

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4801vn020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

- Power-On Reset (POR)
- 3.0-3.6V operating voltage with 5V-tolerant inputs
- 0° to +70°C standard temperature and -40° to +105°C extended temperature operating ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8F640x family product line.

Table 1. Z8F640x Family Part Selection Guide

Part Number	Flash (KB)	RAM (KB)	I/O	16-bit Timers with PWM		UARTs with IrDA	I ² C	SPI		64/68-pin packages	
Z8F1601	16	2	31	3	8	2	1	1	Х		
Z8F1602	16	2	46	4	12	2	1	1		Х	
Z8F2401	24	2	31	3	8	2	1	1	Х		
Z8F2402	24	2	46	4	12	2	1	1		Х	
Z8F3201	32	2	31	3	8	2	1	1	Х		
Z8F3202	32	2	46	4	12	2	1	1		Х	
Z8F4801	48	4	31	3	8	2	1	1	Х		
Z8F4802	48	4	46	4	12	2	1	1		Х	
Z8F4803	48	4	60	4	12	2	1	1			Х
Z8F6401	64	4	31	3	8	2	1	1	Х		
Z8F6402	64	4	46	4	12	2	1	1		Х	
Z8F6403	64	4	60	4	12	2	1	1			Х

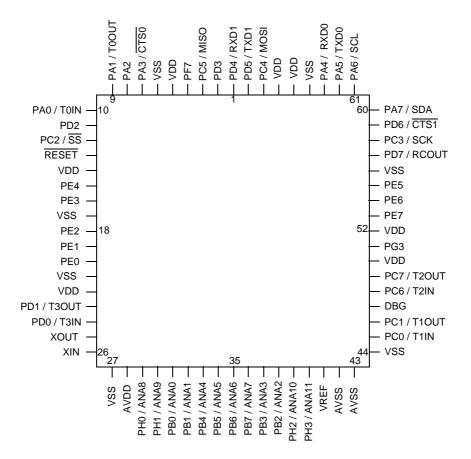


Figure 60. Z8Fxx02 in 68-Pin Plastic Leaded Chip Carrier (PLCC)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #
F62	SPI Status	SPISTAT	01	108
F63	SPI Mode	SPIMODE	00	109
F64-F65	Reserved		XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	110
F67	SPI Baud Rate Low Byte	SPIBRL	FF	110
F68-F69	Reserved	—	XX	
Analog-to-Digit	al Converter (ADC)			
F70	ADC Control	ADCCTL	20	135
F71	Reserved		XX	
F72	ADC Data High Byte	ADCD_H	XX	137
F73	ADC Data Low Bits	ADCD_L	XX	137
F74-FAF	Reserved	_	XX	
DMA 0				
FB0	DMA0 Control	DMA0CTL	00	124
FB1	DMA0 I/O Address	DMA0IO	XX	125
FB2	DMA0 End/Start Address High Nibble	DMA0H	XX	126
FB3	DMA0 Start Address Low Byte	DMA0START	XX	127
FB4	DMA0 End Address Low Byte	DMA0END	XX	128
DMA 1				
FB8	DMA1 Control	DMA1CTL	00	124
FB9	DMA1 I/O Address	DMA1IO	XX	125
FBA	DMA1 End/Start Address High Nibble	DMA1H	XX	126
FBB	DMA1 Start Address Low Byte	DMA1START	XX	127
FBC	DMA1 End Address Low Byte	DMA1END	XX	128
DMA ADC				
FBD	DMA_ADC Address	DMAA_ADDR	XX	128
FBE	DMA_ADC Control	DMAACTL	00	130
FBF	DMA_ADC Status	DMAASTAT	00	131
Interrupt Conti	oller			
FC0	Interrupt Request 0	IRQ0	00	48
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	51
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	51
FC3	Interrupt Request 1	IRQ1	00	49
FC4	IRQ1 Enable High Bit	IRQIENH	00	52
FC5	IRQ1 Enable Low Bit	IRQIENL	00	52
FC6	Interrupt Request 2	IRQ2	00	50
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	53
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	53
FC9-FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	54

Table 6. Register File Address Map (Continued)

Device	Packages	Port A	Port B	Port C	Port D	Port E	Port F	Port G	Port H
Z8F6401	44-pin	[7:0]	[7:0]	[7:0]	[6:0]	-	-	-	-
Z8F6402	64- and 68-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7]	[3]	[3:0]
Z8F6403	80-pin	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[7:0]	[3:0]

Table 10. Port Availability by Device and Package Type (Continued)

Architecture

Figure 64 illustrates a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength are not illustrated.

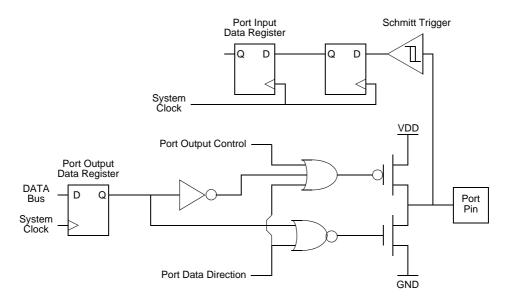


Figure 64. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins can be used as both general-purpose I/O and to provide access to on-chip peripheral functions such as the timers and serial communication devices. The Port A-H Alternate Function sub-registers configure these pins for either general-purpose I/O or alternate function operation. When a pin is configured for alternate function, control

Port Register Mnemonic	Port Register Name
PxADDR	Port A-H Address Register (Selects sub-registers)
PxCTL	Port A-H Control Register (Provides access to sub-registers)
PxIN	Port A-H Input Data Register
PxOUT	Port A-H Output Data Register
Port Sub-Register Mnemonic	Port Register Name
PxDD	Data Direction
PxAF	Alternate Function
PxOC	Output Control (Open-Drain)
PxHDE	High Drive Enable
PxSMRE	STOP Mode Recovery Source Enable

Table 12. GPIO Port Registers and Sub-Registers

Port A-H Address Registers

The Port A-H Address registers select the GPIO Port functionality accessible through the Port A-H Control registers. The Port A-H Address and Control registers combine to provide access to all GPIO Port control (Table 13).

Table 13. Port A-H GPIO Address Registers (PxADDR)

BITS	7	6	5	4	3	2	1	0
FIELD		PADDR[7:0]						
RESET		00H						
R/W		R/W						
ADDR		FD0H, FD4H, FD8H, FDCH, FE0H, FE4H, FE8H, FECH						

BITS	7	6	5	4	3	2	1	0
FIELD	PAD7ENH	PAD6ENH	PAD5ENH	PAD4ENH	PAD3ENH	PAD2ENH	PAD1ENH	PAD0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	4H			

Table 30. IRQ1 Enable High Bit Register (IRQ1ENH)

PAD*x*ENH—Port A or Port D Bit[*x*] Interrupt Request Enable High Bit Refer to the Interrupt Port Select register for selection of either Port A or Port D as the interrupt source.

Table 31. IRQ1 Enable Low Bit Register (IRQ1ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	PAD7ENL	PAD6ENL	PAD5ENL	PAD4ENL	PAD3ENL	PAD2ENL	PAD1ENL	PAD0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	5H			

PADxENL—Port A or Port D Bit[x] Interrupt Request Enable Low Bit Refer to the Interrupt Port Select register for selection of either Port A or Port D as the interrupt source.

IRQ2 Enable High and Low Bit Registers

The IRQ2 Enable High and Low Bit registers (Tables 33 and 34) form a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is generated by setting bits in each register. Table 32 describes the priority control for IRQ2.

Table 32. IRQ2 Enable and Priority Encoding

IRQ2ENH[x]	IRQ2ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

where *x* indicates the register bits from 0 through 7.

I²C Control Register Definitions

I²C Data Register

The I²C Data register holds the data that is to be loaded into the I²C Shift register during a write to a slave. This register also holds data that is loaded from the I²C Shift register during a read from a slave. The I²C Shift is not accessible in the Register File address space, but is used only to buffer incoming and outgoing data.

 Table 66. I²C Data Register (I2CDATA)

BITS	7	6	5	4	3	2	1	0	
FIELD		DATA							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR		F50H							

I²C Status Register

The Read-only I²C Status register indicates the status of the I²C Controller.

BITS	7	6	5	4	3	2	1	0
FIELD	TDRE	RDRF	ACK	10B	RD	TAS	DSS	NCKI
RESET	1	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
ADDR		F51H						

Table 67. I²C Status Register (I2CSTAT)

TDRE—Transmit Data Register Empty

When the I²C Controller is enabled, this bit is 1 when the I²C Data register is empty. When active, this bit causes the I²C Controller to generate an interrupt, except when the I²C Controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit and the interrupt are cleared by writing to the I²CD register.

RDRF—Receive Data Register Full

This bit is set active high when the I²C Controller is enabled and the I²C Controller has

FHSWP—Flash High Sector Write Protect FWP—Flash Write Protect These two Option Bits combine to provide 3 levels of Program Memory protection:

FHSWP	FWP	Description
0	0	Programming and erasure disabled for all of Program Memory. Programming, Page Erase, and Mass Erase via User Code is disabled. Mass Erase is available through the On-Chip Debugger.
1	0	Programming and Page Erase are enabled for the High Sector of the Program Memory only. The High Sector on the Z8F640x family device contains 1KB to 4KB of Flash with addresses at the top of the available Flash memory. Programming and Page Erase are disabled for the other portions of the Program Memory. Mass erase through user code is disabled. Mass Erase is available through the On-Chip Debugger.
0 or 1	1	Programming, Page Erase, and Mass Erase are enabled for all of Program Memory.

Program Memory Address 0001H

Table 91. Options Bits at Program Memory Address 0001H

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR	R Program Memory 0001H									
Note: U = Unchanged by Reset. R/W = Read/Write.										

Reserved

These Option Bits are reserved for future use and must always be 1. This setting is the default for unprogrammed (erased) Flash.

ister. When the Watchpoint event occurs, the Z8F640x family device enters Debug mode and the DBGMODE bit in the OCDCTL register becomes 1.

Runtime Counter

The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles between Breakpoints. The counter starts counting when the On-Chip Debugger leaves Debug mode and stops counting when it enters Debug mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the DBG interface. During normal operation of the Z8F640x family device, only a subset of the OCD commands are available. In Debug mode, all OCD commands become available unless the user code and control registers are protected by programming the Read Protect Option Bit (RP). The Read Protect Option Bit prevents the code in memory from being read out of the Z8F640x family device. When this option is enabled, several of the OCD commands are disabled. Table 93 contains a summary of the On-Chip Debugger commands. Each OCD command is described in further detail in the bulleted list following Table 93. Table 93 indicates those commands that operate when the Z8F640x family device is not in Debug mode (normal operation) and those commands that are disabled by programming the Read Protect Option Bit.

Debug Command	Command Byte	Enabled when NOT in Debug mode?	Disabled by Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	-	-
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	-	Disabled
Read Program Counter	07H	-	Disabled
Write Register	08H	-	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled

Table 93. On-Chip Debugger Commands

Table 101. DC Characteristics

		T _A =	$T_{\rm A} = -40^{0} {\rm C} \text{ to } 105^{0} {\rm C}$			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
I _{PU}	Weak Pull-up Current	30	100	350	μA	$V_{DD} = 3.0 - 3.6V$
I _{CCS}	Supply Current in Stop Mode		600		μA	$V_{DD} = 3.3 V$

¹ This condition excludes all pins that have on-chip pull-ups, when driven Low.

² These values are provided for design guidance only and are not tested in production.

Figure 91 illustrates the typical current consumption while operating at 25°C, 3.3V, versus the system clock frequency.

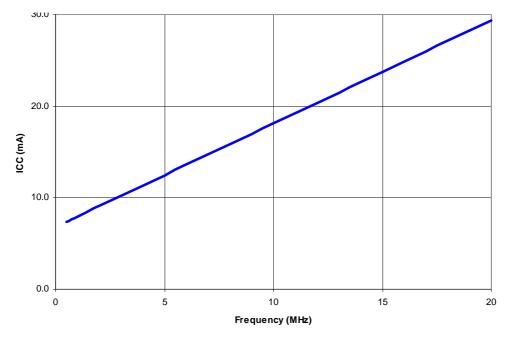


Figure 91. Nominal ICC Versus System Clock Frequency

Table 116. Additional Symbols

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control
- Rotate and Shift

Tables 118 through 125 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instruction can be considered as a subset of more than one category. Within these tables, the source operand is identified as 'src', the destination operand is 'dst' and a condition code is 'cc'.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
CPX	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply

Table 118. Arithmetic Instructions

Mnemonic	Operands	Instruction
CCF	—	Complement Carry Flag
DI	—	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP	_	No Operation
RCF	—	Reset Carry Flag
SCF	_	Set Carry Flag
SRP	src	Set Register Pointer
STOP	—	Stop Mode
WDT	_	Watch-Dog Timer Refresh

Table 121. CPU Control Instructions

Table 122. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Assembly		Addres	s Mode	Opcode(s)			Fl	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	V	D	Н	Cycles C	
BTJZ bit, src, dst	if $src[bit] = 0$		r	F6	-	-	-	-	-	-	3	3
	$PC \leftarrow PC + X$		Ir	F7	-						3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	-	-	-	-	-	-	2	6
	$ @ SP \leftarrow PC PC \leftarrow dst $	DA		D6	-						3	3
CCF	$C \leftarrow \sim C$			EF	*	-	-	-	-	-	1	2
CLR dst	$dst \leftarrow 00H$	R		B0	-	-	-	-	-	-	2	2
		IR		B1	-						2	3
COM dst	$dst \leftarrow \sim dst$	R		60	-	*	*	0	-	-	2	2
		IR		61	-						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	-	2	3
		r	Ir	A3	-						2	4
		R	R	A4	-						3	3
		R	IR	A5	-						3	4
		R	IM	A6	-						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	-	3	3
		r	Ir	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	-	-	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	-	-	4	3
		ER	IM	A9	-						4	3
Flags Notation:	* = Value is a function - = Unaffected X = Undefined	of the result	lt of the	operation.				et to to 1	0			

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly		Addres	s Mode	Opcode (s)			Fl	ags			Fotch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Z	S	V	D	Н		Cycles
POP dst	$dst \leftarrow @SP$	R		50	-	-	-	-	-	-	2	2
	$SP \leftarrow SP + 1$	IR		51	-						2	3
POPX dst	$dst \leftarrow @SP \\ SP \leftarrow SP + 1$	ER		D8	-	-	-	-	-	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	-	-	-	-	-	-	2	2
	$@$ SP \leftarrow src	IR		71	-						2	3
PUSHX src	$SP \leftarrow SP - 1$ @SP \leftarrow src	ER		C8	-	-	-	-	-	-	3	2
RCF	C ← 0			CF	0	-	-	-	-	-	1	2
RET	$\begin{array}{l} PC \leftarrow @SP\\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	-	-	-	-	1	4
RL dst	C ← D7D6D5D4D3D2D1D0 ← dst	R		90	*	*	*	*	-	-	2	2
		IR		91	-						2	3
RLC dst		R		10	*	*	*	*	-	-	2	2
	C ← D7 D6 D5 D4 D3 D2 D1 D0 ← dst	IR		11	-						2	3
RR dst		R		E0	*	*	*	*	-	-	2	2
	D7D6D5D4D3D2D1D0	IR		E1	-						2	3
RRC dst	「	R		C0	*	*	*	*	-	-	2	2
	D7D6D5D4D3D2D1D0 C	IR		C1	-						2	3
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	the resu	lt of the o	operation.			Res Set	et to to 1	0			

Table 126. eZ8 CPU Instruction Summary (Continued)

Packaging

Figure 103 illustrates the 40-pin PDIP (plastic dual-inline package) available for the Z8F1601, Z8F2401, Z8F3201, Z8F4801, and Z8F6401 devices.

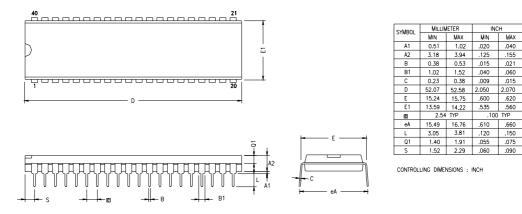


Figure 103. 40-Lead Plastic Dual-Inline Package (PDIP)

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

INCH

MIN

MAX

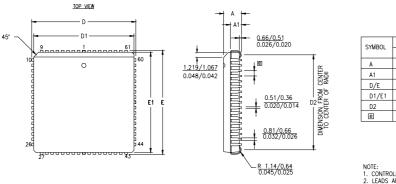


Figure 107 illustrates the 68-pin PLCC (plastic lead chip carrier) package available for the Z8F1602, Z8F2402, Z8F3202, Z8F4802, and Z8F6402 devices.

A	4.32	4.57	.170	.180
A1	2.43	2.92	.095	.115
D/E	25.02	25.40	.985	1.000
D1/E1	24.13	24.33	.950	.958
D2	22.86	23.62	.900	.930
e	1.27	BSC	.050	BSC

MAX

MILLIMETER

MIN

NOTE: 1. CONTROLLING DIVENSIONS : INCH. 2. LEADS ARE COPLANAR WITHIN 0.004 IN. RANGE. 3. DIVENSION : MM INCH.

Figure 107. 68-Lead Plastic Lead Chip Carrier Package (PLCC)

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encorel[®]

read watchpoint (21H) 161 step instruction (10H) 160 stuff instruction (11H) 160 write data memory (0CH) 159 write OCD control register (04H) 158 write program counter (06H) 158 write program memory (0AH) 159 write register (08H) 158 write watchpoint (20H) 161 on-chip debugger 5 on-chip debugger (OCD) 151 on-chip debugger signals 14 on-chip oscillator 165 one-shot mode 70 opcode map abbreviations 203 cell description 202 first 204 second after 1FH 205 OR 190 ordering information 211 **ORX 190** oscillator signals 14

P

p 184 packaging LOFP 44 lead 207 64 lead 208 **PDIP 206** PLCC 44 lead 207 68 lead 209 **OFP 210** part number description 214 part selection guide 2 PC 185 **PDIP 206** peripheral AC and DC electrical characteristics 173 PHASE=0 timing (SPI) 103 PHASE=1 timing (SPI) 104 pin characteristics 15

PLCC 44 lead 207 68-lead 209 polarity 184 POP 189 pop using extended addressing 189 **POPX 189** port availability, device 33 port input timing (GPIO) 176 port output timing, GPIO 177 power supply signals 15 power-down, automatic (ADC) 133 power-on and voltage brown-out 173 power-on reset (POR) 27 problem description or suggestion 217 product information 216 program control instructions 190 program counter 185 program memory 18 **PUSH 189** push using extended addressing 189 PUSHX 189 PWM mode 70 PxADDR register 37 PxCTL register 38

Q

QFP 210

R

R 184 r 184 RA, register address 184 RCF 188, 189 receive 10-bit data format (I2C) 116 7-bit data transfer format (I2C) 115 IrDA data 97 receive interrupt 112 receiving UART data-DMA controller 83 receiving UART data-interrupt-driven method 82 receiving UART data-polled method 82

gated mode 64, 71 one-shot mode 58, 70 operating mode 58 PWM mode 61, 70 reading the timer count values 66 reload high and low byte registers 67 timer control register definitions 66 timer output signal operation 66 timers 0-3 control registers 70 high and low byte registers 66, 69 TM. TMX 188 tools, hardware and software 214 transmit IrDA data 96 transmit interrupt 112 transmitting UART data-polled method 80 transmitting UART data-interrupt-driven method 81 **TRAP 190**

U

UART 4 architecture 78 asynchronous data format without/with parity 80 baud rate generator 85 baud rates table 93 control register definitions 86 controller signals 14 data format 79 interrupts 85 multiprocessor mode 84 receiving data using DMA controller 83 receiving data using interrupt-driven method 82 receiving data using the polled method 82 transmitting data using the interrupt-driven method 81 transmitting data using the polled method 80 x baud rate high and low registers 91 x control 0 and control 1 registers 89 x status 0 and status 1 registers 87 **UxBRH** register 91

UxBRL register 92 UxCTL0 register 89 UxCTL1 register 90 UxRXD register 87 UxSTAT0 register 87 UxSTAT1 register 89 UxTXD register 86

V

vector 184 voltage brown-out reset (VBR) 27

W

watch-dog timer approximate time-out delays 72, 73 CNTL 28 control register 75 electrical characteristics and timing 174 interrupt in normal operation 73 interrupt in stop mode 73 operation 72 refresh 73, 189 reload unlock sequence 74 reload upper, high and low registers 76 reset 28 reset in normal operation 74 reset in stop mode 74 time-out response 73 WDTCTL register 75 WDTH register 76 WDTL register 77 working register 184 working register pair 184 WTDU register 76

X

X 184 XOR 190 XORX 190