
Zilog - Z8F3201AN020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3201an020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Assembly Language Syntax
eZ8 CPU Instruction Notation
Condition Codes
eZ8 CPU Instruction Classes
eZ8 CPU Instruction Summary 191
Flags Register
Opcode Maps
Packaging
Ordering Information
Part Number Description
Precharacterization Product
Document Information
Document Number Description
Customer Feedback Form

List of Figures

Figure 1.	Z8 Encore! [®] Block Diagram
Figure 2.	Z8Fxx01 in 40-Pin Dual Inline Package (DIP)7
Figure 3.	Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)8
Figure 4.	Z8Fxx01 in 44-Pin Low-Profile Quad Flat Package (LQFP) 9
Figure 5.	Z8Fxx02 in 64-Pin Low-Profile Quad Flat Package (LQFP) 10
Figure 6.	Z8Fxx02 in 68-Pin Plastic Leaded Chip Carrier (PLCC) . 11
Figure 7.	Z8Fxx03 in 80-Pin Quad Flat Package (QFP) 12
Figure 8.	Power-On Reset Operation
Figure 9.	Voltage Brown-Out Reset Operation
Figure 10.	GPIO Port Pin Block Diagram
Figure 11.	Interrupt Controller Block Diagram
Figure 12.	Timer Block Diagram
Figure 13.	UART Block Diagram
Figure 14.	UART Asynchronous Data Format without Parity 80
Figure 15.	UART Asynchronous Data Format with Parity
Figure 16.	UART Asynchronous Multiprocessor (9-bit) Mode
F '	Data Format
Figure 17.	Infrared Data Communication System Block Diagram 95
Figure 18.	Infrared Data Transmission
Figure 19.	Infrared Data Reception
Figure 20.	SPI Configured as a Master in a Single Master, Single Slave System
Figure 21.	SPI Configured as a Master in a Single Master,
0	Multiple Slave System 100
Figure 22.	SPI Configured as a Slave 100
Figure 23.	SPI Timing When PHASE is 0 103
Figure 24.	SPI Timing When PHASE is 1 104
Figure 25.	7-Bit Addressed Slave Data Transfer Format 113
Figure 26.	10-Bit Addressed Slave Data Transfer Format 114
Figure 27.	Receive Data Transfer Format for a 7-Bit
	Addressed Slave 115
Figure 28.	Receive Data Format for a 10-Bit Addressed Slave 116
Figure 29.	Analog-to-Digital Converter Block Diagram
Figure 30.	Flash Memory Arrangement

- Power-On Reset (POR)
- 3.0-3.6V operating voltage with 5V-tolerant inputs
- 0° to +70°C standard temperature and -40° to +105°C extended temperature operating ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8F640x family product line.

Table 1. Z8F640x Family Part Selection Guide

Part Number	Flash (KB)	RAM (KB)	I/O	16-bit Timers with PWM		UARTs with IrDA	I ² C	SPI		64/68-pin packages	
Z8F1601	16	2	31	3	8	2	1	1	Х		
Z8F1602	16	2	46	4	12	2	1	1		Х	
Z8F2401	24	2	31	3	8	2	1	1	Х		
Z8F2402	24	2	46	4	12	2	1	1		Х	
Z8F3201	32	2	31	3	8	2	1	1	Х		
Z8F3202	32	2	46	4	12	2	1	1		Х	
Z8F4801	48	4	31	3	8	2	1	1	Х		
Z8F4802	48	4	46	4	12	2	1	1		Х	
Z8F4803	48	4	60	4	12	2	1	1			Х
Z8F6401	64	4	31	3	8	2	1	1	Х		
Z8F6402	64	4	46	4	12	2	1	1		Х	
Z8F6403	64	4	60	4	12	2	1	1			Х

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
FCE	Interrupt Port Select	IRQPS	00	55
FCF	Interrupt Control	IRQCTL	00	56
GPIO Port A				
FD0	Port A Address	PAADDR	00	37
FD1	Port A Control	PACTL	00	38
FD2	Port A Input Data	PAIN	XX	42
FD3	Port A Output Data	PAOUT	00	43
GPIO Port B				
FD4	Port B Address	PBADDR	00	37
FD5	Port B Control	PBCTL	00	38
FD6	Port B Input Data	PBIN	XX	42
FD7	Port B Output Data	PBOUT	00	43
GPIO Port C	-			
FD8	Port C Address	PCADDR	00	37
FD9	Port C Control	PCCTL	00	38
FDA	Port C Input Data	PCIN	XX	42
FDB	Port C Output Data	PCOUT	00	43
GPIO Port D	Ĩ			
FDC	Port D Address	PDADDR	00	37
FDD	Port D Control	PDCTL	00	38
FDE	Port D Input Data	PDIN	XX	42
FDF	Port D Output Data	PDOUT	00	43
GPIO Port E	Ĩ			
FE0	Port E Address	PEADDR	00	37
FE1	Port E Control	PECTL	00	38
FE2	Port E Input Data	PEIN	XX	42
FE3	Port E Output Data	PEOUT	00	43
GPIO Port F	×			
FE4	Port F Address	PFADDR	00	37
FE5	Port F Control	PFCTL	00	38
FE6	Port F Input Data	PFIN	XX	42
FE7	Port F Output Data	PFOUT	00	43
GPIO Port G	1			
FE8	Port G Address	PGADDR	00	37
FE9	Port G Control	PGCTL	00	38
FEA	Port G Input Data	PGIN	XX	42
FEB	Port G Output Data	PGOUT	00	43
GPIO Port H				
FEC	Port H Address	PHADDR	00	37
XX=Undefined	1 011 11 / 1001000	THEDR		51

Table 6. Register File Address Map (Continued)

BITS	7	6	5	4	3	2	1	0		
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W R/W		R/W	R/W		
ADDR		If 05H in Port A-H Address Register, accessible via Port A-H Control Register								

Table 19. Port A-H STOP Mode Recovery Source Enable Sub-Registers

PSMRE[7:0]—Port STOP Mode Recovery Source Enabled

0 = The Port pin is not configured as a STOP Mode Recovery source. Transitions on this pin during Stop mode do not initiate STOP Mode Recovery.

1 = The Port pin is configured as a STOP Mode Recovery source. Any logic transition on this pin during Stop mode initiates STOP Mode Recovery.

Port A-H Input Data Registers

Reading from the Port A-H Input Data registers (Table 20) returns the sampled values from the corresponding port pins. The Port A-H Input Data registers are Read-only.

BITS	7	6	5	4	3	2	1	0			
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0			
RESET	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	R	R	R	R	R	R	R	R			
ADDR		FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH									

Table 20. Port A-H Input Data Registers (PxIN)

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low).

1 = Input data is logical 1 (High).

Priority	Program Memory Vector Address	Interrupt Source	Interrupt Assertion Type
Highest	0002h	Reset (not an interrupt)	Not applicable
	0004h	Watch-Dog Timer	Continuous assertion
	0006h	Illegal Instruction Trap (not an interrupt)	Not applicable
	0008h	Timer 2	Single assertion (pulse)
	000Ah	Timer 1	Single assertion (pulse)
	000Ch	Timer 0	Single assertion (pulse)
	000Eh	UART 0 receiver	Continuous assertion
	0010h	UART 0 transmitter	Continuous assertion
	0012h	I ² C	Continuous assertion
	0014h	SPI	Continuous assertion
	0016h	ADC	Single assertion (pulse)
	0018h	Port A7 or Port D7, rising or falling input edge	Single assertion (pulse)
	001Ah	Port A6 or Port D6, rising or falling input edge	Single assertion (pulse)
	001Ch	Port A5 or Port D5, rising or falling input edge	Single assertion (pulse)
	001Eh	Port A4 or Port D4, rising or falling input edge	Single assertion (pulse)
	0020h	Port A3 or Port D3, rising or falling input edge	Single assertion (pulse)
	0022h	Port A2 or Port D2, rising or falling input edge	Single assertion (pulse)
	0024h	Port A1 or Port D1, rising or falling input edge	Single assertion (pulse)
	0026h	Port A0 or Port D0, rising or falling input edge	Single assertion (pulse)
	0028h	Timer 3 (not available in 40/44-pin packages)	Single assertion (pulse)
	002Ah	UART 1 receiver	Continuous assertion
	002Ch	UART 1 transmitter	Continuous assertion
	002Eh	DMA	Single assertion (pulse)
	0030h	Port C3, both input edges	Single assertion (pulse)
	0032h	Port C2, both input edges	Single assertion (pulse)
	0034h	Port C1, both input edges	Single assertion (pulse)
Lowest	0036h	Port C0, both input edges	Single assertion (pulse)

Table 22. Interrupt Vectors in Order of Priority

Middle byte, Bits[15:8], of the 24-bit WDT reload value.

BITS	7	6	5	4	3	2	1	0				
FIELD	WDTL											
RESET	1	1	1	1	1	1	1	1				
R/W	R/W*	R/W* R/W* R/W* R/W* R/W* I										
ADDR	FF3H											
R/W* - Re	R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.											

Table 49. Watch-Dog Timer Reload Low Byte Register (WDTL)

WDTL-WDT Reload Low

Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

0 = No parity error has occurred.

1 = A parity error has occurred.

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, then reading the UART Receive Data register clears this bit.

0 = No overrun error occurred.

1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

0 = No framing error occurred.

1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all zeros then this bit is set to 1. Reading the UART Receive Data register clears this bit.

0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

CTS—CTS signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal.

BITS	7	6	5	4	3	2	1	0				
FIELD		Reserved										
RESET	0 0		0	0	0	0	0	0	0			
R/W	R	R	R	R	R	R	R	R				
ADDR		F44H and F4CH										

Table 53. UARTx Status 1 Register (UxSTAT1)

Reserved

These bits are reserved and must be 0.

MPRX—Multiprocessor Receive

This status bit is for the receiver and reflects the actual status of the last multiprocessor bit received. Reading from the UART Data register resets this bit to 0.

UARTx Control 0 and Control 1 Registers

The UART*x* Control 0 and Control 1 registers (Tables 54 and 55) configure the properties of the UART's transmit and receive operations. The UART Control registers must ben be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W R/W		R/W	R/W
ADDR				F42H ar	nd F4AH			

Table 54. UARTx Control 0 Register (UxCTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

- 0 = Receiver disabled.
- 1 =Receiver enabled.

- 7. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register.
- 8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is asserted.
- Software responds by writing the second byte of address into the contents of the I²C Data register.
- 10. The I²C Controller shifts the rest of the first byte of address and write bit out by the SDA signal.
- 11. The I²C slave sends an acknowledge by pulling the SDA signal low during the next high period of SCL. The I²C Controller sets the ACK bit in the I²C Status register.
- 12. The I²C Controller loads the contents of the I²C Shift register with the contents of the I²C Data register.
- 13. The I²C Controller shifts the data out by the SDA signal. After the first bit has been sent, the Transmit interrupt is asserted.
- 14. Software responds by writing the data to be written out to the I²C Control register.
- 15. The I²C Controller shifts out the rest of the second byte of slave address by the SDA signal.
- 16. The I²C slave sends an acknowledge by pulling the SDA signal low during the next high period of SCL. The I²C Controller sets the ACK bit in the I²C Status register.
- 17. The I²C Controller shifts the data out by the SDA signal. After the first bit is sent, the Transmit interrupt is asserted.
- 18. Software responds by asserting the STOP bit of the I^2C Control register.
- 19. The I²C Controller completes transmission of the data on the SDA signal.
- 20. The I²C Controller sends the STOP condition to the I²C bus.

Reading a Transaction with a 7-Bit Address

Figure 81 illustrates the data transfer format for a receive operation on a 7-bit addressed slave. The shaded regions indicate data transferred from the I^2C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I^2C Controller.

S	Slave Address	R=1	А	Data	А	Data	Ā	Р	
---	---------------	-----	---	------	---	------	---	---	--

Figure 81. Receive Data Transfer Format for a 7-Bit Addressed Slave

The data transfer format for a receive operation on a 7-bit addressed slave is as follows:

- 1. Software writes the I²C Data register with a 7-bit slave address followed by a 1 (read).
- 2. Software asserts the START bit of the I²C Control register.
- 3. Software asserts the NAK bit of the I²C Control register so that after the first byte of data has been read by the I²C Controller, a Not Acknowledge is sent to the I²C slave.
- 4. The I²C Controller sends the START condition.
- 5. The I²C Controller sends the address and read bit by the SDA signal.
- 6. The I²C slave sends an Acknowledge by pulling the SDA signal Low during the next high period of SCL.
- 7. The I^2C Controller reads the first byte of data from the I^2C slave.
- 8. The I²C Controller asserts the Receive interrupt.
- 9. Software responds by reading the I^2C Data register.
- 10. The I^2C Controller sends a NAK to the I^2C slave.
- 11. A NAK interrupt is generated by the I²C Controller.
- 12. Software responds by setting the STOP bit of the I^2C Control register.
- 13. A STOP condition is sent to the I^2C slave.

Reading a Transaction with a 10-Bit Address

Figure 82 illustrates the receive format for a 10-bit addressed slave. The shaded regions indicate data transferred from the I²C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I²C Controller.

S	Slave Address	W=0	А	Slave address	А	S	Slave Address	R=1	А	Data	А	Data	Ā	Р
	1st 7 bits			2nd Byte			1st 7 bits							

Figure 82. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the write signal.

The data transfer format for a receive operation on a 10-bit addressed slave is as follows:

- 1. Software writes an address 11110B followed by the two address bits and a 0 (write).
- 2. Software asserts the START bit of the I^2C Control register.
- 3. The I^2C Controller sends the Start condition.

BITS	7	6	5	4	3	2	1	0				
FIELD	DMA_START											
RESET	Х	Х	Х	Х	Х	Х	Х	Х				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ADDR	FB3H, FHBH											

Table 74. DMAx Start/Current Address Low Byte Register (DMAxSTART)

DMA_START—DMAx Start/Current Address Low

These bits, with the four lower bits of the DMA*x*_H register, form the 12-bit Start/Current address. The full 12-bit address is given by {DMA_START_H[3:0], DMA_START[7:0]}.

DMAx End Address Low Byte Register

The DMAx End Address Low Byte register, in conjunction with the DMAx_H register, forms a 12-bit End Address.

BITS	7	6	5	4	3	2	1	0				
FIELD	DMA_END											
RESET	Х	Х	Х	Х	Х	Х	Х	Х				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ADDR		FB4H, FBCH										

Table 75. DMAx End Address Low Byte Register (DMAxEND)

DMA_END—DMAx End Address Low

These bits, with the four upper bits of the DMAx_H register, form a 12-bit address. This address is the ending location of the DMAx transfer. The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.

DMA_ADC Address Register

The DMA_ADC Address register points to a block of the Register File to store ADC conversion values as illustrated in Table 76. This register contains the seven most-significant bits of the 12-bit Register File addresses. The five least-significant bits are calculated from the ADC Analog Input number (5-bit base address is equal to twice the ADC Analog Input number). The 10-bit ADC conversion data is stored as two bytes with the most significant byte of the ADC data stored at the even numbered Register File address.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation:.

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 32KHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to insure proper operation of the Z8F640x family device.

Table 88. Flash Frequency H	igh Byte Register (FFREQH)
-----------------------------	----------------------------

BITS	7	6	5	4	3	2	1	0					
FIELD	FFREQH												
RESET	0	0	0	0	0	0	0	0					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
ADDR		FFAH											

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value.

Table 89. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0					
FIELD		FFREQL											
RESET	0	0	0	0	0	0	0	0					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
ADDR		FFBH											

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value.

If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud Detector/Generator resets. The Auto-Baud Detector/Generator can then be reconfigured by sending 80H.

OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host should transmit a Serial Break on the DBG pin when first connecting to the Z8F640x family device or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the Z8F640x family device in Debug mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters Debug mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the desired address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Watchpoints

The On-Chip Debugger can set one Watchpoint to cause a Debug Break. The Watchpoint identifies a single Register File address. The Watchpoint can be set to break on reads and/ or writes of the selected Register File address. Additionally, the Watchpoint can be configured to break only when a specific data value is read and/or written from the specified reg-

ister. When the Watchpoint event occurs, the Z8F640x family device enters Debug mode and the DBGMODE bit in the OCDCTL register becomes 1.

Runtime Counter

The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles between Breakpoints. The counter starts counting when the On-Chip Debugger leaves Debug mode and stops counting when it enters Debug mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the DBG interface. During normal operation of the Z8F640x family device, only a subset of the OCD commands are available. In Debug mode, all OCD commands become available unless the user code and control registers are protected by programming the Read Protect Option Bit (RP). The Read Protect Option Bit prevents the code in memory from being read out of the Z8F640x family device. When this option is enabled, several of the OCD commands are disabled. Table 93 contains a summary of the On-Chip Debugger commands. Each OCD command is described in further detail in the bulleted list following Table 93. Table 93 indicates those commands that operate when the Z8F640x family device is not in Debug mode (normal operation) and those commands that are disabled by programming the Read Protect Option Bit.

Debug Command	Command Byte	Enabled when NOT in Debug mode?	Disabled by Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	-	-
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	-	Disabled
Read Program Counter	07H	-	Disabled
Write Register	08H	-	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled

Table 93. On-Chip Debugger Commands

ZiLOG

Electrical Characteristics

Absolute Maximum Ratings

Stresses greater than those listed in Table 100 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, unused inputs must be tied to one of the supply voltages (V_{DD} or V_{SS}).

Table 100. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
80-Pin QFP Maximum Ratings at -40°C to 70°C				
Total power dissipation		550	mW	
Maximum current into V _{DD} or out of V _{SS}		150	mA	
80-Pin QFP Maximum Ratings at 70°C to 105°C				
Total power dissipation		200	mW	
Maximum current into V _{DD} or out of V _{SS}		56	mA	
68-Pin PLCC Maximum Ratings at -40°C to 70°C				
Total power dissipation		1000	mW	
Maximum current into V _{DD} or out of V _{SS}		275	mA	

Notes:

 This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B and Port H), RESET, and where noted otherwise.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
сс	Condition Code	—	See Condition Codes overview in the eZ8 CPU User Manual.
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
Ir	Indirect Working Register	@Rn	n = 0 - 15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 - 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of $+127$ to -128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 115. Notational Shorthand

Table 116 contains additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Mnemonic	Operands	Instruction
CCF	—	Complement Carry Flag
DI	—	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP	_	No Operation
RCF	—	Reset Carry Flag
SCF	_	Set Carry Flag
SRP	src	Set Register Pointer
STOP	—	Stop Mode
WDT	_	Watch-Dog Timer Refresh

Table 121. CPU Control Instructions

Table 122. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Assembly		Addres	ss Mode	Opcode(s)			Fl	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	V	D	Н		Cycles
LD dst, rc	$dst \leftarrow src$	r	IM	0C-FC	-	-	-	-	-	-	2	2
		r	X(r)	C7	-						3	3
		X(r)	r	D7	-						3	4
		r	Ir	E3	-						2	3
		R	R	E4	-						3	2
		R	IR	E5	-						3	3
		R	IM	E6	-						3	3
		IR	IM	E7	-						3	3
		Ir	r	F3	-						2	3
		IR	R	F5	-						3	3
LDC dst, src	$dst \leftarrow src$	r	Irr	C2	-	-	-	-	-	-	2	5
		Ir	Irr	C5	-					2	2	9
		Irr	r	D2	-						2	5
LDCI dst, src	$dst \leftarrow src$	Ir	Irr	C3	-	-	-	-	-	-	2	9
	$r \leftarrow r + 1$ $rr \leftarrow rr + 1$	Irr	Ir	D3	-						2	9
LDE dst, src	dst ← src	r	Irr	82	-	-	-	-	-	-	2	5
		Irr	r	92	-						2	5
LDEI dst, src	$dst \leftarrow src$	Ir	Irr	83	-	-	-	-	-	-	2	9
	$r \leftarrow r + 1$ $rr \leftarrow rr + 1$	Irr	Ir	93	-						2	9
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	of the resu	lt of the	operation.				set to to 1	0			

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Addres	Address Mode		Flags						– Fetch	Instr
		dst	src	Opcode(s) (Hex)	С	Z	S	V	D	Н	Cycles	
LDX dst, src	dst ← src	r	ER	84	-	-	-	-	-	-	3	2
		Ir	ER	85	-						3	3
		R	IRR	86	-						3	4
		IR	IRR	87	-						3	5
		r	X(rr)	88	-						3	4
		X(rr)	r	89	-						3	4
		ER	r	94	-						3	2
		ER	Ir	95	-						3	3
		IRR	R	96	-						3	4
		IRR	IR	97	-						3	5
		ER	ER	E8	-						4	2
		ER	IM	E9	-						4	2
LEA dst, X(src)	$dst \leftarrow src + X$	r	X(r)	98	-	-	-	-	-	-	3	3
		rr	X(rr)	99	-						3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	-	-	-	-	-	2	8
NOP	No operation			0F	-	-	-	-	-	-	1	2
OR dst, src	$dst \leftarrow dst \text{ OR } src$	r	r	42	-	*	*	0	-	-	2	3
		r	Ir	43	-						2	4
		R	R	44	-						3	3
		R	IR	45	-						3	4
		R	IM	46	-						3	3
		IR	IM	47	-						3	4
ORX dst, src	$dst \leftarrow dst \text{ OR } src$	ER	ER	48	-	*	*	0	-	-	4	3
		ER	IM	49	-						4	3
Flags Notation:	 * = Value is a function of the result of the operation. - = Unaffected X = Undefined 							set to to 1	0			

Table 126. eZ8 CPU Instruction Summary (Continued)