with existing Z8 code

• Expanded internal Register File allows access of up to 4KB

• New instructions improve execution efficiency for code developed using higher-level
programming languages, including C

• Pipelined instruction fetch and execution

• New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,
LDCI, LEA, MULT, and SRL

• New instructions support 12-bit linear addressing of the Register File

• Up to 10 MIPS operation

• C-Compiler friendly

• 2-9 clock cycles per instruction

For more information regarding the eZ8 CPU, refer to the eZ8 CPU User Manual avail-
able for download at www.zilog.com.

General Purpose I/O
The Z8 Encore!® features seven 8-bit ports (Ports A-G) and one 4-bit port (Port H) for
general purpose I/O (GPIO). Each pin is individually programmable.

Flash Controller
The Flash Controller programs and erases the Flash memory.

10-Bit Analog-to-Digital Converter
The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary
number. The ADC accepts inputs from up to 12 different analog input sources.

UARTs
Each UART is full-duplex and capable of handling asynchronous data transfers. The
UARTs support 8- and 9-bit data modes and selectable parity.

I2C
The inter-integrated circuit (I2C®) controller makes the Z8 Encore!® compatible with the
I2C protocol. The I2C controller consists of two bidirectional bus lines, a serial data (SDA)
line and a serial clock (SCL) line.
PS017610-0404 Introduction

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

7

Pin Configurations

Figures 56 through 61 illustrate the pin configurations for all of the packages available in
the Z8 Encore!® MCU family. Refer to Table 2 for a description of the signals.

Figure 56. Z8Fxx01 in 40-Pin Dual Inline Package (DIP)

PD5 / TXD1
PC4 / MOSI
PA4 / RXD0
PA5 / TXD0
PA6 / SCL
PA7 / SDA
PD6 / CTS1
PC3 / SCK
VSS

PD4/RXD1
PD3

PC5 / MISO
PA3 / CTS0

PA2
PA1 / T0OUT

PA0 / T0IN
PC2 / SS

1 40

VDD
RESET

PC6 / T2IN *
DBG
PC1 / T1OUT

VSS
PD1
PD0

PC0 / T1INXOUT
AVSSXIN
VREFAVDD
PB2 / ANA2
PB3 / ANA3
PB7 / ANA7

PB0 / ANA0
PB1 / ANA1
PB4 / ANA4

20 21 PB6 / ANA6PB5 / ANA5

5

10

15

35

30

25

VDD

* T2OUT is not supported.Note: Timer 3 is not supported.
PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

8

Figure 57. Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
VSS
VDD

VSS

PC7 / T2OUT
PC6 / T2IN
DBG

PA0 / T0IN
PD2

PC2 / SS
RESET

VDD
VSS

VDD

PD1
PD0

7 39

PC1 / T1OUTXOUT
PC0 / T1INXIN

P
A

1
/ T

0O
U

T
P

A
2

P
A

3
/ C

TS
0

P
C

5
/ M

IS
O

P
D

3
P

D
4

/ R
X

D
1

P
D

5
/ T

X
D

1
P

C
4

/ M
O

S
I

P
A

4
/ R

XD
0

PA
5

/ T
X

D
0

PA
6

/ S
C

L

A
V

D
D

P
B

6
/ A

N
A6

P
B

5
/ A

N
A5

P
B

0
/ A

N
A0

P
B

1
/ A

N
A1

P
B

4
/ A

N
A4

P
B

7
/ A

N
A7

V
R

E
F

P
B

2
/ A

N
A2

P
B

3
/ A

N
A3

A
V

S
S

6 401

17 29
2818

12

23

34

Note: Timer 3 is not supported.
PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

26
System and Short Resets
During a System Reset, the Z8F640x family device is held in Reset for 514 cycles of the
Watch-Dog Timer oscillator followed by 16 cycles of the system clock (crystal oscillator).
A Short Reset differs from a System Reset only in the number of Watch-Dog Timer oscil-
lator cycles required to exit Reset. A Short Reset requires only 66 Watch-Dog Timer oscil-
lator cycles. Unless specifically stated otherwise, System Reset and Short Reset are
referred to collectively as Reset.

During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal
oscillator and Watch-Dog Timer oscillator continue to run. The system clock begins oper-
ating following the Watch-Dog Timer oscillator cycle count. The eZ8 CPU and on-chip
peripherals remain idle through the 16 cycles of the system clock.

Upon Reset, control registers within the Register File that have a defined Reset value are
loaded with their reset values. Other control registers (including the Stack Pointer, Regis-
ter Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8
CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads
that value into the Program Counter. Program execution begins at the Reset vector
address.

Reset Sources

Table 8 lists the reset sources and type of Reset as a function of the Z8F640x family
device operating mode. The text following provides more detailed information on the indi-
vidual Reset sources. Please note that Power-On Reset / Voltage Brown-Out events always
have priority over all other possible reset sources to insure a full system reset occurs.

Table 8. Reset Sources and Resulting Reset Type

Operating Mode Reset Source Reset Type

Normal or Halt modes Power-On Reset / Voltage Brown-Out System Reset

Watch-Dog Timer time-out
when configured for Reset

Short Reset

RESET pin assertion Short Reset

On-Chip Debugger initiated Reset
(OCDCTL[1] set to 1)

System Reset except the On-Chip Debugger is
unaffected by the reset

Stop mode Power-On Reset / Voltage Brown-Out System Reset

RESET pin assertion System Reset

DBG pin driven Low System Reset
PS017610-0404 Reset and Stop Mode Recovery

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

33
General-Purpose I/O
Overview

The Z8F640x family products support a maximum of seven 8-bit ports (Ports A-G) and
one 4-bit port (Port H) for general-purpose input/output (I/O) operations. Each port con-
tains control and data registers. The GPIO control registers are used to determine data
direction, open-drain, output drive current and alternate pin functions. Each port pin is
individually programmable.

GPIO Port Availability By Device

Not all Z8F640x family products support all 8 ports (A-H). Table 10 lists the port pins
available with each device and package type.

Table 10. Port Availability by Device and Package Type

Device Packages Port A Port B Port C Port D Port E Port F Port G Port H

Z8F1601 40-pin [7:0] [7:0] [6:0] [6:3, 1:0] - - - -

Z8F1601 44-pin [7:0] [7:0] [7:0] [6:0]

Z8F1602 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F2401 40-pin [7:0] [7:0] [6:0] [6:3, 1:0] - - - -

Z8F2401 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8F2402 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F3201 40-pin [7:0] [7:0] [6:0] [6:3, 1:0] - - - -

Z8F3201 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8F3202 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F4801 40-pin [7:0] [7:0] [6:0] [6:3, 1:0] - - - -

Z8F4801 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8F4802 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F4803 80-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [3:0]

Z8F6401 40-pin [7:0] [7:0] [6:0] [6:3, 1:0] - - - -
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

45
Table 22. Interrupt Vectors in Order of Priority

Priority
Program Memory
Vector Address Interrupt Source Interrupt Assertion Type

Highest 0002h Reset (not an interrupt) Not applicable

0004h Watch-Dog Timer Continuous assertion

0006h Illegal Instruction Trap (not an interrupt) Not applicable

0008h Timer 2 Single assertion (pulse)

000Ah Timer 1 Single assertion (pulse)

000Ch Timer 0 Single assertion (pulse)

000Eh UART 0 receiver Continuous assertion

0010h UART 0 transmitter Continuous assertion

0012h I2C Continuous assertion

0014h SPI Continuous assertion

0016h ADC Single assertion (pulse)

0018h Port A7 or Port D7, rising or falling input edge Single assertion (pulse)

001Ah Port A6 or Port D6, rising or falling input edge Single assertion (pulse)

001Ch Port A5 or Port D5, rising or falling input edge Single assertion (pulse)

001Eh Port A4 or Port D4, rising or falling input edge Single assertion (pulse)

0020h Port A3 or Port D3, rising or falling input edge Single assertion (pulse)

0022h Port A2 or Port D2, rising or falling input edge Single assertion (pulse)

0024h Port A1 or Port D1, rising or falling input edge Single assertion (pulse)

0026h Port A0 or Port D0, rising or falling input edge Single assertion (pulse)

0028h Timer 3 (not available in 40/44-pin packages) Single assertion (pulse)

002Ah UART 1 receiver Continuous assertion

002Ch UART 1 transmitter Continuous assertion

002Eh DMA Single assertion (pulse)

0030h Port C3, both input edges Single assertion (pulse)

0032h Port C2, both input edges Single assertion (pulse)

0034h Port C1, both input edges Single assertion (pulse)

Lowest 0036h Port C0, both input edges Single assertion (pulse)
PS017610-0404 Interrupt Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

49
I2CI— I2C Interrupt Request
0 = No interrupt request is pending for the I2C.
1 = An interrupt request from the I2C is awaiting service.

SPII—SPI Interrupt Request
0 = No interrupt request is pending for the SPI.
1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request
0 = No interrupt request is pending for the Analog-to-Digital Converter.
1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register
The Interrupt Request 1 (IRQ1) register (Table 24) stores interrupt requests for both vec-
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-
responding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored
interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts
are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1
register to determine if any interrupt requests are pending.

PADxI—Port A or Port D Pin x Interrupt Request
0 = No interrupt request is pending for GPIO Port A or Port D pin x.
1 = An interrupt request from GPIO Port A or Port D pin x is awaiting service.

where x indicates the specific GPIO Port pin number (0 through 7). For each pin, only 1 of
either Port A or Port D can be enabled for interrupts at any one time. Port selection (A or
D) is determined by the values in the Interrupt Port Select Register.

Table 24. Interrupt Request 1 Register (IRQ1)

BITS 7 6 5 4 3 2 1 0

FIELD PAD7I PAD6I PAD5I PAD4I PAD3I PAD2I PAD1I PAD0I

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FC3H
PS017610-0404 Interrupt Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

63
Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer
continues counting.

The timer continues counting up to the 16-bit Reload value stored in the Timer Reload
High and Low Byte registers. Upon reaching the Reload value, the timer generates an
interrupt and continues counting.

The steps for configuring a timer for Capture mode and initiating the count are as follows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Capture mode.
– Set the prescale value.
– Set the Capture edge (rising or falling) for the Timer Input.

2. Write to the Timer High and Low Byte registers to set the starting count value
(typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows user
software to determine if interrupts were generated by either a capture event or a
reload. If the PWM High and Low Byte registers still contain 0000H after the
interrupt, then the interrupt was generated by a Reload.

5. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

6. Configure the associated GPIO port pin for the Timer Input alternate function.

7. Write to the Timer Control register to enable the timer and initiate counting.

In Capture mode, the elapsed time from timer start to Capture event can be calculated
using the following equation:

Compare Mode
In Compare mode, the timer counts up to the 16-bit maximum Compare value stored in the
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon
reaching the Compare value, the timer generates an interrupt and counting continues (the
timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled,
the Timer Output pin changes state (from Low to High or from High to Low) upon Com-
pare.

Capture Elapsed Time (s) Capture Value Start Value–() Prescale×
System Clock Frequency (Hz)

---=
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

65
– Configure the timer for Gated mode.
– Set the prescale value.

2. Write to the Timer High and Low Byte registers to set the starting count value. This
only affects the first pass in Gated mode. After the first timer reset in Gated mode,
counting always begins at the reset value of 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.

6. Write to the Timer Control register to enable the timer.

7. Assert the Timer Input signal to initiate the counting.

Capture/Compare Mode
In Capture/Compare mode, the timer begins counting on the first external Timer Input
transition. The desired transition (rising edge or falling edge) is set by the TPOL bit in the
Timer Control Register. The timer input is the system clock.

Every subsequent desired transition (after the first) of the Timer Input signal captures the
current count value. The Capture value is written to the Timer PWM High and Low Byte
Registers. When the Capture event occurs, an interrupt is generated, the count value in the
Timer High and Low Byte registers is reset to 0001H, and counting resumes.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to
0001H and counting resumes.

The steps for configuring a timer for Capture/Compare mode and initiating the count are
as follows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Capture/Compare mode.
– Set the prescale value.
– Set the Capture edge (rising or falling) for the Timer Input.

2. Write to the Timer High and Low Byte registers to set the starting count value
(typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

91
0 = Disable Multiprocessor mode.
1 = Enable Multiprocessor mode.

MPE—Multiprocessor Enable
0 = The UART processes all received data bytes.
1 = The UART processes only data bytes in which the multiprocessor data bit (9th bit) is
set to 1.

MPBT—Multiprocessor Bit Transmitter
This bit is applicable only when Multiprocessor (9-bit) mode is enabled.
0 = Send a 0 in the multiprocessor bit location of the data stream (9th bit).
1 = Send a 1 in the multiprocessor bit location of the data stream (9th bit).

Reserved
These bits are reserved and must be 0.

RDAIRQ—Receive Data Interrupt Enable
0 = Received data and receiver errors generates an interrupt request to the Interrupt Con-
troller.
1 = Received data does not generate an interrupt request to the Interrupt Controller. Only
receiver errors generate an interrupt request. The associated DMA will still be notified that
received data is available.

IREN—Infrared Encoder/Decoder Enable
0 = Infrared Encoder/Decoder is disabled. UART operates normally operation.
1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through
the Infrared Encoder/Decoder.

UARTx Baud Rate High and Low Byte Registers
The UARTx Baud Rate High and Low Byte registers (Tables 56 and 57) combine to create
a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud
rate) of the UART.

Table 56. UARTx Baud Rate High Byte Register (UxBRH)

BITS 7 6 5 4 3 2 1 0

FIELD BRH

RESET 1 1 1 1 1 1 1 1

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F46H and F4EH
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

124
If the current ADC Analog Input is not the highest numbered input to be converted,
DMA_ADC initiates data conversion in the next higher numbered ADC Analog Input.

Configuring DMA_ADC for Data Transfer
Follow these steps to configure and enable DMA_ADC:

1. Write the DMA_ADC Address register with the 7 most-significant bits of the Register
File address for data transfers.

2. Write to the DMA_ADC Control register to complete the following:
– Enable the DMA_ADC interrupt request, if desired
– Select the number of ADC Analog Inputs to convert
– Enable the DMA_ADC channel

When using the DMA_ADC to perform conversions on multiple ADC in-
puts and the ADC_IN field in the DMA_ADC Control Register is greater
than 000b, the Analog-to-Digital Converter must be configured for Single-
Shot mode.

Continuous mode operation of the ADC can only be used in conjunction
with DMA_ADC if the ADC_IN field in the DMA_ADC Control Register
is reset to 000b to enable conversion on ADC Analog Input 0 only.

DMA Control Register Definitions

DMAx Control Register
The DMAx Control register is used to enable and select the mode of operation for DMAx.

DEN—DMAx Enable
0 = DMAx is disabled and data transfer requests are disregarded.

Table 71. DMAx Control Register (DMAxCTL)

BITS 7 6 5 4 3 2 1 0

FIELD DEN DLE DDIR IRQEN WSEL RSS

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FB0H, FB8H

Caution:
PS017610-0404 Direct Memory Access Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

130
DMA_ADC Control Register
The DMA_ADC Control register enables and sets options (DMA enable and interrupt
enable) for ADC operation.

DAEN—DMA_ADC Enable
0 = DMA_ADC is disabled and the ADC Analog Input Number (ADC_IN) is reset to 0.
1 = DMA_ADC is enabled.

IRQEN—Interrupt Enable
0 = DMA_ADC does not generate any interrupts.
1 = DMA_ADC generates an interrupt after transferring data from the last ADC Analog
Input specified by the ADC_IN field.

Reserved
These bits are reserved and must be 0.

ADC_IN—ADC Analog Input Number
These bits set the number of ADC Analog Inputs to be used in the continuous update (data
conversion followed by DMA data transfer). The conversion always begins with ADC
Analog Input 0 and then progresses sequentially through the other selected ADC Analog
Inputs.
0000 = ADC Analog Input 0 updated.
0001 = ADC Analog Inputs 0-1 updated.
0010 = ADC Analog Inputs 0-2 updated.
0011 = ADC Analog Inputs 0-3 updated.
0100 = ADC Analog Inputs 0-4 updated.
0101 = ADC Analog Inputs 0-5 updated.
0110 = ADC Analog Inputs 0-6 updated.
0111 = ADC Analog Inputs 0-7 updated.
1000 = ADC Analog Inputs 0-8 updated.
1001 = ADC Analog Inputs 0-9 updated.
1010 = ADC Analog Inputs 0-10 updated.
1011 = ADC Analog Inputs 0-11 updated.
1100-1111 = Reserved.

Table 78. DMA_ADC Control Register (DMAACTL)

BITS 7 6 5 4 3 2 1 0

FIELD DAEN IRQEN Reserved ADC_IN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FBEH
PS017610-0404 Direct Memory Access Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

157
In the following bulleted list of OCD Commands, data and commands sent from the host
to the On-Chip Debugger are identified by ’DBG <-- Command/Data’. Data sent from
the On-Chip Debugger back to the host is identified by ’DBG --> Data’

• Read OCD Revision (00H)—The Read OCD Revision command is used to
determine the version of the On-Chip Debugger. If OCD commands are added,
removed, or changed, this revision number changes.

DBG <-- 00H
DBG --> OCDREV[15:8] (Major revision number)
DBG --> OCDREV[7:0] (Minor revision number)

• Read OCD Status Register (02H)—The Read OCD Status Register command is
used to read the OCDSTAT register.

DBG <-- 02H
DBG --> OCDSTAT[7:0]

• Read Runtime Counter (03H)—The Runtime Counter is used to count Z8 Encore!
system clock cycles in between Breakpoints. The 16-bit Runtime Counter counts up
from 0000H and stops at the maximum count of FFFFH. The Runtime Counter is
overwritten during the Write Memory, Read Memory, Write Register, Read Register,
Read Memory CRC, Step Instruction, Stuff Instruction, and Execute Instruction
commands.

Write Program Memory 0AH - Disabled

Read Program Memory 0BH - Disabled

Write Data Memory 0CH - Yes

Read Data Memory 0DH - -

Read Program Memory CRC 0EH - -

Reserved 0FH - -

Step Instruction 10H - Disabled

Stuff Instruction 11H - Disabled

Execute Instruction 12H - Disabled

Reserved 13H - 1FH - -

Write Watchpoint 20H - Disabled

Read Watchpoint 21H - -

Reserved 22H - FFH - -

Table 93. On-Chip Debugger Commands

Debug Command Command Byte
Enabled when NOT

in Debug mode?
Disabled by

Read Protect Option Bit
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

164
OCD Watchpoint Address Register
The OCD Watchpoint Address register specifies the lower 8 bits of the Register File
address bus to match when generating Watchpoint Debug Breaks. The full 12-bit Register
File address is given by {WPTCTL3:0], WPTADDR[7:0]}.

WPTADDR[7:0]—Watchpoint Register File Address
These bits specify the lower eight bits of the register address to match when generating a
Watchpoint Debug Break.

OCD Watchpoint Data Register
The OCD Watchpoint Data register specifies the data to match if Watchpoint data match is
enabled.

WPTDATA[7:0]—Watchpoint Register File Data
These bits specify the Register File data to match when generating Watchpoint Debug
Breaks with the WPDM bit (WPTCTL[5]) is set to 1.

—————

Table 97. OCD Watchpoint Address (WPTADDR)

BITS 7 6 5 4 3 2 1 0

FIELD WPTADDR[7:0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 98. OCD Watchpoint Data (WPTDATA)

BITS 7 6 5 4 3 2 1 0

FIELD WPTDATA[7:0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

179
SPI Master Mode Timing
Figure 96 and Table 110 provide timing information for SPI Master mode pins. Timing is
shown with SCK rising edge used to source MOSI output data, SCK falling edge used to
sample MISO input data. Timing on the SS output pin(s) is controlled by software.

Figure 96. SPI Master Mode Timing

Table 110. SPI Master Mode Timing

Parameter Abbreviation

Delay (ns)

Minimum Maximum

T1 SCK Rise to MOSI output Valid Delay -5 +5

T2 MISO input to SCK (receive edge) Setup Time 20

T3 MISO input to SCK (receive edge) Hold Time 0

SCK

MOSI

T1

(Output)

MISO

T2 T3

(Input)

Output Data

Input Data
PS017610-0404 Electrical Characteristics

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

182
eZ8 CPU Instruction Set
Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program
without having to be concerned with actual memory addresses or machine instruction for-
mats. A program written in assembly language is called a source program. Assembly lan-
guage allows the use of symbolic addresses to identify memory locations. It also allows
mnemonic codes (opcodes and operands) to represent the instructions themselves. The
opcodes identify the instruction while the operands represent memory locations, registers,
or immediate data values.

Each assembly language program consists of a series of symbolic commands called state-
ments. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label iden-
tifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine
instruction. The assembler directives, or pseudo-ops, are not translated into a machine
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the
assembly process.

The source program is processed (assembled) by the assembler to obtain a machine lan-
guage program called the object code. The object code is executed by the eZ8 CPU. An
example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example
JP START ; Everything after the semicolon is a comment.

START: ; A label called “START”. The first instruction (JP START) in this
; example causes program execution to jump to the point within the
; program where the START label occurs.

LD R4, R7 ; A Load (LD) instruction with two operands. The first operand,
; Working Register R4, is the destination. The second operand,
; Working Register R7, is the source. The contents of R7 is
; written into R4.

LD 234H, #%01 ; Another Load (LD) instruction with two operands.
; The first operand, Extended Mode Register Address 234H,
; identifies the destination. The second operand, Immediate Data
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

187
eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

• Arithmetic

• Bit Manipulation

• Block Transfer

• CPU Control

• Load

• Logical

• Program Control

• Rotate and Shift

Tables 118 through 125 contain the instructions belonging to each group and the number
of operands required for each instruction. Some instructions appear in more than one table
as these instruction can be considered as a subset of more than one category. Within these
tables, the source operand is identified as ’src’, the destination operand is ’dst’ and a con-
dition code is ’cc’.

Table 118. Arithmetic Instructions

Mnemonic Operands Instruction

ADC dst, src Add with Carry

ADCX dst, src Add with Carry using Extended Addressing

ADD dst, src Add

ADDX dst, src Add using Extended Addressing

CP dst, src Compare

CPC dst, src Compare with Carry

CPCX dst, src Compare with Carry using Extended Addressing

CPX dst, src Compare using Extended Addressing

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

MULT dst Multiply
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

205
Figure 102. Second Opcode Map after 1FH

CPC
4.3

R2,R1
CPC

4.4

IR2,R1
CPC

3.3

r1,r2
CPC

3.4

r1,Ir2
CPCX

5.3

ER2,ER1
CPCX

5.3

IM,ER1
CPC

4.3

R1,IM
CPC

4.4

IR1,IM

SRL
3.2

R1
SRL

3.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
pp

er
 N

ib
bl

e
(H

ex
)

PS017610-0404 Opcode Maps

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

215
Precharacterization Product
The product represented by this document is newly introduced and ZiLOG has not com-
pleted the full characterization of the product. The document states what ZiLOG knows
about this product at this time, but additional features or nonconformance with some
aspects of the document might be found, either by ZiLOG or its customers in the course of
further application and characterization work. In addition, ZiLOG cautions that delivery
might be uncertain at times, due to start-up yield issues.
ZiLOG, Inc.
532 Race Street
San Jose, CA 95126
Telephone (408) 558-8500
FAX 408 558-8300
Internet: www.zilog.com

Document Information
Document Number Description

The Document Control Number that appears in the footer on each page of this document
contains unique identifying attributes, as indicated in the following table:
PS Product Specification
0176 Unique Document Number
01 Revision Number
0702 Month and Year Published
PS017610-0404 Document Information

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

220
extended addressing register 184
external pin reset 29
eZ8 CPU features 3
eZ8 CPU instruction classes 187
eZ8 CPU instruction notation 183
eZ8 CPU instruction set 182
eZ8 CPU instruction summary 191

F
FCTL register 144
features, Z8 Encore!® 1
first opcode map 204
FLAGS 185
flags register 185
flash

controller 4
option bit address space 148
option bit configuration - reset 148
program memory address 0000H 149
program memory address 0001H 150

flash memory 138
arrangement 139
byte programming 142
code protection 141
configurations 138
control register definitions 144
controller bypass 143
electrical characteristics and timing 173
flash control register 144
flash option bits 142
flash status register 145
flow chart 140
frequency high and low byte registers 147
mass erase 143
operation 139
operation timing 141
page erase 143
page select register 146

FPS register 146
FSTAT register 145

G
gated mode 71
general-purpose I/O 33
GPIO 4, 33

alternate functions 34
architecture 34
control register definitions 36
input data sample timing 176
interrupts 36
port A-H address registers 37
port A-H alternate function sub-registers 39
port A-H control registers 38
port A-H data direction sub-registers 39
port A-H high drive enable sub-registers 41
port A-H input data registers 42
port A-H output control sub-registers 40
port A-H output data registers 43
port A-H stop mode recovery sub-registers 41
port availability by device 33
port input timing 176
port output timing 177

H
H 185
HALT 189
HALT mode 31, 189
hexadecimal number prefix/suffix 185

I
I2C 4

10-bit address read transaction 116
10-bit address transaction 114
10-bit addressed slave data transfer format 114
10-bit receive data format 116
7-bit address transaction 112
7-bit address, reading a transaction 115
7-bit addressed slave data transfer format 113
7-bit receive data transfer format 115
baud high and low byte registers 121
C status register 118
control register definitions 118
PS017610-0404 P r e l i m i n a r y Index

