
Zilog - Z8F2402VS020SC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 46

Program Memory Size 24KB (24K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 68-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f2402vs020sc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f2402vs020sc-4426453
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

vi
Transmitting IrDA Data . 96
Receiving IrDA Data . 97
Jitter . 98

Infrared Encoder/Decoder Control Register Definitions 98
Serial Peripheral Interface . 99

Overview . 99
Architecture . 99
Operation . 100

SPI Signals . 101
SPI Clock Phase and Polarity Control . 102
Multi-Master Operation . 104
Error Detection . 105
SPI Interrupts . 105
SPI Baud Rate Generator . 105

SPI Control Register Definitions . 106
SPI Data Register . 106
SPI Control Register . 107
SPI Status Register . 108
SPI Mode Register . 109
SPI Baud Rate High and Low Byte Registers 110

I2C Controller . 111
Overview . 111
Operation . 111

SDA and SCL Signals . 111
I2C Interrupts . 112
Start and Stop Conditions . 112
Writing a Transaction with a 7-Bit Address 112
Writing a Transaction with a 10-Bit Address 114
Reading a Transaction with a 7-Bit Address 115
Reading a Transaction with a 10-Bit Address 116

I2C Control Register Definitions . 118
I2C Data Register . 118
I2C Status Register . 118
I2C Control Register . 119
I2C Baud Rate High and Low Byte Registers 121

Direct Memory Access Controller . 122
Overview . 122
Operation . 122

DMA0 and DMA1 Operation . 122
Configuring DMA0 and DMA1 for Data Transfer 123
PS017610-0404 Table of Contents

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

3

Block Diagram

Figure 55 illustrates the block diagram of the architecture of the Z8 Encore!TM.

Figure 55. Z8 Encore!® Block Diagram

CPU and Peripheral Overview

eZ8 CPU Features
The eZ8, ZiLOG’s latest 8-bit Central Processing Unit (CPU), meets the continuing
demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a
superset of the original Z8 instruction set. The eZ8 CPU features include:

• Direct register-to-register architecture allows each register to function as an
accumulator, improving execution time and decreasing the required program memory

GPIO

IrDA

UARTs I2CTimers SPI ADC

Flash

Flash
Controller

RAM

RAM
Controller

Memory

Interrupt
Controller

On-Chip
Debugger

eZ8
CPU WDT with

RC Oscillator

POR/VBO
& Reset

Controller

XTAL / RC
Oscillator

Register Bus

Memory Busses

System
Clock

DMA
PS017610-0404 Introduction

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

11
Figure 60. Z8Fxx02 in 68-Pin Plastic Leaded Chip Carrier (PLCC)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
PD7 / RCOUT
VSS
PE5
PE6
PE7
VDD

PA0 / T0IN
PD2

PC2 / SS
RESET

VDD
PE4
PE3

VSS
PE2

10 60

PG3PE1
VDDPE0

P
A

1
/ T

0O
U

T
P

A
2

P
A

3
/ C

TS
0

V
S

S
V

D
D

P
F7

P
C

5
/ M

IS
O

P
D

4
/ R

X
D

1
P

D
5

/ T
X

D
1

P
C

4
/ M

O
S

I

V
S

S

P
B

1
/ A

N
A

1
P

B
0

/ A
N

A
0

AV
D

D
P

H
0

/ A
N

A
8

P
B

4
/ A

N
A

4

P
B

7
/ A

N
A

7
P

B
6

/ A
N

A
6

P
B

5
/ A

N
A

5

P
B

3
/ A

N
A

3

9

27

PC7 / T2OUT
PC6 / T2IN
DBG
PC1 / T1OUT
PC0 / T1IN

P
B

2
/ A

N
A

2

V
R

E
F

P
H

3
/ A

N
A

11
P

H
2

/ A
N

A
10

A
V

S
S

VSS
VDD

PD1 / T3OUT
PD0 / T3IN

XOUT

P
D

3

V
S

S
P

A
4

/
R

X
D

0
P

A
5

/ T
X

D
0

V
D

D

P
H

1
/ A

N
A

9

P
A

6
/ S

C
L

61

VSS44

A
V

S
S

43
XIN 26

1

V
D

D
18

35

52
PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

18
Program Memory

The eZ8 CPU supports 64KB of Program Memory address space. The Z8F640x family
devices contain 16KB to 64KB of on-chip Flash memory in the Program Memory address
space. Reading from Program Memory addresses outside the available Flash memory
addresses returns FFH. Writing to these unemployments Program Memory addresses pro-
duces no effect. Table 4 describes the Program Memory Maps for the Z8F640x family
products.
Table 4. Z8F640x Family Program Memory Maps

Program Memory Address (Hex) Function

Z8F160x Products

0000-0001 Flash Option Bits

0002-0003 Reset Vector

0004-0005 WDT Interrupt Vector

0006-0007 Illegal Instruction Trap

0008-0037 Interrupt Vectors*

0038-3FFFH Program Memory

Z8F240x Products

0000-0001 Flash Option Bits

0002-0003 Reset Vector

0004-0005 WDT Interrupt Vector

0006-0007 Illegal Instruction Trap

0008-0037 Interrupt Vectors*

0038-5FFFH Program Memory

Z8F320x Products

0000-0001 Flash Option Bits

0002-0003 Reset Vector

0004-0005 WDT Interrupt Vector

0006-0007 Illegal Instruction Trap

0008-0037 Interrupt Vectors*

0038-7FFFH Program Memory

* See Table 22 on page 45 for a list of the interrupt vectors.
PS017610-0404 Address Space

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

40
AF[7:0]—Port Alternate Function enabled
0 = The port pin is in normal mode and the DDx bit in the Port A-H Data Direction sub-
register determines the direction of the pin.
1 = The alternate function is selected. Port pin operation is controlled by the alternate
function.

Port A-H Output Control Sub-Registers
The Port A-H Output Control sub-register (Table 17) is accessed through the Port A-H
Control register by writing 03H to the Port A-H Address register. Setting the bits in the
Port A-H Output Control sub-registers to 1 configures the specified port pins for open-
drain operation. These sub-registers affect the pins directly and, as a result, alternate func-
tions are also affected.

POC[7:0]—Port Output Control
These bits function independently of the alternate function bit and disables the drains if set
to 1.
0 = The drains are enabled for any output mode.
1 = The drain of the associated pin is disabled (open-drain mode).

Table 17. Port A-H Output Control Sub-Registers

BITS 7 6 5 4 3 2 1 0

FIELD POC7 POC6 POC5 POC4 POC3 POC2 POC1 POC0

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR If 03H in Port A-H Address Register, accessible via Port A-H Control Register
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

43
Port A-H Output Data Register
The Port A-H Output Data register (Table 21) writes output data to the pins.

POUT[7:0]—Port Output Data
These bits contain the data to be driven out from the port pins. The values are only driven
if the corresponding pin is configured as an output and the pin is not configured for alter-
nate function operation.
0 = Drive a logical 0 (Low).
1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by set-
ting the corresponding Port Output Control register bit to 1.

Table 21. Port A-H Output Data Register (PxOUT)

BITS 7 6 5 4 3 2 1 0

FIELD POUT7 POUT6 POUT5 POUT4 POUT3 POUT2 POUT1 POUT0

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH
PS017610-0404 General-Purpose I/O

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

67
written during counting, the 8-bit written value is placed in the counter (High or Low
Byte) at the next clock edge. The counter continues counting from the new value.

TH and TL—Timer High and Low Bytes
These 2 bytes, {TMRH[7:0], TMRL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers
The Timer 0-3 Reload High and Low Byte (TxRH and TxRL) registers (Tables 40 and 41)
store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload
High Byte register are stored in a temporary holding register. When a write to the Timer
Reload Low Byte register occurs, the temporary holding register value is written to the
Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer
Reload value.

In Compare mode, the Timer Reload High and Low Byte registers store the 16-bit Com-
pare value.

In single-byte DMA transactions to the Timer Reload High Byte register, the temporary
holding register is bypassed and the value is written directly to the register. If the DMA is

Table 38. Timer 0-3 High Byte Register (TxH)

BITS 7 6 5 4 3 2 1 0

FIELD TH

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F00H, F08H, F10H, F18H

Table 39>. Timer 0-3 Low Byte Register (TxL)

BITS 7 6 5 4 3 2 1 0

FIELD TL

RESET 0 0 0 0 0 0 0 1

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F01H, F09H, F11H, F19H
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

75
Watch-Dog Timer Control Register Definitions

Watch-Dog Timer Control Register
The Watch-Dog Timer Control (WDTCTL) register, detailed in Table 46, is a Read-Only
register that indicates the source of the most recent Reset event, indicates a Stop Mode
Recovery event, and indicates a Watch-Dog Timer time-out. Reading this register resets
the upper four bits to 0.

Writing the 55H, AAH unlock sequence to the Watch-Dog Timer Control (WDTCTL) reg-
ister address unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH,
and WDTL) to allow changes to the time-out period. These write operations to the
WDTCTL register address produce no effect on the bits in the WDTCTL register. The
locking mechanism prevents spurious writes to the Reload registers.

POR—Power-On Reset Indicator
If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT time-
out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—STOP Mode Recovery Indicator
If this bit is set to 1, a STOP Mode Recovery occurred. If the STOP and WDT bits are both
set to 1, the STOP Mode Recovery occurred due to a WDT time-out. If the STOP bit is 1
and the WDT bit is 0, the STOP Mode Recovery was not caused by a WDT time-out. This
bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP
mode. Reading this register also resets this bit.

WDT—Watch-Dog Timer Time-Out Indicator
If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A Stop
Mode Recovery from a change in an input pin also resets this bit. Reading this register
resets this bit.

EXT—External Reset Indicator
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On
Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this
register resets this bit.

Table 46. Watch-Dog Timer Control Register (WDTCTL)

BITS 7 6 5 4 3 2 1 0

FIELD POR STOP WDT EXT Reserved

RESET X X X 0 0 0 0 0

R/W R R R R R R R R

ADDR FF0
PS017610-0404 Watch-Dog Timer

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

81
5. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data
register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data
register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit
Data register becomes available to receive new data.

6. Write the data byte to the UART Transmit Data register. The transmitter automatically
transfers the data to the Transmit Shift register and transmit the data.

7. To transmit additional bits, return to Step 5.

Transmitting Data using the Interrupt-Driven Method
 The UART Transmitter interrupt indicates the availability of the Transmit Data register to
accept new data for transmission. Follow these steps to configure the UART for interrupt-
driven data transmission:

1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud
rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and
set the desired priority.

5. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions,
if desired.

6. Write to the UART Control 0 register to:
– Set the transmit enable bit (TEN) to enable the UART for data transmission
– Enable parity, if desired, and select either even or odd parity.
– Set or clear the CTSE bit to enable or disable control from the receiver via the

CTS pin.

7. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. When the UART
Transmit interrupt is detected, the associated interrupt service routine (ISR) should per-
form the following:

8. Write the data byte to the UART Transmit Data register. The transmitter will
automatically transfer the data to the Transmit Shift register and transmit the data.

9. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.

10. Execute the IRET instruction to return from the interrupt-service routine and wait for
the Transmit Data register to again become empty.
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

110
SPI Baud Rate High and Low Byte Registers
The SPI Baud Rate High and Low Byte registers combine to form a 16-bit reload value,
BRG[15:0], for the SPI Baud Rate Generator. The reload value must be greater than or
equal to 0002H for proper SPI operation (maximum baud rate is system clock frequency
divided by 4). The SPI baud rate is calculated using the following equation:

BRH = SPI Baud Rate High Byte
Most significant byte, BRG[15:8], of the SPI Baud Rate Generator’s reload value.

BRL = SPI Baud Rate Low Byte
Least significant byte, BRG[7:0], of the SPI Baud Rate Generator’s reload value.

Table 64. SPI Baud Rate High Byte Register (SPIBRH)

BITS 7 6 5 4 3 2 1 0

FIELD BRH

RESET 1 1 1 1 1 1 1 1

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F66H

Table 65. SPI Baud Rate Low Byte Register (SPIBRL)

BITS 7 6 5 4 3 2 1 0

FIELD BRL

RESET 1 1 1 1 1 1 1 1

R/W R/W R/W R/W R/W R/W R/W R/W R/w

ADDR F67H

SPI Baud Rate (bits/s) System Clock Frequency (Hz)
2 BRG[15:0]×

--=
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

114
14. Software responds by setting the STOP bit of the I2C Control register.

15. If no new data is to be sent or address is to be sent, software responds by clearing the
TXI bit of the I2C Control register.

16. The I2C Controller completes transmission of the data on the SDA signal.

17. The I2C Controller sends the STOP condition to the I2C bus.

Writing a Transaction with a 10-Bit Address
1. The I2C Controller shifts the I2C Shift register out onto SDA signal.

2. The I2C Controller waits for the slave to send an Acknowledge (by pulling the SDA
signal Low). If the slave pulls the SDA signal High (Not-Acknowledge), the I2C
Controller sends a Stop signal.

3. If the slave needs to service an interrupt, it pulls the SCL signal low, which halts I2C
operation.

4. If there is no other data in the I2C Data register or the STOP bit in the I2C Control
register is set by software, then the Stop signal is sent.

The data transfer format for a 10-bit addressed slave is illustrated in the figure below.
Shaded regions indicate data transferred from the I2C Controller to slaves and unshaded
regions indicate data transferred from the slaves to the I2C Controller.

Figure 80. 10-Bit Addressed Slave Data Transfer Format

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal. The transmit operation is carried out in the same manner as 7-bit addressing.

The data transfer format for a transmit operation on a 10-bit addressed slave is as follows:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE bit by writing the first slave address byte. The least-
significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

A A Data A Data P
Slave Address

2nd ByteS A/ASlave Address
 1st 7 bits W=0
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

120
START—Send Start Condition
This bit sends the Start condition. Once asserted, it is cleared by the I2C Controller after it
sends the START condition or by deasserting the IEN bit. After this bit is set, the Start
condition is sent if there is data in the I2C Data or I2C Shift register. If there is no data in
one of these registers, the I2C Controller waits until data is loaded. If this bit is set while
the I2C Controller is shifting out data, it generates a START condition after the byte shifts
and the acknowledge phase completed. If the STOP bit is also set, it also waits until the
STOP condition is sent before the START condition. If this bit is 1, it cannot be cleared to
0 by writing to the register.This bit clears when the I2C is disabled.

STOP—Send Stop Condition
This bit causes the I2C Controller to issue a Stop condition after the byte in the I2C Shift
register has completed transmission or after a byte has been received in a receive opera-
tion. Once set, this bit is reset by the I2C Controller after a Stop condition has been sent or
by deasserting the IEN bit. If this bit is 1, it cannot be cleared to 0 by writing to the regis-
ter.This bit clears when the I2C is disabled.

BIRQ—Baud Rate Generator Interrupt Request
This bit causes an interrupt to occur every time the baud rate generator counts down to
zero. This bit allows the I2C Controller to be used as an additional counter when it is not
being used elsewhere. This bit must only be set when the I2C Controller is disabled.

TXI—Enable TDRE interrupts
This bit enables interrupts when the I2C Data register is empty on the I2C Controller.

NAK—Send NAK
This bit sends a Not Acknowledge condition after the next byte of data has been read from
the I2C slave. Once asserted, it is deasserted after a Not Acknowledge is sent or the IEN
bit is deasserted.

FLUSH—Flush Data
Setting this bit to 1 clears the I2C Data register and sets the TDRE bit to 1. This bit allows
flushing of the I2C Data register when an NAK is received after the data has been sent to
the I2C Data register. Reading this bit always returns 0.

FILTEN—I2C Signal Filter Enable
Setting this bit to 1 enables low-pass digital filters on the SDA and SCL input signals.
These filters reject any input pulse with periods less than a full system clock cycle. The fil-
ters introduce a 3-system clock cycle latency on the inputs.
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

151
On-Chip Debugger
Overview

The Z8F640x family devices have an integrated On-Chip Debugger (OCD) that provides
advanced debugging features including:

• Reading and writing of the Register File

• Reading and writing of Program and Data Memory

• Setting of Breakpoints and Watchpoints

• Execution of eZ8 CPU instructions.

Architecture

The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver,
auto-baud generator, and debug controller. Figure 86 illustrates the architecture of the On-
Chip Debugger

Figure 86. On-Chip Debugger Block Diagram

Auto-Baud
Detector/Generator

Transmitter

Receiver

Debug Controller

System
Clock

DBG
Pin

eZ8 CPU
Control
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

170
Figure 91 illustrates the typical current consumption while operating at 25ºC, 3.3V, versus
the system clock frequency.
stics

IPU Weak Pull-up Current 30 100 350 µA VDD = 3.0 - 3.6V

ICCS Supply Current in Stop
Mode

600 µA VDD = 3.3V

1 This condition excludes all pins that have on-chip pull-ups, when driven Low.
2 These values are provided for design guidance only and are not tested in production.

Figure 91. Nominal ICC Versus System Clock Frequency

Table 101. DC Characteristics

Symbol Parameter

TA = -400C to 1050C

Units ConditionsMinimum Typical Maximum

0.0

10.0

20.0

30.0

0 5 10 15 20

Frequency (MHz)

IC
C

 (m
A

)

PS017610-0404 Electrical Characteristics

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

182
eZ8 CPU Instruction Set
Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program
without having to be concerned with actual memory addresses or machine instruction for-
mats. A program written in assembly language is called a source program. Assembly lan-
guage allows the use of symbolic addresses to identify memory locations. It also allows
mnemonic codes (opcodes and operands) to represent the instructions themselves. The
opcodes identify the instruction while the operands represent memory locations, registers,
or immediate data values.

Each assembly language program consists of a series of symbolic commands called state-
ments. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label iden-
tifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine
instruction. The assembler directives, or pseudo-ops, are not translated into a machine
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the
assembly process.

The source program is processed (assembled) by the assembler to obtain a machine lan-
guage program called the object code. The object code is executed by the eZ8 CPU. An
example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example
JP START ; Everything after the semicolon is a comment.

START: ; A label called “START”. The first instruction (JP START) in this
; example causes program execution to jump to the point within the
; program where the START label occurs.

LD R4, R7 ; A Load (LD) instruction with two operands. The first operand,
; Working Register R4, is the destination. The second operand,
; Working Register R7, is the source. The contents of R7 is
; written into R4.

LD 234H, #%01 ; Another Load (LD) instruction with two operands.
; The first operand, Extended Mode Register Address 234H,
; identifies the destination. The second operand, Immediate Data
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

190
Table 123. Logical Instructions

Mnemonic Operands Instruction

AND dst, src Logical AND

ANDX dst, src Logical AND using Extended Addressing

COM dst Complement

OR dst, src Logical OR

ORX dst, src Logical OR using Extended Addressing

XOR dst, src Logical Exclusive OR

XORX dst, src Logical Exclusive OR using Extended Addressing

Table 124. Program Control Instructions

Mnemonic Operands Instruction

BRK — On-Chip Debugger Break

BTJ p, bit, src, DA Bit Test and Jump

BTJNZ bit, src, DA Bit Test and Jump if Non-Zero

BTJZ bit, src, DA Bit Test and Jump if Zero

CALL dst Call Procedure

DJNZ dst, src, RA Decrement and Jump Non-Zero

IRET — Interrupt Return

JP dst Jump

JP cc dst Jump Conditional

JR DA Jump Relative

JR cc DA Jump Relative Conditional

RET — Return

TRAP vector Software Trap
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

192
ADD dst, src dst ← dst + src r r 02 * * * * 0 * 2 3

r Ir 03 2 4

R R 04 3 3

R IR 05 3 4

R IM 06 3 3

IR IM 07 3 4

ADDX dst, src dst ← dst + src ER ER 08 * * * * 0 * 4 3

ER IM 09 4 3

AND dst, src dst ← dst AND src r r 52 - * * 0 - - 2 3

r Ir 53 2 4

R R 54 3 3

R IR 55 3 4

R IM 56 3 3

IR IM 57 3 4

ANDX dst, src dst ← dst AND src ER ER 58 - * * 0 - - 4 3

ER IM 59 4 3

BCLR bit, dst dst[bit] ← 0 r E2 - * * 0 - - 2 2

BIT p, bit, dst dst[bit] ← p r E2 - * * 0 - - 2 2

BRK Debugger Break 00 - - - - - - 1 1

BSET bit, dst dst[bit] ← 1 r E2 - * * 0 - - 2 2

BSWAP dst dst[7:0] ← dst[0:7] R D5 X * * 0 - - 2 2

BTJ p, bit, src, dst if src[bit] = p
 PC ← PC + X

r F6 - - - - - - 3 3

Ir F7 3 4

BTJNZ bit, src, dst if src[bit] = 1
 PC ← PC + X

r F6 - - - - - - 3 3

Ir F7 3 4

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address Mode
Opcode(s)

(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

Flags Notation: * = Value is a function of the result of the operation.
- = Unaffected
X = Undefined

0 = Reset to 0
1 = Set to 1
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

203
Table 127. Opcode Map Abbreviations

Abbreviation Description Abbreviation Description

b Bit position IRR Indirect Register Pair

cc Condition code p Polarity (0 or 1)

X 8-bit signed index or displacement r 4-bit Working Register

DA Destination address R 8-bit register

ER Extended Addressing register r1, R1, Ir1, Irr1, IR1, rr1,
RR1, IRR1, ER1

Destination address

IM Immediate data value r2, R2, Ir2, Irr2, IR2, rr2,
RR2, IRR2, ER2

Source address

Ir Indirect Working Register RA Relative

IR Indirect register rr Working Register Pair

Irr Indirect Working Register Pair RR Register Pair
PS017610-0404 Opcode Maps

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

222
RRC 191
SBC 188
SCF 188, 189
SRA 191
SRL 191
SRP 189
STOP 189
SUB 188
SUBX 188
SWAP 191
TCM 188
TCMX 188
TM 188
TMX 188
TRAP 190
watch-dog timer refresh 189
XOR 190
XORX 190

instructions, eZ8 classes of 187
interrupt control register 56
interrupt controller 5, 44

architecture 44
interrupt assertion types 47
interrupt vectors and priority 47
operation 46
register definitions 48

interrupt edge select register 54
interrupt port select register 55
interrupt request 0 register 48
interrupt request 1 register 49
interrupt request 2 register 50
interrupt return 190
interrupt vector listing 44
interrupts

not acknowledge 112
receive 112
SPI 105
transmit 112
UART 85

introduction 1
IR 184
Ir 184
IrDA

architecture 95

block diagram 95
control register definitions 98
jitter 98
operation 96
receiving data 97
transmitting data 96

IRET 190
IRQ0 enable high and low bit registers 51
IRQ1 enable high and low bit registers 52
IRQ2 enable high and low bit registers 53
IRR 184
Irr 184

J
jitter 98
JP 190
jump, conditional, relative, and relative conditional
190

L
LD 189
LDC 189
LDCI 188, 189
LDE 189
LDEI 188, 189
LDX 189
LEA 189
load 189
load constant 188
load constant to/from program memory 189
load constant with auto-increment addresses 189
load effective address 189
load external data 189
load external data to/from data memory and auto-
increment addresses 188
load external to/from data memory and auto-incre-
ment addresses 189
load instructions 189
load using extended addressing 189
logical AND 190
logical AND/extended addressing 190
logical exclusive OR 190
PS017610-0404 P r e l i m i n a r y Index

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

223
logical exclusive OR/extended addressing 190
logical instructions 190
logical OR 190
logical OR/extended addressing 190
low power modes 31
LQFP

44 lead 207
64 lead 208

M
master interrupt enable 46
master-in, slave-out and-in 101
memory

data 19
program 18

MISO 101
mode

capture 71
capture/compare 71
continuous 70
counter 70
gated 71
one-shot 70
PWM 70

modes 71
MOSI 101
MULT 187
multiply 187
multiprocessor mode, UART 84

N
NOP (no operation) 189
not acknowledge interrupt 112
notation

b 184
cc 184
DA 184
ER 184
IM 184
IR 184
Ir 184
IRR 184

Irr 184
p 184
R 184
r 184
RA 184
RR 184
rr 184
vector 184
X 184

notational shorthand 184

O
OCD

architecture 151
auto-baud detector/generator 154
baud rate limits 154
block diagram 151
breakpoints 155
commands 156
control register 161
data format 154
DBG pin to RS-232 Interface 152
debug mode 153
debugger break 190
interface 152
serial errors 155
status register 162
timing 178
watchpoint address register 164
watchpoint control register 163
watchpoint data register 164
watchpoints 155

OCD commands
execute instruction (12H) 160
read data memory (0DH) 160
read OCD control register (05H) 158
read OCD revision (00H) 157
read OCD status register (02H) 157
read program counter (07H) 158
read program memory (0BH) 159
read program memory CRC (0EH) 160
read register (09H) 158
read runtime counter (03H) 157
PS017610-0404 P r e l i m i n a r y Index

