



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

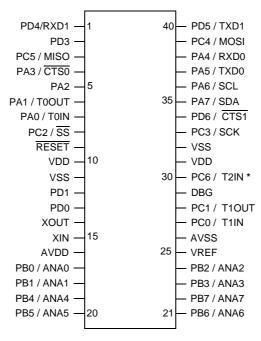
| Details                    |                                                           |
|----------------------------|-----------------------------------------------------------|
| Product Status             | Obsolete                                                  |
| Core Processor             | eZ8                                                       |
| Core Size                  | 8-Bit                                                     |
| Speed                      | 20MHz                                                     |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART                   |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                |
| Number of I/O              | 46                                                        |
| Program Memory Size        | 48KB (48K x 8)                                            |
| Program Memory Type        | FLASH                                                     |
| EEPROM Size                | -                                                         |
| RAM Size                   | 4K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                 |
| Data Converters            | A/D 12x10b                                                |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | -40°C ~ 105°C (TA)                                        |
| Mounting Type              | Surface Mount                                             |
| Package / Case             | 64-LQFP                                                   |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/z8f4802ar020ec |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| External Pin Reset 29                                  | ) |
|--------------------------------------------------------|---|
| Stop Mode Recovery                                     |   |
| Stop Mode Recovery Using Watch-Dog Timer Time-Out 29   | ) |
| Stop Mode Recovery Using a GPIO Port Pin Transition 30 | ) |
| Low-Power Modes                                        | L |
| Overview                                               | l |
| Stop Mode                                              | l |
| Halt Mode                                              | L |
| General-Purpose I/O 33                                 | 3 |
| Overview                                               | 3 |
| GPIO Port Availability By Device                       | 3 |
| Architecture                                           | 1 |
| GPIO Alternate Functions 34                            | ł |
| GPIO Interrupts                                        | 5 |
| GPIO Control Register Definitions                      | 5 |
| Port A-H Address Registers                             |   |
| Port A-H Control Registers                             |   |
| Port A-H Input Data Registers                          | 2 |
| Port A-H Output Data Register 43                       | 3 |
| Interrupt Controller                                   | l |
| Overview                                               | 1 |
| Interrupt Vector Listing                               | ł |
| Architecture                                           |   |
| Operation                                              |   |
| Master Interrupt Enable 46                             | 5 |
| Interrupt Vectors and Priority 47                      |   |
| Interrupt Assertion Types 47                           |   |
| Interrupt Control Register Definitions                 |   |
| Interrupt Request 0 Register                           |   |
| Interrupt Request 1 Register 49                        |   |
| Interrupt Request 2 Register 50                        |   |
| IRQ0 Enable High and Low Bit Registers                 |   |
| IRQ1 Enable High and Low Bit Registers                 |   |
| IRQ2 Enable High and Low Bit Registers                 |   |
| Interrupt Edge Select Register54                       |   |
| Interrupt Port Select Register 55                      |   |
| Interrupt Control Register 56                          |   |
| Timers                                                 |   |
| Overview                                               |   |
| Architecture                                           |   |
| Operation                                              | 3 |




| Table 32. | IRQ2 Enable and Priority Encoding                     |
|-----------|-------------------------------------------------------|
| Table 33. | IRQ1 Enable High Bit Register (IRQ1ENH) 53            |
| Table 34. | IRQ2 Enable Low Bit Register (IRQ2ENL) 54             |
| Table 35. | IRQ2 Enable High Bit Register (IRQ2ENH) 54            |
| Table 36. | Interrupt Edge Select Register (IRQES)                |
| Table 37. | Interrupt Port Select Register (IRQPS) 55             |
| Table 38. | Interrupt Control Register (IRQCTL)                   |
| Table 39. | Timer 0-3 High Byte Register (TxH)                    |
| Table 40. | Timer 0-3 Low Byte Register (TxL)                     |
| Table 41. | Timer 0-3 Reload High Byte Register (TxRH)            |
| Table 42. | Timer 0-3 Reload Low Byte Register (TxRL)             |
| Table 43. | Timer 0-3 PWM High Byte Register (TxPWMH) 69          |
| Table 44. | Timer 0-3 PWM Low Byte Register (TxPWML) 69           |
| Table 45. | Timer 0-3 Control Register (TxCTL)                    |
| Table 46. | Watch-Dog Timer Approximate Time-Out Delays 73        |
| Table 47. | Watch-Dog Timer Control Register (WDTCTL)75           |
| Table 48. | Watch-Dog Timer Reload Upper Byte Register (WDTU) 76  |
| Table 49. | Watch-Dog Timer Reload High Byte Register (WDTH) . 76 |
| Table 50. | Watch-Dog Timer Reload Low Byte Register (WDTL)77     |
| Table 51. | UARTx Transmit Data Register (UxTXD)                  |
| Table 52. | UARTx Receive Data Register (UxRXD)                   |
| Table 53. | UARTx Status 0 Register (UxSTAT0)                     |
| Table 54. | UARTx Control 0 Register (UxCTL0)                     |
| Table 55. | UARTx Status 1 Register (UxSTAT1)                     |
| Table 56. | UARTx Control 1 Register (UxCTL1)                     |
| Table 57. | UARTx Baud Rate High Byte Register (UxBRH)91          |
| Table 58. | UARTx Baud Rate Low Byte Register (UxBRL) 92          |
| Table 59. | UART Baud Rates                                       |
| Table 60. | SPI Clock Phase (PHASE) and Clock Polarity            |
|           | (CLKPOL) Operation                                    |
| Table 61. | SPI Data Register (SPIDATA) 106                       |
| Table 62. | SPI Control Register (SPICTL) 107                     |
| Table 63. | SPI Status Register (SPISTAT) 108                     |
| Table 64. | SPI Mode Register (SPIMODE) 109                       |
| Table 65. | SPI Baud Rate High Byte Register (SPIBRH) 110         |
| Table 66. | SPI Baud Rate Low Byte Register (SPIBRL) 110          |
|           |                                                       |



# **Pin Configurations**

Figures 56 through 61 illustrate the pin configurations for all of the packages available in the Z8 Encore!® MCU family. Refer to Table 2 for a description of the signals.



Note: Timer 3 is not supported.

Figure 56. Z8Fxx01 in 40-Pin Dual Inline Package (DIP)

\* T2OUT is not supported.

# Address Space

## Overview

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that hold data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to the *eZ8 CPU User Manual* available for download at <u>www.zilog.com</u>.

## **Register File**

The Register File address space in the Z8 Encore!<sup>®</sup> is 4KB (4096 bytes). The Register File is composed of two sections—control registers and general-purpose registers. When instructions are executed, registers are read from when defined as sources and written to when defined as destinations. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256-byte control register section are reserved (unavailable). Reading from an reserved Register File addresses returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8F640x family products contain 2KB to 4KB of on-chip RAM depending upon the device. Reading from Register File addresses outside the available RAM addresses (and not within in the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect. Refer to the **Part Selection Guide** section of the **Introduction** chapter to determine the amount of RAM available for the specific Z8F640x family device.



# **Reset and Stop Mode Recovery**

## **Overview**

The Reset Controller within the Z8F640x family devices controls Reset and STOP Mode Recovery operation. In typical operation, the following events cause a Reset to occur:

- Power-On Reset (POR)
- Voltage Brown-Out (VBO)
- Watch-Dog Timer time-out (when configured via the WDT\_RES Option Bit to initiate a reset)
- External **RESET** pin assertion
- On-Chip Debugger initiated Reset (OCDCTL[1] set to 1)

When the Z8F640x family device is in Stop mode, a Stop Mode Recovery is initiated by either of the following:

- Watch-Dog Timer time-out
- GPIO Port input pin transition on an enabled Stop Mode Recovery source
- DBG pin driven Low

## **Reset Types**

The Z8F640x family provides several different types of Reset operation. Stop Mode Recovery is considered a form of Reset. The type of Reset is a function of both the current operating mode of the Z8F640x family device and the source of the Reset. Table 7 lists the types of Reset and their operating characteristics. The System Reset is longer than the Short Reset to allow additional time for external oscillator start-up.

| Table 7. Reset and Stop M | Mode Recovery | <b>Characteristics and Latency</b> |
|---------------------------|---------------|------------------------------------|
|---------------------------|---------------|------------------------------------|

|                    | <b>Reset Characteristics and Latency</b> |         |                                                    |  |  |  |  |  |
|--------------------|------------------------------------------|---------|----------------------------------------------------|--|--|--|--|--|
| Reset Type         | Control Registers                        | eZ8 CPU | Reset Latency (Delay)                              |  |  |  |  |  |
| System Reset       | Reset (as applicable)                    | Reset   | 514 WDT Oscillator cycles + 16 System Clock cycles |  |  |  |  |  |
| Short Reset        | Reset (as applicable)                    | Reset   | 66 WDT Oscillator cycles + 16 System Clock cycles  |  |  |  |  |  |
| Stop Mode Recovery | Unaffected, except<br>WDT_CTL register   | Reset   | 514 WDT Oscillator cycles + 16 System Clock cycles |  |  |  |  |  |



| Port Register Mnemonic     | Port Register Name                                              |
|----------------------------|-----------------------------------------------------------------|
| PxADDR                     | Port A-H Address Register<br>(Selects sub-registers)            |
| PxCTL                      | Port A-H Control Register<br>(Provides access to sub-registers) |
| PxIN                       | Port A-H Input Data Register                                    |
| PxOUT                      | Port A-H Output Data Register                                   |
| Port Sub-Register Mnemonic | Port Register Name                                              |
| PxDD                       | Data Direction                                                  |
| PxAF                       | Alternate Function                                              |
| PxOC                       | Output Control (Open-Drain)                                     |
| PxHDE                      | High Drive Enable                                               |
| PxSMRE                     | STOP Mode Recovery Source<br>Enable                             |

Table 12. GPIO Port Registers and Sub-Registers

## **Port A-H Address Registers**

The Port A-H Address registers select the GPIO Port functionality accessible through the Port A-H Control registers. The Port A-H Address and Control registers combine to provide access to all GPIO Port control (Table 13).

Table 13. Port A-H GPIO Address Registers (PxADDR)

| BITS  | 7          | 6   | 5            | 4          | 3            | 2            | 1  | 0 |  |  |
|-------|------------|-----|--------------|------------|--------------|--------------|----|---|--|--|
| FIELD | PADDR[7:0] |     |              |            |              |              |    |   |  |  |
| RESET |            | 00H |              |            |              |              |    |   |  |  |
| R/W   |            | R/W |              |            |              |              |    |   |  |  |
| ADDR  |            | FĽ  | 00H, FD4H, I | FD8H, FDCH | , FE0H, FE4I | H, FE8H, FE0 | СН |   |  |  |



# **Interrupt Control Register Definitions**

For all interrupts other than the Watch-Dog Timer interrupt, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

## Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 23) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 register to determine if any interrupt requests are pending

| BITS  | 7 6 |     | 5   | 4     | 4 3   |      | 1    | 0    |
|-------|-----|-----|-----|-------|-------|------|------|------|
| FIELD | T2I | T1I | TOI | U0RXI | U0TXI | I2CI | SPII | ADCI |
| RESET | 0   | 0   | 0   | 0 0   |       | 0    | 0    | 0    |
| R/W   | R/W | R/W | R/W | R/W   | R/W   | R/W  | R/W  | R/W  |
| ADDR  |     |     |     | FC    | OH    |      |      |      |

Table 23. Interrupt Request 0 Register (IRQ0)

T2I—Timer 2 Interrupt Request

0 = No interrupt request is pending for Timer 2.

1 = An interrupt request from Timer 2 is awaiting service.

T1I-Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I-Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.



## Interrupt Control Register

The Interrupt Control (IRQCTL) register (Table 37) contains the master enable bit for all interrupts.

Table 37. Interrupt Control Register (IRQCTL)

| BITS  | 7    | 6        | 5 | 4  | 3  | 2 | 1 | 0 |  |
|-------|------|----------|---|----|----|---|---|---|--|
| FIELD | IRQE | Reserved |   |    |    |   |   |   |  |
| RESET | 0    | 0        | 0 | 0  | 0  | 0 | 0 | 0 |  |
| R/W   | R/W  | R        | R | R  | R  | R | R | R |  |
| ADDR  |      |          |   | FC | FH |   |   |   |  |

IRQE—Interrupt Request Enable

This bit is set to 1 by execution of an EI (Enable Interrupts) or IRET (Interrupt Return) instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, or Reset.

0 = Interrupts are disabled.

1 = Interrupts are enabled.

Reserved

These bits must be 0.



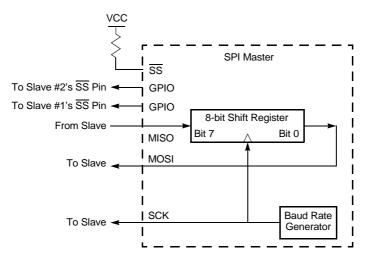



Figure 75. SPI Configured as a Master in a Single Master, Multiple Slave System

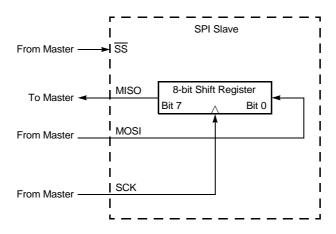



Figure 76. SPI Configured as a Slave

# Operation

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (serial clock, transmit, receive and Slave select). The SPI block consists of trans-





Figure 78. SPI Timing When PHASE is 1

## **Multi-Master Operation**

In a multi-master SPI system, all SCK pins are tied together, all MOSI pins are tied together and all MISO pins are tied together. All SPI pins must then be configured in open-drain mode to prevent bus contention. At any one time, only one SPI device is configured as the Master and all other SPI devices on the bus are configured as Slaves. The Master enables a single Slave by asserting the  $\overline{SS}$  pin on that Slave only. Then, the single Master drives data out its SCK and MOSI pins to the SCK and MOSI pins on the Slaves (including those which are not enabled). The enabled Slave drives data out its MISO pin to the MISO Master pin.

For a Master device operating in a multi-master system, if the  $\overline{SS}$  pin is configured as an input and is driven Low by another Master, the COL bit is set to 1 in the SPI Status Register. The COL bit indicates the occurrence of a multi-master collision (mode fault error condition).



- 1. Software writes the I<sup>2</sup>C Data register with a 7-bit slave address followed by a 1 (read).
- 2. Software asserts the START bit of the I<sup>2</sup>C Control register.
- 3. Software asserts the NAK bit of the I<sup>2</sup>C Control register so that after the first byte of data has been read by the I<sup>2</sup>C Controller, a Not Acknowledge is sent to the I<sup>2</sup>C slave.
- 4. The I<sup>2</sup>C Controller sends the START condition.
- 5. The I<sup>2</sup>C Controller sends the address and read bit by the SDA signal.
- 6. The I<sup>2</sup>C slave sends an Acknowledge by pulling the SDA signal Low during the next high period of SCL.
- 7. The  $I^2C$  Controller reads the first byte of data from the  $I^2C$  slave.
- 8. The I<sup>2</sup>C Controller asserts the Receive interrupt.
- 9. Software responds by reading the  $I^2C$  Data register.
- 10. The  $I^2C$  Controller sends a NAK to the  $I^2C$  slave.
- 11. A NAK interrupt is generated by the I<sup>2</sup>C Controller.
- 12. Software responds by setting the STOP bit of the  $I^2C$  Control register.
- 13. A STOP condition is sent to the  $I^2C$  slave.

### Reading a Transaction with a 10-Bit Address

Figure 82 illustrates the receive format for a 10-bit addressed slave. The shaded regions indicate data transferred from the I<sup>2</sup>C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I<sup>2</sup>C Controller.

| S | Slave Address | W=0 | А | Slave address | А | S | Slave Address | R=1 | А | Data | А | Data | Ā | Р |
|---|---------------|-----|---|---------------|---|---|---------------|-----|---|------|---|------|---|---|
|   | 1st 7 bits    |     |   | 2nd Byte      |   |   | 1st 7 bits    |     |   |      |   |      |   |   |

#### Figure 82. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the write signal.

The data transfer format for a receive operation on a 10-bit addressed slave is as follows:

- 1. Software writes an address 11110B followed by the two address bits and a 0 (write).
- 2. Software asserts the START bit of the  $I^2C$  Control register.
- 3. The  $I^2C$  Controller sends the Start condition.



#### START-Send Start Condition

This bit sends the Start condition. Once asserted, it is cleared by the I<sup>2</sup>C Controller after it sends the START condition or by deasserting the IEN bit. After this bit is set, the Start condition is sent if there is data in the I<sup>2</sup>C Data or I<sup>2</sup>C Shift register. If there is no data in one of these registers, the I<sup>2</sup>C Controller waits until data is loaded. If this bit is set while the I<sup>2</sup>C Controller is shifting out data, it generates a START condition after the byte shifts and the acknowledge phase completed. If the STOP bit is also set, it also waits until the STOP condition is sent before the START condition. If this bit is 1, it cannot be cleared to 0 by writing to the register. This bit clears when the I<sup>2</sup>C is disabled.

#### STOP-Send Stop Condition

This bit causes the  $I^2C$  Controller to issue a Stop condition after the byte in the  $I^2C$  Shift register has completed transmission or after a byte has been received in a receive operation. Once set, this bit is reset by the  $I^2C$  Controller after a Stop condition has been sent or by deasserting the IEN bit. If this bit is 1, it cannot be cleared to 0 by writing to the register. This bit clears when the  $I^2C$  is disabled.

#### BIRQ-Baud Rate Generator Interrupt Request

This bit causes an interrupt to occur every time the baud rate generator counts down to zero. This bit allows the  $I^2C$  Controller to be used as an additional counter when it is not being used elsewhere. This bit must only be set when the  $I^2C$  Controller is disabled.

#### TXI-Enable TDRE interrupts

This bit enables interrupts when the I<sup>2</sup>C Data register is empty on the I<sup>2</sup>C Controller.

#### NAK—Send NAK

This bit sends a Not Acknowledge condition after the next byte of data has been read from the  $I^2C$  slave. Once asserted, it is deasserted after a Not Acknowledge is sent or the IEN bit is deasserted.

#### FLUSH-Flush Data

Setting this bit to 1 clears the I<sup>2</sup>C Data register and sets the TDRE bit to 1. This bit allows flushing of the I<sup>2</sup>C Data register when an NAK is received after the data has been sent to the I<sup>2</sup>C Data register. Reading this bit always returns 0.

## FILTEN—I<sup>2</sup>C Signal Filter Enable

Setting this bit to 1 enables low-pass digital filters on the SDA and SCL input signals. These filters reject any input pulse with periods less than a full system clock cycle. The filters introduce a 3-system clock cycle latency on the inputs.



When the DMA is configured for two-byte word transfers, the DMAx I/O Address register must contain an even numbered address.

Table 72. DMAx I/O Address Register (DMAxIO)

| BITS  | 7      | 6          | 5   | 4   | 3   | 2   | 1   | 0   |  |
|-------|--------|------------|-----|-----|-----|-----|-----|-----|--|
| FIELD | DMA_IO |            |     |     |     |     |     |     |  |
| RESET | Х      | Х          | Х   | Х   | Х   | Х   | Х   | Х   |  |
| R/W   | R/W    | R/W        | R/W | R/W | R/W | R/W | R/W | R/W |  |
| ADDR  |        | FB1H, FB9H |     |     |     |     |     |     |  |

DMA\_IO—DMA on-chip peripheral control register address

This byte sets the low byte of the on-chip peripheral control register address on Register File Page FH (addresses F00H to FFFH).

## DMAx Address High Nibble Register

The DMAx Address High register specifies the upper four bits of address for the Start/ Current and End Addresses of DMAx.

| Table 73. DMAx Address | s High Nibble | Register | (DMAxH) |
|------------------------|---------------|----------|---------|
|------------------------|---------------|----------|---------|

| BITS  | 7          | 6   | 5   | 4   | 3           | 2   | 1   | 0   |  |
|-------|------------|-----|-----|-----|-------------|-----|-----|-----|--|
| FIELD | DMA_END_H  |     |     |     | DMA_START_H |     |     |     |  |
| RESET | Х          | Х   | Х   | Х   | Х           | Х   | Х   | Х   |  |
| R/W   | R/W        | R/W | R/W | R/W | R/W         | R/W | R/W | R/W |  |
| ADDR  | FB2H, FHAH |     |     |     |             |     |     |     |  |

DMA\_END\_H—DMAx End Address High Nibble

These bits, used with the DMA*x* End Address Low register, form a 12-bit End Address. The full 12-bit address is given by {DMA\_END\_H[3:0], DMA\_END[7:0]}.

DMA\_START\_H—DMAx Start/Current Address High Nibble These bits, used with the DMAx Start/Current Address Low register, form a 12-bit Start/ Current Address. The full 12-bit address is given by {DMA\_START\_H[3:0], DMA\_START[7:0]}.



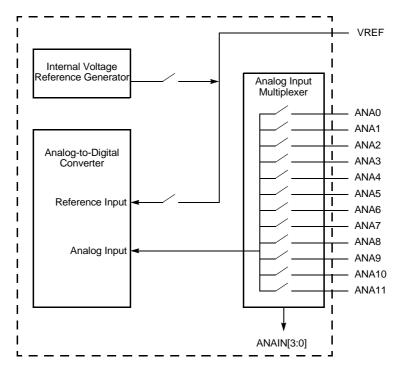



Figure 83. Analog-to-Digital Converter Block Diagram

# Operation

## **Automatic Power-Down**

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered-down. From this power-down state, the ADC requires 40 system clock cycles to power-up. The ADC powers up when a conversion is requested using the ADC Control register.

## **Single-Shot Conversion**

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. The steps for setting up the ADC and initiating a single-shot conversion are as follows:



- 1. Enable the desired analog inputs by configuring the general-purpose I/O pins for alternate function. This configuration disables the digital input and output drivers.
- 2. Write to the ADC Control register to configure the ADC and begin the conversion. The bit fields in the ADC Control register can be written simultaneously:
  - Write to ANAIN [3:0] to select one of the 12 analog input sources.
  - Clear CONT to 0 to select a single-shot conversion.
  - Write to VREF to enable or disable the internal voltage reference generator.
  - Set CEN to 1 to start the conversion.
- 3. CEN remains 1 while the conversion is in progress. A single-shot conversion requires 5129 system clock cycles to complete. If a single-shot conversion is requested from an ADC powered-down state, the ADC uses 40 additional clock cycles to power-up before beginning the 5129 cycle conversion.
- 4. When the conversion is complete, the ADC control logic performs the following operations:
  - 10-bit data result written to {ADCD\_H[7:0], ADCD\_L[7:6]}.
  - CEN resets to 0 to indicate the conversion is complete.
  - An interrupt request is sent to the Interrupt Controller.
- 5. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered-down.

## **Continuous Conversion**

When configured for continuous conversion, the ADC continuously performs an analogto-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated only at the end of the first conversion after enabling.

# Caution:

In Continuous mode, users must be aware that ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not seen at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

The steps for setting up the ADC and initiating continuous conversion are as follows:

- 1. Enable the desired analog input by configuring the general-purpose I/O pins for alternate function. This disables the digital input and output driver.
- 2. Write to the ADC Control register to configure the ADC for continuous conversion. The bit fields in the ADC Control register may be written simultaneously:
  - Write to ANAIN [3:0] to select one of the 12 analog input sources.



- Power-on reset
- Voltage Brownout reset
- Asserting the  $\overline{\text{RESET}}$  pin Low to initiate a Reset.
- Driving the DBG pin Low while the Z8F640x family device is in Stop mode initiates a System Reset.

## **OCD Data Format**

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits (Figure 89)

| START         D0         D1         D2         D3         D4         D5         D6         D7 | STOP |
|-----------------------------------------------------------------------------------------------|------|
|-----------------------------------------------------------------------------------------------|------|

#### Figure 89. OCD Data Format

## **OCD Auto-Baud Detector/Generator**

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger has an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits). The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

The Auto-Baud Detector/Generator is clocked by the Z8F640x family device system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation, the maximum recommended baud rate is the system clock frequency divided by 8. The theoretical maximum baud rate is the system clock frequency divided by 4. This theoretical maximum is possible for low noise designs with clean signals. Table 92 lists minimum and recommended maximum baud rates for sample crystal frequencies.

| System Clock Frequency<br>(MHz) | Recommended Maximum Baud Rate<br>(kbits/s) | Minimum Baud Rate<br>(kbits/s) |
|---------------------------------|--------------------------------------------|--------------------------------|
| 20.0                            | 2500                                       | 39.1                           |
| 1.0                             | 125.0                                      | 1.96                           |
| 0.032768 (32KHz)                | 4.096                                      | 0.064                          |

#### Table 92. OCD Baud-Rate Limits



zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, this command returns FFH for all the data values.

```
DEG <-- 09H
DEG <-- {4'h0,Register Address[11:8]
DEG <-- Register Address[7:0]
DEG <-- Size[7:0]
DEG --> 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, the data is discarded.

```
DBG <-- 0AH

DBG <-- Program Memory Address[15:8]

DBG <-- Program Memory Address[7:0]

DBG <-- Size[15:8]

DBG <-- Size[7:0]

DBG <-- 1-65536 data bytes
```

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, this command returns FFH for the data.

```
DEG <-- 0BH
DEG <-- Program Memory Address[15:8]
DEG <-- Program Memory Address[7:0]
DEG <-- Size[15:8]
DEG <-- Size[7:0]
DEG --> 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, the data is discarded.

```
DBG <-- 0CH
DBG <-- Data Memory Address[15:8]
DBG <-- Data Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG <-- 1-65536 data bytes
```



# **Condition Codes**

The C, Z, S and V flags control the operation of the conditional jump (JP cc and JR cc) instructions. Sixteen frequently useful functions of the flag settings are encoded in a 4-bit field called the condition code (cc), which forms Bits 7:4 of the conditional jump instructions. The condition codes are summarized in Table 117. Some binary condition codes can be created using more than one assembly code mnemonic. The result of the flag test operation is used to decide if the conditional jump is executed.

| Binary | Hex | Assembly<br>Mnemonic | Definition                    | Flag Test Operation      |
|--------|-----|----------------------|-------------------------------|--------------------------|
| 0000   | 0   | F                    | Always False                  | -                        |
| 0001   | 1   | LT                   | Less Than                     | (S XOR V) = 1            |
| 0010   | 2   | LE                   | Less Than or Equal            | (Z OR (S XOR V)) = 1     |
| 0011   | 3   | ULE                  | Unsigned Less Than or Equal   | (C OR Z) = 1             |
| 0100   | 4   | OV                   | Overflow                      | V = 1                    |
| 0101   | 5   | Ml                   | Minus                         | <b>S</b> = 1             |
| 0110   | 6   | Z                    | Zero                          | Z = 1                    |
| 0110   | 6   | EQ                   | Equal                         | Z = 1                    |
| 0111   | 7   | С                    | Carry                         | C = 1                    |
| 0111   | 7   | ULT                  | Unsigned Less Than            | C = 1                    |
| 1000   | 8   | T (or blank)         | Always True                   | -                        |
| 1001   | 9   | GE                   | Greater Than or Equal         | (S  XOR  V) = 0          |
| 1010   | А   | GT                   | Greater Than                  | (Z  OR  (S  XOR  V)) = 0 |
| 1011   | В   | UGT                  | Unsigned Greater Than         | (C = 0 AND Z = 0) = 1    |
| 1100   | С   | NOV                  | No Overflow                   | V = 0                    |
| 1101   | D   | PL                   | Plus                          | $\mathbf{S} = 0$         |
| 1110   | Е   | NZ                   | Non-Zero                      | Z = 0                    |
| 1110   | Е   | NE                   | Not Equal                     | Z = 0                    |
| 1111   | F   | NC                   | No Carry                      | C = 0                    |
| 1111   | F   | UGE                  | Unsigned Greater Than or Equa | 1 C = 0                  |

#### **Table 117. Condition Codes**



# **Ordering Information**

| Part                                                          | Flash<br>KB (Bytes) | RAM<br>KB (Bytes) | Max. Speed<br>(MHz) | Temp<br>( <sup>0</sup> C) | Voltage<br>(V) | Package | Part Number    |  |  |
|---------------------------------------------------------------|---------------------|-------------------|---------------------|---------------------------|----------------|---------|----------------|--|--|
| Z8 Encore! <sup>®</sup> with 16KB Flash, Standard Temperature |                     |                   |                     |                           |                |         |                |  |  |
| Z8 Encore!®                                                   | 16 (16,384)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PDIP-40 | Z8F1601PM020SC |  |  |
| Z8 Encore!®                                                   | 16 (16,384)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-44 | Z8F1601AN020SC |  |  |
| Z8 Encore!®                                                   | 16 (16,384)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-44 | Z8F1601VN020SC |  |  |
| Z8 Encore!®                                                   | 16 (16,384)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-64 | Z8F1602AR020SC |  |  |
| Z8 Encore!®                                                   | 16 (16,384)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-68 | Z8F1602VS020SC |  |  |
| Z8 Encore!®                                                   | with 24KB           | Flash, Stand      | lard Tempera        | ture                      |                |         |                |  |  |
| Z8 Encore!®                                                   | 24 (24,576)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PDIP-40 | Z8F2401PM020SC |  |  |
| Z8 Encore!®                                                   | 24 (24,576)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-44 | Z8F2401AN020SC |  |  |
| Z8 Encore!®                                                   | 24 (24,576)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-44 | Z8F2401VN020SC |  |  |
| Z8 Encore!®                                                   | 24 (24,576)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-64 | Z8F2402AR020SC |  |  |
| Z8 Encore!®                                                   | 24 (24,576)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-68 | Z8F2402VS020SC |  |  |
| Z8 Encore!®                                                   | with 32KB           | Flash, Stand      | lard Tempera        | ture                      |                |         |                |  |  |
| Z8 Encore!®                                                   | 32 (32,768)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PDIP-40 | Z8F3201PM020SC |  |  |
| Z8 Encore!®                                                   | 32 (32,768)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-44 | Z8F3201AN020SC |  |  |
| Z8 Encore!®                                                   | 32 (32,768)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-44 | Z8F3201VN020SC |  |  |
| Z8 Encore!®                                                   | 32 (32,768)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-64 | Z8F3202AR020SC |  |  |
| Z8 Encore!®                                                   | 32 (32,768)         | 2 (2048)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-68 | Z8F3202VS020SC |  |  |
| Z8 Encore!®with 48KB Flash, Standard Temperature              |                     |                   |                     |                           |                |         |                |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PDIP-40 | Z8F4801PM020SC |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-44 | Z8F4801AN020SC |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-44 | Z8F4801VN020SC |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | LQFP-64 | Z8F4802AR020SC |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | PLCC-68 | Z8F4802VS020SC |  |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | 0 to +70                  | 3.0 - 3.6      | QFP-80  | Z8F4803FT020SC |  |  |

### Table 128. Ordering Information



| Part                                                          | Flash<br>KB (Bytes) | RAM<br>KB (Bytes) | Max. Speed<br>(MHz) | Temp<br>( <sup>0</sup> C) | Voltage<br>(V) | Package | Part Number    |  |
|---------------------------------------------------------------|---------------------|-------------------|---------------------|---------------------------|----------------|---------|----------------|--|
| Z8 Encore! <sup>®</sup> with 48KB Flash, Extended Temperature |                     |                   |                     |                           |                |         |                |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PDIP-40 | Z8F4801PM020EC |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | LQFP-44 | Z8F4801AN020EC |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PLCC-44 | Z8F4801VN020EC |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | LQFP-64 | Z8F4802AR020EC |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PLCC-68 | Z8F4802VS020EC |  |
| Z8 Encore!®                                                   | 48 (49,152)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | QFP-80  | Z8F4803FT020EC |  |
| Z8 Encore!®                                                   | with 64KB           | Flash, Exter      | nded Temper         | ature                     |                |         |                |  |
| Z8 Encore!®                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PDIP-40 | Z8F6401PM020EC |  |
| Z8 Encore!®                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | LQFP-44 | Z8F6401AN020EC |  |
| Z8 Encore!®                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PLCC-44 | Z8F6401VN020EC |  |
| Z8 Encore!®                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | LQFP-64 | Z8F6402AR020EC |  |
| Z8 Encore!v                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | PLCC-68 | Z8F6402VS020EC |  |
| Z8 Encore!®                                                   | 64 (65,536)         | 4 (4096)          | 20                  | -40 to +105               | 3.0 - 3.6      | QFP-80  | Z8F6403FT020EC |  |
| Z8 Encore! ®Development Tools                                 |                     |                   |                     |                           |                |         |                |  |
| Z8 Encore!®                                                   | Developer Ki        | it                |                     |                           |                |         | Z8ENCORE000ZCO |  |

Table 128. Ordering Information (Continued)

Contact ZILOG's worldwide customer support center for more information on ordering the Z8 Encore!<sup>®</sup>. The customer support center is open from 7 a.m. to 7 p.m. Pacific Time.

The customer support toll-free number for ZiLOG is 1-877-ZiLOGCS (1-877-945-6427). For Z8 Encore!® the customer support toll-free number is 1-866-498-3636. The FAX number for the customer support center is 1-603-316-0345. Customers can also gain access to customer support using the ZiLOG website. Z8 Encore!® has its own web page at www.zilog.com/z8encore.

For customer service, navigate your browser to:

<u>http://register.zilog.com/login.asp?login = servicelogin</u>

For technical support, navigate your browser to:

http://register.zilog.com/login.asp?login = supportlogin