

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f3201vn020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

DMA_ADC Operation	123
Configuring DMA_ADC for Data Transfer	124
DMA Control Register Definitions	124
DMAx Control Register	124
DMAx I/O Address Register	125
DMAx Address High Nibble Register	126
DMAx Start/Current Address Low Byte Register	127
DMAx End Address Low Byte Register	128
DMA_ADC Address Register	128
DMA_ADC Control Register	130
DMA Status Register	131
Analog-to-Digital Converter	132
Overview	132
Architecture	132
Operation	133
Automatic Power-Down	133
Single-Shot Conversion	133
Continuous Conversion	134
DMA Control of the ADC	135
ADC Control Register Definitions	135
ADC Control Register	135
ADC Data High Byte Register	137
ADC Data Low Bits Register	137
Flash Memory	138
Overview	138
Operation	139
Flash Operation Timing Using the Flash Frequency Registers	141
Flash Code Protection Against External Access	141
Flash Code Protection Against Accidental Program and Erasure	141
Byte Programming	142
Page Erase	143
Mass Erase	143
Flash Controller Bypass	143
Flash Control Register Definitions	144
Flash Control Register	144
Flash Status Register	145
Flash Page Select Register	146
Flash Frequency High and Low Byte Registers	147

List of Figures

Figure 1.	Z8 Encore! [®] Block Diagram
Figure 2.	Z8Fxx01 in 40-Pin Dual Inline Package (DIP)7
Figure 3.	Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)8
Figure 4.	Z8Fxx01 in 44-Pin Low-Profile Quad Flat Package (LQFP) 9
Figure 5.	Z8Fxx02 in 64-Pin Low-Profile Quad Flat Package (LQFP) 10
Figure 6.	Z8Fxx02 in 68-Pin Plastic Leaded Chip Carrier (PLCC) . 11
Figure 7.	Z8Fxx03 in 80-Pin Quad Flat Package (QFP) 12
Figure 8.	Power-On Reset Operation
Figure 9.	Voltage Brown-Out Reset Operation
Figure 10.	GPIO Port Pin Block Diagram
Figure 11.	Interrupt Controller Block Diagram
Figure 12.	Timer Block Diagram
Figure 13.	UART Block Diagram
Figure 14.	UART Asynchronous Data Format without Parity 80
Figure 15.	UART Asynchronous Data Format with Parity
Figure 16.	UART Asynchronous Multiprocessor (9-bit) Mode
D '	Data Format
Figure 17. Γ'	Infrared Data Communication System Block Diagram 95
Figure 18.	Infrared Data Transmission
Figure 19.	Infrared Data Reception
Figure 20.	SPI Configured as a Master in a Single Master, Single Slave System
Figure 21.	SPI Configured as a Master in a Single Master.
0	Multiple Slave System 100
Figure 22.	SPI Configured as a Slave 100
Figure 23.	SPI Timing When PHASE is 0 103
Figure 24.	SPI Timing When PHASE is 1 104
Figure 25.	7-Bit Addressed Slave Data Transfer Format
Figure 26.	10-Bit Addressed Slave Data Transfer Format 114
Figure 27.	Receive Data Transfer Format for a 7-Bit
	Addressed Slave 115
Figure 28.	Receive Data Format for a 10-Bit Addressed Slave 116
Figure 29.	Analog-to-Digital Converter Block Diagram
Figure 30.	Flash Memory Arrangement

Figure 57. Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)

Figure 61. Z8Fxx03 in 80-Pin Quad Flat Package (QFP)

Signal Mnemonic	I/O	Description
Reset		
RESET	Ι	RESET. Generates a Reset when asserted (driven Low).
Power Supply		
VDD	Ι	Power Supply.
AVDD	Ι	Analog Power Supply.
VSS	Ι	Ground.
AVSS	Ι	Analog Ground.

Table 2. Signal Descriptions (Continued)

Pin Characteristics

Table 3 provides detailed information on the characteristics for each pin available on the Z8F640x family products. Data in Table 3 is sorted alphabetically by the pin symbol mnemonic.

Table 3. Pin Characteristics of the Z8F640x family

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-up or Pull-down	Schmitt Trigger Input	Open Drain Output		
AVSS	N/A	N/A	N/A	N/A	No	No	N/A		
AVDD	N/A	N/A	N/A	N/A	No	No	N/A		
DBG	I/O	Ι	N/A	Yes	No	Yes	Yes		
VSS	N/A	N/A	N/A	N/A	No	No	N/A		
PA[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable		
PB[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable		
PC[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable		
PD[7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable		
PE7:0]	I/O	Ι	N/A	Yes	No	Yes	Yes, Programmable		
x represents integer 0, 1, to indicate multiple pins with symbol mnemonics that differ only by the integer									

Timers

Overview

The Z8F640x family products contain three to four 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any unused UART, SPI, or I^2C peripherals may also be used to provide basic timing functionality. Refer to the respective serial communication peripheral chapters for information on using the Baud Rate Generators as timers. Timer 3 is unavailable in the 40- and 44-pin packages.

Architecture

Figure 66 illustrates the architecture of the timers.

Timer 0-3 Control Registers

The Timer 0-3 Control (TxCTL) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

BITS 7 4 3 2 1 0 6 5 TEN TPOL PRES TMODE FIELD 0 0 0 0 0 0 0 0 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W F07H, F0FH, F17H, F1FH ADDR

Table 44. Timer 0-3 Control Register (TxCTL)

TEN-Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL-Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

One-Shot mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Continuous mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Counter mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

PWM mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

Reserved These bits are reserved and must be 0.

Watch-Dog Timer Reload Upper, High and Low Byte Registers

The Watch-Dog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (Tables 47 through 49) form the 24-bit reload value that is loaded into the Watch-Dog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]. Writing to these registers sets the desired Reload Value. Reading from these registers returns the current Watch-Dog Timer count value.

The 24-bit WDT Reload Value must not be set to a value less than 000004H or unpredictable behavior may result.

BITS	7	6	5	4	3	2	1	0		
FIELD	WDTU									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
ADDR	FF1H									
R/W* - Re	R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.									

Table 47. Watch-Dog Timer Reload Upper Byte Register (WDTU)

WDTU-WDT Reload Upper Byte

Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 48. Watch-Dog Timer Reload High Byte Register (WDTH)

BITS	7	6	5	4	3	2	1	0		
FIELD	WDTH									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
ADDR	FF2H									
R/W* - Re	R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.									

WDTH—WDT Reload High Byte

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved								
RESET	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	
ADDR		F44H and F4CH							

Table 53. UARTx Status 1 Register (UxSTAT1)

Reserved

These bits are reserved and must be 0.

MPRX—Multiprocessor Receive

This status bit is for the receiver and reflects the actual status of the last multiprocessor bit received. Reading from the UART Data register resets this bit to 0.

UARTx Control 0 and Control 1 Registers

The UART*x* Control 0 and Control 1 registers (Tables 54 and 55) configure the properties of the UART's transmit and receive operations. The UART Control registers must ben be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0	
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		F42H and F4AH							

Table 54. UARTx Control 0 Register (UxCTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled.

1 = Transmitter enabled.

REN—Receive Enable

This bit enables or disables the receiver.

- 0 = Receiver disabled.
- 1 =Receiver enabled.

BITS	7	6	5	4	3	2	1	0		
FIELD		DMA_START								
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R/W	R/W R/W R/W R/W R/W R/W								
ADDR		FB3H, FHBH								

Table 74. DMAx Start/Current Address Low Byte Register (DMAxSTART)

DMA_START—DMAx Start/Current Address Low

These bits, with the four lower bits of the DMAx_H register, form the 12-bit Start/Current address. The full 12-bit address is given by {DMA_START_H[3:0], DMA_START[7:0]}.

DMAx End Address Low Byte Register

The DMAx End Address Low Byte register, in conjunction with the DMAx_H register, forms a 12-bit End Address.

BITS	7	6	5	4	3	2	1	0		
FIELD		DMA_END								
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FB4H, FBCH								

Table 75. DMAx End Address Low Byte Register (DMAxEND)

DMA_END—DMAx End Address Low

These bits, with the four upper bits of the DMAx_H register, form a 12-bit address. This address is the ending location of the DMAx transfer. The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.

DMA_ADC Address Register

The DMA_ADC Address register points to a block of the Register File to store ADC conversion values as illustrated in Table 76. This register contains the seven most-significant bits of the 12-bit Register File addresses. The five least-significant bits are calculated from the ADC Analog Input number (5-bit base address is equal to twice the ADC Analog Input number). The 10-bit ADC conversion data is stored as two bytes with the most significant byte of the ADC data stored at the even numbered Register File address.

Flash Page Select Register

The Flash Page Select register is used to select one of the 128 available Flash memory pages to be erased in a Page Erase operation. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7-bits given by FPS [6:0] are erased (all bytes written to FFH).

Table 87. Flash Page Select Register (FPS)

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved		PAGE							
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR				FF	9H					

Reserved This bit is reserved and must be 0.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase operation. Program Memory Address[15:9] = PAGE[6:0]

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation:.

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 32KHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to insure proper operation of the Z8F640x family device.

BITS	7	6	5	4	3	2	1	0	
FIELD	FFREQH								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W R/W R/W R/W				R/W	
ADDR	FFAH								

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value.

Table 89. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0	
FIELD	FFREQL								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	/W R/W R/W			R/W	
ADDR	FFBH								

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value.

Program Memory Address 0000H

BITS	7	6	5	5 4 3 2				0
FIELD	WDT_RES	WDT_AO		Reserved		RP	FHSWP	FWP
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0000H							
Note: U = Unchanged by Reset. R/W = Read/Write.								

Table 90. Option Bits At Program Memory Address 0000H

WDT_RES—Watch-Dog Timer Reset

0 = Watch-Dog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watch-Dog Timer time-out causes a Short Reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watch-Dog Timer Always On

0 = Watch-Dog Timer is automatically enabled upon application of system power. Watch-Dog Timer can not be disabled.

1 = Watch-Dog Timer is enabled upon execution of the WDT instruction. Once enabled, the Watch-Dog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Reserved

These Option Bits are reserved for future use and must always be set to 1. This setting is the default for unprogrammed (erased) Flash.

RP-Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud Detector/Generator resets. The Auto-Baud Detector/Generator can then be reconfigured by sending 80H.

OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host should transmit a Serial Break on the DBG pin when first connecting to the Z8F640x family device or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the Z8F640x family device in Debug mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters Debug mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the desired address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Watchpoints

The On-Chip Debugger can set one Watchpoint to cause a Debug Break. The Watchpoint identifies a single Register File address. The Watchpoint can be set to break on reads and/ or writes of the selected Register File address. Additionally, the Watchpoint can be configured to break only when a specific data value is read and/or written from the specified reg-

Figure 92. Nominal Halt Mode ICC Versus System Clock Frequency

On-Chip Debugger Timing

Figure 95 and Table 109 provide timing information for DBG pins. The timing specifications presume a rise and fall time on DBG of less than 4μ s.

Figure 95. On-Chip Debugger Timing

		Dela	Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum				
DBG							
T ₁	XIN Rise to DBG Valid Delay	_	15				
T ₂	XIN Rise to DBG Output Hold Time	2	_				
T ₃	DBG to XIN Rise Input Setup Time	10	_				
T ₄	DBG to XIN Rise Input Hold Time	5	_				
	DBG frequency		System Clock / 4				

Table	109.	On-Chin	Debugger	Timing
Table	10/1	On-Cmp	Debugger	1

; value 01H, is the source. The value 01H is written into the

; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

 Table 113. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0 - 255 or, using Escaped Mode Addressing, a Working Register R0 - R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

 Table 114. Assembly Language Syntax Example 2

Assembly Language Code	a ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 115

Accombly		Address Mode		Oncode (s)	Flags						Fotch Instr	Inctr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	V	D	Н	Cycles	Cycles
TCM dst, src	(NOT dst) AND src	r	r	62	-	*	*	0	-	-	2	3
		r	Ir	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	-	*	*	0	-	-	4	3
		ER	IM	69							4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	-	2	3
		r	Ir	73	_						2	4
		R	R	74	_						3	3
		R	IR	75	_						3	4
		R	IM	76	_						3	3
		IR	IM	77							3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	-	4	3
		ER	IM	79							4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	-	-	-	-	-	-	2	6
WDT				5F	-	-	-	-	-	-	1	2
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	of the resu	ilt of the o	operation.		0 = 1 =	Res Set	et to to 1	0			

Table 126. eZ8 CPU Instruction Summary (Continued)

Opcode Maps

Figures 101 and 102 provide information on each of the eZ8 CPU instructions. A description of the opcode map data and the abbreviations are provided in Figure 100 and Table 127.

Figure 100. Opcode Map Cell Description