
Zilog - Z8F4801AN020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 48KB (48K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f4801an020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f4801an020ec-4426635
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

xiii
Table 101. Absolute Maximum Ratings  . . . . . . . . . . . . . . . . . . . . . . 167

Table 102. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 103. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Table 104. Power-On Reset and Voltage Brown-Out Electrical
Characteristics and Timing  . . . . . . . . . . . . . . . . . . . . . . . 173

Table 105. Flash Memory Electrical Characteristics and Timing . . . 173

Table 106. Watch-Dog Timer Electrical Characteristics and Timing 174

Table 107. Analog-to-Digital Converter Electrical Characteristics
and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Table 108. GPIO Port Input Timing  . . . . . . . . . . . . . . . . . . . . . . . . . 176

Table 109. GPIO Port Output Timing  . . . . . . . . . . . . . . . . . . . . . . . . 177

Table 110. On-Chip Debugger Timing  . . . . . . . . . . . . . . . . . . . . . . . 178

Table 111. SPI Master Mode Timing  . . . . . . . . . . . . . . . . . . . . . . . . 179

Table 112. SPI Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Table 113. I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Table 114. Assembly Language Syntax Example 1  . . . . . . . . . . . . . 183

Table 115. Assembly Language Syntax Example 2  . . . . . . . . . . . . . 183

Table 116. Notational Shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Table 117. Additional Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Table 118. Condition Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Table 119. Arithmetic Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Table 120. Bit Manipulation Instructions  . . . . . . . . . . . . . . . . . . . . . 188

Table 121. Block Transfer Instructions . . . . . . . . . . . . . . . . . . . . . . . 188

Table 122. CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 189

Table 123. Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Table 124. Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Table 125. Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . 190

Table 126. Rotate and Shift Instructions  . . . . . . . . . . . . . . . . . . . . . . 191

Table 127. eZ8 CPU Instruction Summary  . . . . . . . . . . . . . . . . . . . . 191

Table 128. Opcode Map Abbreviations . . . . . . . . . . . . . . . . . . . . . . . 203

Table 129. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
PS017610-0404 List of Tables



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

4

• Software stack allows much greater depth in subroutine calls and interrupts than 
hardware stacks

• Compatible with existing Z8 code

• Expanded internal Register File allows access of up to 4KB

• New instructions improve execution efficiency for code developed using higher-level 
programming languages, including C

• Pipelined instruction fetch and execution

• New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, 
LDCI, LEA, MULT, and SRL

• New instructions support 12-bit linear addressing of the Register File

• Up to 10 MIPS operation 

• C-Compiler friendly

• 2-9 clock cycles per instruction

For more information regarding the eZ8 CPU, refer to the eZ8 CPU User Manual avail-
able for download at www.zilog.com.

General Purpose I/O
The Z8 Encore!® features seven 8-bit ports (Ports A-G) and one 4-bit port (Port H) for 
general purpose I/O (GPIO). Each pin is individually programmable. 

Flash Controller
The Flash Controller programs and erases the Flash memory. 

10-Bit Analog-to-Digital Converter
The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary 
number. The ADC accepts inputs from up to 12 different analog input sources.

UARTs
Each UART is full-duplex and capable of handling asynchronous data transfers. The 
UARTs support 8- and 9-bit data modes and selectable parity.

I2C
The inter-integrated circuit (I2C®) controller makes the Z8 Encore!® compatible with the 
I2C protocol. The I2C controller consists of two bidirectional bus lines, a serial data (SDA) 
line and a serial clock (SCL) line. 
PS017610-0404 Introduction



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

17
Address Space
Overview

The eZ8 CPU can access three distinct address spaces:

• The Register File contains addresses for the general-purpose registers and the eZ8 
CPU, peripheral, and general-purpose I/O port control registers.

• The Program Memory contains addresses for all memory locations having executable 
code and/or data.

• The Data Memory contains addresses for all memory locations that hold data only.

These three address spaces are covered briefly in the following subsections. For more 
detailed information regarding the eZ8 CPU and its address space, refer to the eZ8 CPU 
User Manual available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore!® is 4KB (4096 bytes). The Register File 
is composed of two sections—control registers and general-purpose registers. When 
instructions are executed, registers are read from when defined as sources and written to 
when defined as destinations. The architecture of the eZ8 CPU allows all general-purpose 
registers to function as accumulators, address pointers, index registers, stack areas, or 
scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the 
eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at 
addresses from F00H to FFFH. Some of the addresses within the 256-byte control register 
section are reserved (unavailable). Reading from an reserved Register File addresses 
returns an undefined value. Writing to reserved Register File addresses is not recom-
mended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The 
Z8F640x family products contain 2KB to 4KB of on-chip RAM depending upon the 
device. Reading from Register File addresses outside the available RAM addresses (and 
not within in the control register address space) returns an undefined value. Writing to 
these Register File addresses produces no effect. Refer to the Part Selection Guide sec-
tion of the Introduction chapter to determine the amount of RAM available for the spe-
cific Z8F640x family device.
PS017610-0404 Address Space



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

20
Register File Address Map
Table 6 provides the address map for the Register File of the Z8F640x family of products. 
Not all devices and package styles in the Z8F640x family support Timer 3 and all of the 
GPIO Ports. Consider registers for unimplemented peripherals as Reserved. 

Table 6. Register File Address Map

Address (Hex) Register Description Mnemonic Reset (Hex) Page #
General Purpose RAM
000-EFF General-Purpose Register File RAM — XX
Timer 0
F00 Timer 0 High Byte T0H 00 66
F01 Timer 0 Low Byte T0L 01 66
F02 Timer 0 Reload High Byte T0RH FF 67
F03 Timer 0 Reload Low Byte T0RL FF 67
F04 Timer 0 PWM High Byte T0PWMH 00 69
F05 Timer 0 PWM Low Byte T0PWML 00 69
F06 Reserved — XX
F07 Timer 0 Control T0CTL 00 70
Timer 1
F08 Timer 1 High Byte T1H 00 66
F09 Timer 1 Low Byte T1L 01 66
F0A Timer 1 Reload High Byte T1RH FF 67
F0B Timer 1 Reload Low Byte T1RL FF 67
F0C Timer 1 PWM High Byte T1PWMH 00 69
F0D Timer 1 PWM Low Byte T1PWML 00 69
F0E Reserved — XX
F0F Timer 1 Control T1CTL 00 70
Timer 2
F10 Timer 2 High Byte T2H 00 66
F11 Timer 2 Low Byte T2L 01 66
F12 Timer 2 Reload High Byte T2RH FF 67
F13 Timer 2 Reload Low Byte T2RL FF 67
F14 Timer 2 PWM High Byte T2PWMH 00 69
F15 Timer 2 PWM Low Byte T2PWML 00 69
F16 Reserved — XX
F17 Timer 2 Control T2CTL 00 70
XX=Undefined
PS017610-0404 Register File Address Map



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

34
Architecture

Figure 64 illustrates a simplified block diagram of a GPIO port pin. In this figure, the abil-
ity to accommodate alternate functions and variable port current drive strength are not 
illustrated.

Figure 64. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins can be used as both general-purpose I/O and to provide access 
to on-chip peripheral functions such as the timers and serial communication devices. The 
Port A-H Alternate Function sub-registers configure these pins for either general-purpose 
I/O or alternate function operation. When a pin is configured for alternate function, control 

Z8F6401 44-pin [7:0] [7:0] [7:0] [6:0] - - - -

Z8F6402 64- and 68-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7] [3] [3:0]

Z8F6403 80-pin [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [3:0]

Table 10. Port Availability by Device and Package Type (Continued)

Device Packages Port A Port B Port C Port D Port E Port F Port G Port H

DQ

D Q

DQ

GND

VDD
Port Output Control

Port Data Direction

Port Output
Data Register

Port Input
Data Register

Port
Pin

DATA
Bus

System
Clock

System
Clock

Schmitt Trigger
PS017610-0404 General-Purpose I/O



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

48
Interrupt Control Register Definitions

For all interrupts other than the Watch-Dog Timer interrupt, the interrupt control registers 
enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register
The Interrupt Request 0 (IRQ0) register (Table 23) stores the interrupt requests for both 
vectored and polled interrupts. When a request is presented to the interrupt controller, the 
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-
tored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If 
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt 
Request 0 register to determine if any interrupt requests are pending

T2I—Timer 2 Interrupt Request
0 = No interrupt request is pending for Timer 2.
1 = An interrupt request from Timer 2 is awaiting service.

T1I—Timer 1 Interrupt Request
0 = No interrupt request is pending for Timer 1.
1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request
0 = No interrupt request is pending for Timer 0.
1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request
0 = No interrupt request is pending for the UART 0 receiver.
1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI—UART 0 Transmitter Interrupt Request
0 = No interrupt request is pending for the UART 0 transmitter.
1 = An interrupt request from the UART 0 transmitter is awaiting service.

Table 23. Interrupt Request 0 Register (IRQ0)

BITS 7 6 5 4 3 2 1 0

FIELD T2I T1I T0I U0RXI U0TXI I2CI SPII ADCI

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FC0H
PS017610-0404 Interrupt Controller



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

74
mode. Refer to the Reset and Stop Mode Recovery chapter for more information on 
STOP Mode Recovery.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU 
responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and 
executing code from the vector address.

WDT Reset in Normal Operation
If configured to generate a Reset when a time-out occurs, the Watch-Dog Timer forces the 
Z8F640x family device into the Short Reset state. The WDT status bit in the Watch-Dog 
Timer Control register is set to 1. Refer to the Reset and Stop Mode Recovery chapter for 
more information on Short Reset.

WDT Reset in Stop Mode
If configured to generate a Reset when a time-out occurs and the Z8F640x family device is 
in STOP mode, the Watch-Dog Timer initiates a Stop Mode Recovery. Both the WDT sta-
tus bit and the STOP bit in the Watch-Dog Timer Control register are set to 1 following 
WDT time-out in STOP mode. Refer to the Reset and Stop Mode Recovery chapter for 
more information.

Watch-Dog Timer Reload Unlock Sequence
Writing the unlock sequence to the Watch-Dog Timer Control register (WDTCTL) 
unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) 
to allow changes to the time-out period. These write operations to the WDTCTL register 
address produce no effect on the bits in the WDTCTL register. The locking mechanism 
prevents spurious writes to the Reload registers. The follow sequence is required to unlock 
the Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write 
access.

1. Write 55H to the Watch-Dog Timer Control register (WDTCTL)

2. Write AAH to the Watch-Dog Timer Control register (WDTCTL)

3. Write the Watch-Dog Timer Reload Upper Byte register (WDTU)

4. Write the Watch-Dog Timer Reload High Byte register (WDTH)

5. Write the Watch-Dog Timer Reload Low Byte register (WDTL)

All three Watch-Dog Timer Reload registers must be written in the order just listed. There 
must be no other register writes between each of these operations. If a register write 
occurs, the lock state machine resets and no further writes can occur, unless the sequence 
is restarted. The value in the Watch-Dog Timer Reload registers is loaded into the counter 
when the Watch-Dog Timer is first enabled and every time a WDT instruction is executed.
PS017610-0404 Watch-Dog Timer



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

77
Middle byte, Bits[15:8], of the 24-bit WDT reload value.

WDTL—WDT Reload Low

Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

Table 49. Watch-Dog Timer Reload Low Byte Register (WDTL)

BITS 7 6 5 4 3 2 1 0

FIELD WDTL

RESET 1 1 1 1 1 1 1 1

R/W R/W* R/W* R/W* R/W* R/W* R/W* R/W* R/W*

ADDR FF3H

R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.
PS017610-0404 Watch-Dog Timer



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

81
5. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data 
register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data 
register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit 
Data register becomes available to receive new data.

6. Write the data byte to the UART Transmit Data register. The transmitter automatically 
transfers the data to the Transmit Shift register and transmit the data.

7. To transmit additional bits, return to Step 5.

Transmitting Data using the Interrupt-Driven Method
 The UART Transmitter interrupt indicates the availability of the Transmit Data register to 
accept new data for transmission. Follow these steps to configure the UART for interrupt-
driven data transmission:

1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud 
rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for 
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and 
set the desired priority.

5. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions, 
if desired.

6. Write to the UART Control 0 register to:
– Set the transmit enable bit (TEN) to enable the UART for data transmission
– Enable parity, if desired, and select either even or odd parity.
– Set or clear the CTSE bit to enable or disable control from the receiver via the 

CTS pin.

7. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. When the UART 
Transmit interrupt is detected, the associated interrupt service routine (ISR) should per-
form the following:

8. Write the data byte to the UART Transmit Data register. The transmitter will 
automatically transfer the data to the Transmit Shift register and transmit the data.

9. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.

10. Execute the IRET instruction to return from the interrupt-service routine and wait for 
the Transmit Data register to again become empty.
PS017610-0404 UART



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

87
UARTx Receive Data Register
Data bytes received through the RXDx pin are stored in the UARTx Receive Data register 
(Table 51). The Read-only UARTx Receive Data register shares a Register File address 
with the Write-only UARTx Transmit Data register.

RXD—Receive Data
UART receiver data byte from the RXDx pin

UARTx Status 0 and Status 1 Registers
The UARTx Status 0 and Status 1 registers (Table 52 and 53) identify the current UART 
operating configuration and status.

RDA—Receive Data Available
This bit indicates that the UART Receive Data register has received data. Reading the 
UART Receive Data register clears this bit.
0 = The UART Receive Data register is empty.
1 = There is a byte in the UART Receive Data register.

PE—Parity Error
This bit indicates that a parity error has occurred. Reading the UART Receive Data regis-
ter clears this bit.

Table 51. UARTx Receive Data Register (UxRXD)

BITS 7 6 5 4 3 2 1 0

FIELD RXD

RESET X X X X X X X X

R/W R R R R R R R R

ADDR F40H and F48H

Table 52. UARTx Status 0 Register (UxSTAT0)

BITS 7 6 5 4 3 2 1 0

FIELD RDA PE OE FE BRKD TDRE TXE CTS

RESET 0 0 0 0 0 1 1 X

R/W R R R R R R R R

ADDR F41H and F49H
PS017610-0404 UART



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

105
Error Detection
The SPI contains error detection logic to support SPI communication protocols and recog-
nize when communication errors have occurred. The SPI Status register indicates when a 
data transmission error has been detected.

Overrun (Write Collision)
An overrun error (write collision) indicates a write to the SPI Data register was attempted 
while a data transfer is in progress. An overrun sets the OVR bit in the SPI Status register 
to 1. Writing a 1 to OVR clears this error flag.

Mode Fault (Multi-Master Collision)
A mode fault indicates when more than one Master is trying to communicate at the same 
time (a multi-master collision). The mode fault is detected when the enabled Master’s SS 
pin is asserted. A mode fault sets the COL bit in the SPI Status register to 1. Writing a 1 to 
COL clears this error flag.

SPI Interrupts
When SPI interrupts are enabled, the SPI generates an interrupt after data transmission. 
The SPI in Master mode generates an interrupt after a character has been sent. A character 
can be defined to be 1 through 8 bits by the NUMBITS field in the SPI Mode register. The 
SPI in Slave mode generates an interrupt when the SS signal deasserts to indicate comple-
tion of the data transfer. Writing a 1 to the IRQ bit in the SPI Status Register clears the 
pending interrupt request. If the SPI is disabled, an SPI interrupt can be generated by a 
Baud Rate Generator time-out.

SPI Baud Rate Generator
In SPI Master mode, the Baud Rate Generator creates a lower frequency serial clock 
(SCK) for data transmission synchronization between the Master and the external Slave. 
The input to the Baud Rate Generator is the system clock. The SPI Baud Rate High and 
Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud 
Rate Generator. The reload value must be greater than or equal to 0002H for SPI operation 
(maximum baud rate is system clock frequency divided by 4). The SPI baud rate is calcu-
lated using the following equation:

When the SPI is disabled, the Baud Rate Generator can function as a basic 16-bit timer 
with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt 
on time-out, complete the following procedure:

SPI Baud Rate (bits/s) System Clock Frequency (Hz)
2 BRG[15:0]×

----------------------------------------------------------------------------=
PS017610-0404 Serial Peripheral Interface



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

109
SPI Mode Register
The SPI Mode register configures the character bit width and the direction and value of the 
SS pin.

Reserved
These bits are reserved and must be 0.

NUMBITS[2:0]—Number of Data Bits Per Character to Transfer
This field contains the number of bits to shift for each character transfer. Refer to the SPI 
Data Register description for information on valid bit positions when the character length 
is less than 8-bits.

000 = 8 bits
001 = 1 bit
010 = 2 bits
011 = 3 bits
100 = 4 bits
101 = 5 bits
110 = 6 bits
111 = 7 bits.

SSIO—Slave Select I/O
0 = SS pin configured as an input.
1 = SS pin configured as an output (Master mode only).

SSV—Slave Select Value
If SSIO = 1 and SPI configured as a Master:
0 = SS pin driven Low (0).
1 = SS pin driven High (1).
This bit has no effect if SSIO = 0 or SPI configured as a Slave.

Table 63. SPI Mode Register (SPIMODE)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved NUMBITS[2:0] SSIO SSV

RESET 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W

ADDR F63H
PS017610-0404 Serial Peripheral Interface



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

115
7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data 
register. 

8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is 
asserted.

9. Software responds by writing the second byte of address into the contents of the I2C 
Data register. 

10. The I2C Controller shifts the rest of the first byte of address and write bit out by the 
SDA signal. 

11. The I2C slave sends an acknowledge by pulling the SDA signal low during the next 
high period of SCL. The I2C Controller sets the ACK bit in the I2C Status register. 

12. The I2C Controller loads the contents of the I2C Shift register with the contents of the 
I2C Data register. 

13. The I2C Controller shifts the data out by the SDA signal. After the first bit has been 
sent, the Transmit interrupt is asserted. 

14. Software responds by writing the data to be written out to the I2C Control register.

15. The I2C Controller shifts out the rest of the second byte of slave address by the SDA 
signal. 

16. The I2C slave sends an acknowledge by pulling the SDA signal low during the next 
high period of SCL. The I2C Controller sets the ACK bit in the I2C Status register.

17. The I2C Controller shifts the data out by the SDA signal. After the first bit is sent, the 
Transmit interrupt is asserted. 

18. Software responds by asserting the STOP bit of the I2C Control register. 

19. The I2C Controller completes transmission of the data on the SDA signal.

20. The I2C Controller sends the STOP condition to the I2C bus. 

Reading a Transaction with a 7-Bit Address
Figure 81 illustrates the data transfer format for a receive operation on a 7-bit addressed 
slave. The shaded regions indicate data transferred from the I2C Controller to slaves and 
unshaded regions indicate data transferred from the slaves to the I2C Controller.

Figure 81. Receive Data Transfer Format for a 7-Bit Addressed Slave

The data transfer format for a receive operation on a 7-bit addressed slave is as follows:

S Slave Address R=1 A Data A Data A P
PS017609-0803 I2C Controller



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

117
4. The I2C Controller loads the I2C Shift register with the contents of the I2C Data 
register.

5. After the first bit has been shifted out, a Transmit interrupt is asserted.

6. Software responds by writing eight bits of address to the I2C Data register.

7. The I2C Controller completes shifting of the two address bits and a 0 (write).

8. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next 
high period of SCL.

9. The I2C Controller loads the I2C Shift register with the contents of the I2C Data 
register. 

10. The I2C Controller shifts out the next eight bits of address. After the first bits are 
shifted, the I2C Controller generates a Transmit interrupt.

11. Software responds by setting the START bit of the I2C Control register to generate a 
repeated START. 

12. Software responds by writing 11110B followed by the 2-bit slave address and a 1 
(read).

13. Software responds by setting the NAK bit of the I2C Control register, so that a Not 
Acknowledge is sent after the first byte of data has been read. If you want to read only 
one byte, software responds by setting the NAK bit of the I2C Control register.

14. After the I2C Controller shifts out the address bits mentioned in step 9, the I2C slave 
sends an acknowledge by pulling the SDA signal Low during the next high period of 
SCL. 

15. The I2C Controller sends the repeated START condition.

16. The I2C Controller loads the I2C Shift register with the contents of the I2C Data 
register. 

17. The I2C Controller sends 11110B followed by the 2-bit slave read and a 1 (read). 

18. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next 
high period of SCL.

19. The I2C slave sends a byte of data. 

20. A Receive interrupt is generated.

21. Software responds by reading the I2C Data register.

22. Software responds by setting the STOP bit of the I2C Control register.

23. A NAK condition is sent to the I2C slave.

24. A STOP condition is sent to the I2C slave. 
PS017609-0803 I2C Controller



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

123
Configuring DMA0 and DMA1 for Data Transfer
Follow these steps to configure and enable DMA0 or DMA1: 

1. Write to the DMAx I/O Address register to set the Register File address identifying the 
on-chip peripheral control register. The upper nibble of the 12-bit address for on-chip 
peripheral control registers is always FH. The full address is {FH, DMAx_IO[7:0]}

2. Determine the 12-bit Start and End Register File addresses. The 12-bit Start Address 
is given by {DMAx_H[3:0], DMA_START[7:0]}. The 12-bit End Address is given by 
{DMAx_H[7:4], DMA_END[7:0]}.

3. Write the Start and End Register File address high nibbles to the DMAx End/Start 
Address High Nibble register.

4. Write the lower byte of the Start Address to the DMAx Start/Current Address register.

5. Write the lower byte of the End Address to the DMAx End Address register.

6. Write to the DMAx Control register to complete the following:
– Select loop or single-pass mode operation
– Select the data transfer direction (either from the Register File RAM to the on-

chip peripheral control register; or from the on-chip peripheral control register to 
the Register File RAM)

– Enable the DMAx interrupt request, if desired
– Select Word or Byte mode
– Select the DMAx request trigger
– Enable the DMAx channel

DMA_ADC Operation
DMA_ADC transfers data from the ADC to the Register File. The sequence of operations 
in a DMA_ADC data transfer is:

1. ADC completes conversion on the current ADC input channel and signals the DMA 
controller that two-bytes of ADC data are ready for transfer.

2. DMA_ADC requests control of the system bus (address and data) from the eZ8 CPU.

3. After the eZ8 CPU acknowledges the bus request, DMA_ADC transfers the two-byte 
ADC output value to the Register File and then returns system bus control back to the 
eZ8 CPU.

4. If the current ADC Analog Input is the highest numbered input to be converted:
– DMA_ADC resets the ADC Analog Input number to 0 and initiates data 

conversion on ADC Analog Input 0.
– If configured to generate an interrupt, DMA_ADC sends an interrupt request to 

the Interrupt Controller
PS017610-0404 Direct Memory Access Controller



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

159
zero). If the Z8F640x family device is not in Debug mode or if the Read Protect 
Option Bit is enabled, this command returns FFH for all the data values.

DBG <-- 09H
DBG <-- {4’h0,Register Address[11:8]
DBG <-- Register Address[7:0]
DBG <-- Size[7:0]
DBG --> 1-256 data bytes

• Write Program Memory (0AH)—The Write Program Memory command writes data 
to Program Memory. This command is equivalent to the LDC and LDCI instructions. 
Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size 
to zero). The on-chip Flash Controller must be written to and unlocked for the 
programming operation to occur. If the Flash Controller is not unlocked, the data is 
discarded. If the Z8F640x family device is not in Debug mode or if the Read Protect 
Option Bit is enabled, the data is discarded.

DBG <-- 0AH
DBG <-- Program Memory Address[15:8]
DBG <-- Program Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG <-- 1-65536 data bytes

• Read Program Memory (0BH)—The Read Program Memory command reads data 
from Program Memory. This command is equivalent to the LDC and LDCI 
instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by 
setting size to zero). If the Z8F640x family device is not in Debug mode or if the Read 
Protect Option Bit is enabled, this command returns FFH for the data.

DBG <-- 0BH
DBG <-- Program Memory Address[15:8]
DBG <-- Program Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG --> 1-65536 data bytes

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data 
Memory. This command is equivalent to the LDE and LDEI instructions. Data can be 
written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). If 
the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is 
enabled, the data is discarded.

DBG <-- 0CH
DBG <-- Data Memory Address[15:8]
DBG <-- Data Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG <-- 1-65536 data bytes
PS017610-0404 On-Chip Debugger



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

162
BRKEN—Breakpoint Enable
This bit controls the behavior of the BRK instruction (opcode 00H). By default, Break-
points are disabled and the BRK instruction behaves like a NOP. If this bit is set to 1, when 
a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically 
set to one.
0 = Breakpoints are disabled. 
1 = Breakpoints are enabled. 

DBGACK—Debug Acknowledge
This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends 
an Debug Acknowledge character (FFH) to the host when a Breakpoint or Watchpoint 
occurs.
0 = Debug Acknowledge is disabled.
1 = Debug Acknowledge is enabled.

Reserved
These bits are reserved and must be 0.

RST—Reset
Setting this bit to 1 resets the Z8F640x family device. The device goes through a normal 
Power-On Reset sequence with the exception that the On-Chip Debugger is not reset. This 
bit is automatically cleared to 0 when the reset finishes. 
0 = No effect.
1 = Reset Z8F640x family device.

OCD Status Register
The OCD Status register reports status information about the current state of the debugger 
and the Z8F640x family device. 

DBG—Debug Status
0 = The Z8F640x family device is operating in normal mode.
1 = The Z8F640x family device is in Debug mode.

HALT—Halt Mode
0 = The Z8F640x family device is not in Halt mode.
1 = The Z8F640x family device is in Halt mode.

Table 95. OCD Status Register (OCDSTAT)

BITS 7 6 5 4 3 2 1 0

FIELD DBG HALT RPEN Reserved

RESET 0 0 0 0 0 0 0 0

R/W R R R R R R R R
PS017610-0404 On-Chip Debugger



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

169
DC Characteristics

Table 101 lists the DC characteristics of the Z8F640x family devices. All voltages are ref-
erenced to VSS, the primary system ground.  

Table 101. DC Characteristics

Symbol Parameter

TA = -400C to 1050C

Units ConditionsMinimum Typical Maximum

VDD Supply Voltage 3.0 – 3.6 V

VIL1 Low Level Input Voltage -0.3 – 0.3*VDD V For all input pins except RESET, 
DBG, and XIN.

VIL2 Low Level Input Voltage -0.3 – 0.2*VDD V For RESET, DBG, and XIN.

VIH1 High Level Input Voltage 0.7*VDD – 5.5 V Port A, C, D, E, F, and G pins.

VIH2 High Level Input Voltage 0.7*VDD – VDD+0.3 V Port B and H pins.

VIH3 High Level Input Voltage 0.8*VDD – VDD+0.3 V RESET, DBG, and XIN pins.

VOL1 Low Level Output Voltage – – 0.4 V VDD = 3.0V; IOL = 2mA
High Output Drive disabled.

VOH1 High Level Output Voltage 2.4 – – V VDD = 3.0V; IOH = -2mA
High Output Drive disabled.

VOL2 Low Level Output Voltage – – 0.6 V VDD = 3.3V; IOL = 20mA
High Output Drive enabled.
TA = -400C to +700C

VOL3 Low Level Output Voltage – – 0.6 V VDD = 3.3V; IOL = 15mA
High Output Drive enabled.
TA = 700C to +1050C

VOH2 High Level Output Voltage 2.4 – – V VDD = 3.3V; IOH = -20mA
High Output Drive enabled.
TA = -400C to +700C

VOH3 High Level Output Voltage 2.4 – – V VDD = 3.3V; IOH = -15mA
High Output Drive enabled.
TA = 700C to +1050C

IIL Input Leakage Current -5 – +5 µA VDD = 3.6V; 
VIN = VDD or VSS1

ITL Tri-State Leakage Current -5 – +5 µA VDD = 3.6V

CPAD GPIO Port Pad Capacitance – 8.02 – pF

CXIN XIN Pad Capacitance – 8.02 – pF

CXOUT XOUT Pad Capacitance – 9.52 – pF
PS017610-0404 Electrical Characteristics



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

197
POP dst dst ← @SP
SP ← SP + 1

R 50 - - - - - - 2 2

IR 51 2 3

POPX dst dst ← @SP
SP ← SP + 1

ER D8 - - - - - - 3 2

PUSH src SP ← SP – 1
@SP ← src

R 70 - - - - - - 2 2

IR 71 2 3

PUSHX src SP ← SP – 1
@SP ← src

ER C8 - - - - - - 3 2

RCF C ← 0 CF 0 - - - - - 1 2

RET PC ← @SP
SP ← SP + 2

AF - - - - - - 1 4

RL dst R 90 * * * * - - 2 2

IR 91 2 3

RLC dst R 10 * * * * - - 2 2

IR 11 2 3

RR dst R E0 * * * * - - 2 2

IR E1 2 3

RRC dst R C0 * * * * - - 2 2

IR C1 2 3

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address Mode
Opcode(s)

(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

Flags Notation: * = Value is a function of the result of the operation.
- = Unaffected
X = Undefined

0 = Reset to 0
1 = Set to 1

D7 D6 D5 D4 D3 D2 D1 D0
dst

C

D7 D6 D5 D4 D3 D2 D1 D0
dst

C

D7 D6 D5 D4 D3 D2 D1 D0
dst

C

D7 D6 D5 D4 D3 D2 D1 D0
dst

C

PS017610-0404 eZ8 CPU Instruction Set



Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

224
read watchpoint (21H) 161
step instruction (10H) 160
stuff instruction (11H) 160
write data memory (0CH) 159
write OCD control register (04H) 158
write program counter (06H) 158
write program memory (0AH) 159
write register (08H) 158
write watchpoint (20H) 161

on-chip debugger 5
on-chip debugger (OCD) 151
on-chip debugger signals 14
on-chip oscillator 165
one-shot mode 70
opcode map

abbreviations 203
cell description 202
first 204
second after 1FH 205

OR 190
ordering information 211
ORX 190
oscillator signals 14

P
p 184
packaging

LQFP
44 lead 207
64 lead 208

PDIP 206
PLCC

44 lead 207
68 lead 209

QFP 210
part number description 214
part selection guide 2
PC 185
PDIP 206
peripheral AC and DC electrical characteristics 173
PHASE=0 timing (SPI) 103
PHASE=1 timing (SPI) 104
pin characteristics 15

PLCC
44 lead 207
68-lead 209

polarity 184
POP 189
pop using extended addressing 189
POPX 189
port availability, device 33
port input timing (GPIO) 176
port output timing, GPIO 177
power supply signals 15
power-down, automatic (ADC) 133
power-on and voltage brown-out 173
power-on reset (POR) 27
problem description or suggestion 217
product information 216
program control instructions 190
program counter 185
program memory 18
PUSH 189
push using extended addressing 189
PUSHX 189
PWM mode 70
PxADDR register 37
PxCTL register 38

Q
QFP 210

R
R 184
r 184
RA, register address 184
RCF 188, 189
receive

10-bit data format (I2C) 116
7-bit data transfer format (I2C) 115
IrDA data 97

receive interrupt 112
receiving UART data-DMA controller 83
receiving UART data-interrupt-driven method 82
receiving UART data-polled method 82
PS017610-0404 P r e l i m i n a r y Index


