
Zilog - Z8F4802AR020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 46

Program Memory Size 48KB (48K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f4802ar020ec00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f4802ar020ec00tr-4426974
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

iii
Table of Contents
Introduction . 1

Features . 1
Part Selection Guide . 2
Block Diagram . 3
CPU and Peripheral Overview . 3

eZ8 CPU Features . 3
General Purpose I/O . 4
Flash Controller . 4
10-Bit Analog-to-Digital Converter . 4
UARTs . 4
I2C . 4
Serial Peripheral Interface . 5
Timers . 5
Interrupt Controller . 5
Reset Controller . 5
On-Chip Debugger . 5
DMA Controller . 5

Signal and Pin Descriptions . 6
Overview . 6
Available Packages . 6
Pin Configurations . 7
Signal Descriptions . 13
Pin Characteristics . 15

Address Space . 17
Overview . 17
Register File . 17
Program Memory . 18
Data Memory . 19

Register File Address Map . 0
Reset and Stop Mode Recovery . 25

Overview . 25
Reset Types . 25

System and Short Resets . 26
Reset Sources . 26

Power-On Reset . 27
Voltage Brown-Out Reset . 27
Watch-Dog Timer Reset . 28
PS017610-0404 Table of Contents

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

viii
Option Bits . 148
Overview . 148
Operation . 148

Option Bit Configuration By Reset . 148
Option Bit Address Space . 148

Program Memory Address 0000H . 149
Program Memory Address 0001H . 150

On-Chip Debugger . 151
Overview . 151
Architecture . 151
Operation . 152

OCD Interface . 152
Debug Mode . 153
OCD Data Format . 154
OCD Auto-Baud Detector/Generator . 154
OCD Serial Errors . 155
Breakpoints . 155
Watchpoints . 155
Runtime Counter . 156

On-Chip Debugger Commands . 156
On-Chip Debugger Control Register Definitions 161

OCD Control Register . 161
OCD Status Register . 162
OCD Watchpoint Control Register . 163
OCD Watchpoint Address Register . 164
OCD Watchpoint Data Register . 164

On-Chip Oscillator . 165
20MHz Crystal Oscillator Operation . 165

Electrical Characteristics . 167
Absolute Maximum Ratings . 167
DC Characteristics . 169
AC Characteristics . 172
On-Chip Peripheral AC and DC Electrical Characteristics 173

General Purpose I/O Port Input Data Sample Timing 176
General Purpose I/O Port Output Timing 177
On-Chip Debugger Timing . 178
SPI Master Mode Timing . 179
SPI Slave Mode Timing . 180
I2C Timing . 181

eZ8 CPU Instruction Set . 182
Assembly Language Programming Introduction 182
PS017610-0404 Table of Contents

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

xvii
Braces
The curly braces, { }, indicate a single register or bus created by concatenating some com-
bination of smaller registers, buses, or individual bits.

• Example: the 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit
hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer
(RP) and Working Register R1. 0H is the most significant nibble (4-bit value) of the
12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses
The parentheses, (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address contained in the
Working Register R1.

Parentheses/Bracket Combinations
The parentheses, (), indicate an indirect register address lookup and the square brackets,
[], indicate a register or bus.

• Example: assume PC[15:0] contains the value 1234h. (PC[15:0]) then refers to the
contents of the memory location at address 1234h.

Use of the Words Set, Reset and Clear
The word set implies that a register bit or a condition contains a logical 1. The words reset
or clear imply that a register bit or a condition contains a logical 0. When either of these
terms is followed by a number, the word logical may not be included; however, it is
implied.

Notation for Bits and Similar Registers
A field of bits within a register is designated as: Register[n:n].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.

Use of the Terms LSB, MSB, lsb, and msb
In this document, the terms LSB and MSB, when appearing in upper case, mean least sig-
nificant byte and most significant byte, respectively. The lowercase forms, lsb and msb,
mean least significant bit and most significant bit, respectively.

Use of Initial Uppercase Letters
Initial uppercase letters designate settings, modes, and conditions in general text.

• Example 1: Stop mode.

• Example 2: The receiver forces the SCL line to Low.

• The Master can generate a Stop condition to abort the transfer.
PS017610-0404 Manual Objectives

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

64
If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

The steps for configuring a timer for Compare mode and initiating the count are as fol-
lows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Compare mode.
– Set the prescale value.
– Set the initial logic level (High or Low) for the Timer Output alternate function, if

desired.

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control register to enable the timer and initiate counting.

In Compare mode, the system clock always provides the timer input. The Compare time is
given by the following equation:

Gated Mode
In Gated mode, the timer counts only when the Timer Input signal is in its active state
(asserted), as determined by the TPOL bit in the Timer Control register. When the Timer
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal
deassertion generated the interrupt, read the associated GPIO input value and compare to
the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the system clock. When reaching the Reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state
(from Low to High or from High to Low) at timer reset.

The steps for configuring a timer for Gated mode and initiating the count are as follows:

1. Write to the Timer Control register to:
– Disable the timer

Compare Mode Time (s) Compare Value Start Value–() Prescale×
System Clock Frequency (Hz)

--=
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

71
Capture mode
0 = Count is captured on the rising edge of the Timer Input signal.
1 = Count is captured on the falling edge of the Timer Input signal.

Compare mode
When the timer is disabled, the Timer Output signal is set to the value of this bit.
When the timer is enabled, the Timer Output signal is complemented upon timer
Reload.

Gated mode
0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated
on the falling edge of the Timer Input.
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated
on the rising edge of the Timer Input.

Capture/Compare mode
0 = Counting is started on the first rising edge of the Timer Input signal. The current
count is captured on subsequent rising edges of the Timer Input signal.
1 = Counting is started on the first falling edge of the Timer Input signal. The current
count is captured on subsequent falling edges of the Timer Input signal.

PRES—Prescale value.
The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The
prescaler is reset each time the Timer is disabled. This insures proper clock division
each time the Timer is restarted.
000 = Divide by 1
001 = Divide by 2
010 = Divide by 4
011 = Divide by 8
100 = Divide by 16
101 = Divide by 32
110 = Divide by 64
111 = Divide by 128

TMODE—Timer mode
000 = One-Shot mode
001 = Continuous mode
010 = Counter mode
011 = PWM mode
100 = Capture mode
101 = Compare mode
110 = Gated mode
111 = Capture/Compare mode
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

96
Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART
is encoded as digital signals in accordance with the IrDA standard and output to the infra-
red transceiver via the TXD pin. Likewise, data received from the infrared transceiver is
passed to the Infrared Endec via the RXD pin, decoded by the Infrared Endec, and then
passed to the UART. Communication is half-duplex, which means simultaneous data
transmission and reception is not allowed.
The baud rate is set by the UART’s Baud Rate Generator and supports IrDA standard baud
rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA
specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec
data rate is calculated using the following equation:

Transmitting IrDA Data
The data to be transmitted using the infrared transceiver is first sent to the UART. The
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared
data bit is 16-clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains
low for the full 16-clock period. If the data to be transmitted is 0, a 3-clock high pulse is
output following a 7-clock low period. After the 3-clock high pulse, a 6-clock low pulse is
output to complete the full 16-clock data period. Figure 72 illustrates IrDA data transmis-
sion. When the Infrared Endec is enabled, the UART’s TXD signal is internal to the
Z8F640x family device while the IR_TXD signal is output through the TXD pin.

Infrared Data Rate (bits/s) System Clock Frequency (Hz)
16 UART Baud Rate Divisor Value×
--=
PS017610-0404 Infrared Encoder/Decoder

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

98
Figure 73. Infrared Data Reception

Jitter
Because of the inherent sampling of the received IR_RXD signal by the bit rate clock,
some jitter can be expected on the first bit in any sequence of data. All subsequent bits in
the received data stream are a fixed 16-clock periods wide.

Infrared Encoder/Decoder Control Register Definitions

All Infrared Endec configuration and status information is set by the UART control regis-
ters as defined beginning on page 86.

To prevent spurious signals during IrDA data transmission, set the IREN
bit in the UARTx Control 1 register to 1 to enable the Infrared Encoder/
Decoder before enabling the GPIO Port alternate function for the corre-
sponding pin.

Baud Rate

UART’s

IR_RXD

16-clock
period

Start Bit = 0 Data Bit 0 = 1 Data Bit 1 = 0 Data Bit 2 = 1 Data Bit 3 = 1

8-clock
delay

Clock

RXD

16-clock
period

16-clock
period

16-clock
period

16-clock
period

Start Bit = 0 Data Bit 0 = 1 Data Bit 1 = 0 Data Bit 2 = 1 Data Bit 3 = 1

min. 1.6µs
pulse

Caution:
PS017610-0404 Infrared Encoder/Decoder

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

99
Serial Peripheral Interface
Overview

The Serial Peripheral InterfaceTM (SPI) is a synchronous interface allowing several SPI-
type devices to be interconnected. SPI-compatible devices include EEPROMs, Analog-to-
Digital Converters, and ISDN devices. Features of the SPI include:

• Full-duplex, synchronous, character-oriented communication

• Four-wire interface

• Data transfers rates up to a maximum of one-fourth the system clock frequency

• Error detection

• Write and mode collision detection

• Dedicated Baud Rate Generator

Architecture

The SPI may be configured as either a Master (in single or multi-master systems) or a
Slave as illustrated in Figures 74 through 76.

Figure 74. SPI Configured as a Master in a Single Master, Single Slave System

SPI Master

8-bit Shift Register
Bit 7 Bit 0

MISO

MOSI

SCK

SSTo Slave’s SS Pin

From Slave

To Slave

To Slave
Baud Rate
Generator
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

116
1. Software writes the I2C Data register with a 7-bit slave address followed by a 1 (read).

2. Software asserts the START bit of the I2C Control register.

3. Software asserts the NAK bit of the I2C Control register so that after the first byte of
data has been read by the I2C Controller, a Not Acknowledge is sent to the I2C slave.

4. The I2C Controller sends the START condition.

5. The I2C Controller sends the address and read bit by the SDA signal.

6. The I2C slave sends an Acknowledge by pulling the SDA signal Low during the next
high period of SCL.

7. The I2C Controller reads the first byte of data from the I2C slave.

8. The I2C Controller asserts the Receive interrupt.

9. Software responds by reading the I2C Data register.

10. The I2C Controller sends a NAK to the I2C slave.

11. A NAK interrupt is generated by the I2C Controller.

12. Software responds by setting the STOP bit of the I2C Control register.

13. A STOP condition is sent to the I2C slave.

Reading a Transaction with a 10-Bit Address
Figure 82 illustrates the receive format for a 10-bit addressed slave. The shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 82. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal.

The data transfer format for a receive operation on a 10-bit addressed slave is as follows:

1. Software writes an address 11110B followed by the two address bits and a 0 (write).

2. Software asserts the START bit of the I2C Control register.

3. The I2C Controller sends the Start condition.

S Slave Address
1st 7 bits

W=0 A Slave address
2nd Byte

A S Slave Address
1st 7 bits

R=1 A Data A Data A P
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

131
DMA Status Register
The DMA Status register indicates the DMA channel that generated the interrupt and the
ADC Analog Input that is currently undergoing conversion. Reads from this register reset
the Interrupt Request Indicator bits (IRQA, IRQ1, and IRQ0) to 0. Therefore, software
interrupt service routines that read this register must process all three interrupt sources
from the DMA.

CADC[3:0]—Current ADC Analog Input
This field identifies the Analog Input that the ADC is currently converting.

Reserved
This bit is reserved and must be 0.

IRQA—DMA_ADC Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.
0 = DMA_ADC is not the source of the interrupt from the DMA Controller.
1 = DMA_ADC completed transfer of data from the last ADC Analog Input and generated
an interrupt.

IRQ1—DMA1 Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.
0 = DMA1 is not the source of the interrupt from the DMA Controller.
1 = DMA1 completed transfer of data to/from the End Address and generated an interrupt.

IRQ0—DMA0 Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.
0 = DMA0 is not the source of the interrupt from the DMA Controller.
1 = DMA0 completed transfer of data to/from the End Address and generated an interrupt.

Table 79. DMA_ADC Status Register (DMAA_STAT)

BITS 7 6 5 4 3 2 1 0

FIELD CADC[3:0] Reserved IRQA IRQ1 IRQ0

RESET 0 0 0 0 0 0 0 0

R/W R R R R R R R R

ADDR FBFH
PS017610-0404 Direct Memory Access Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

132
Analog-to-Digital Converter
Overview

The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary
number. The features of the sigma-delta ADC include:

• 12 analog input sources are multiplexed with general-purpose I/O ports

• Interrupt upon conversion complete

• Internal voltage reference generator

• Direct Memory Access (DMA) controller can automatically initiate data conversion
and transfer of the data from 1 to 12 of the analog inputs.

Architecture

Figure 83 illustrates the three major functional blocks (converter, analog multiplexer, and
voltage reference generator) of the ADC. The ADC converts an analog input signal to its
digital representation. The 12-input analog multiplexer selects one of the 12 analog input
sources. The ADC requires an input reference voltage for the conversion. The voltage ref-
erence for the conversion may be input through the external VREF pin or generated inter-
nally by the voltage reference generator.
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

137
ADC Data High Byte Register
The ADC Data High Byte register contains the upper eight bits of the 10-bit ADC output.
During a conversion, this value is invalid. Access to the ADC Data High Byte register is
read-only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_H—ADC Data High Byte
This byte contains the upper eight bits of the 10-bit ADC output. These bits are not valid
during a conversion. These bits are undefined after a Reset.

ADC Data Low Bits Register
The ADC Data Low Bits register contains the lower two bits of the conversion value. Dur-
ing a conversion this value is invalid. Access to the ADC Data Low Bits register is read-
only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_L—ADC Data Low Bits
These are the least significant two bits of the 10-bit ADC output. During a conversion, this
value is invalid. These bits are undefined after a Reset.

Reserved
These bits are reserved and are always undefined.

Table 81. ADC Data High Byte Register (ADCD_H)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_H

RESET X

R/W R

ADDR F72H

Table 82. ADC Data Low Bits Register (ADCD_L)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_L Reserved

RESET X X

R/W R R

ADDR F73H
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

142
Flash Code Protection Using the Option Bits
The FHSWP and FWP Option Bits combine to provide three levels of Flash Program Mem-
ory protection as listed in Table 84. Refer to the Option Bits chapter for more informa-
tion.

Flash Code Protection Using the Flash Controller
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash
memory. To program or erase the Flash memory, unlock the Flash Controller by making
two consecutive writes to the Flash Control register with the values 73H and 8CH, sequen-
tially. After unlocking the Flash Controller, the Flash can be programmed or erased. When
the Flash Controller is unlocked, any value written to the Flash Control register locks the
Flash Controller. Writing the Mass Erase or Page Erase commands executes the function
before locking the Flash Controller.

Byte Programming
When the Flash Controller is unlocked, all writes to Program Memory program a byte into
the Flash. An erased Flash byte contains all 1’s (FFH). The programming operation can
only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1
requires execution of either the Page Erase or Mass Erase commands.

Byte Programming can be accomplished using the On-Chip Debugger's Write Memory
command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the eZ8 CPU
User Manual for a description of the LDC and LDCI instructions. While the Flash Con-
troller programs the Flash memory, the eZ8 CPU idles but the system clock and on-chip
peripherals continue to operate. To exit programming mode and lock the Flash, write any
value to the Flash Control register, except the Mass Erase or Page Erase commands.

Table 84. Flash Code Protection Using the Option Bits

FHSWP FWP Flash Code Protection Description

0 0 Programming and erasure disabled for all of Flash Program Memory. In
user code programming, Page Erase, and Mass Erase are all disabled. Mass
Erase is available through the On-Chip Debugger.

1 0 Programming and Page Erase are enabled for the High Sector of the Flash
Program Memory only. The High Sector on the Z8F640x family device
contains 1KB to 4KB of Flash with addresses at the top of the available
Flash memory. Programming and Page Erase are disabled for the other
portions of the Flash Program Memory. Mass erase through user code is
disabled. Mass Erase is available through the On-Chip Debugger.

0 or 1 1 Programming, Page Erase, and Mass Erase are enabled for all of Flash
Program Memory.
PS017610-0404 Flash Memory

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

148
Option Bits
Overview

Option Bits allow user configuration of certain aspects of Z8F640x family device opera-
tion. The feature configuration data is stored in the Program Memory and read during
Reset. The features available for control via the Option Bits are:

• Watch-Dog Timer time-out response selection–interrupt or Short Reset.

• Watch-Dog Timer enabled at Reset.

• The ability to prevent unwanted read access to user code in Program Memory.

• The ability to prevent accidental programming and erasure of all or a portion of the
user code in Program Memory.

Operation

Option Bit Configuration By Reset
Each time the Option Bits are programmed or erased, the Z8F640x family device must be
Reset for the change to take place. During any reset operation (System Reset, Short Reset,
or Stop Mode Recovery), the Option Bits are automatically read from the Program Mem-
ory and written to Option Configuration registers. The Option Configuration registers con-
trol operation of the Z8F640x family device. Option Bit control of the Z8F640x family
device is established before the device exits Reset and the eZ8 CPU begins code execu-
tion. The Option Configuration registers are not part of the Register File and are not acces-
sible for read or write access.

Option Bit Address Space

The first two bytes of Program Memory at addresses 0000H and 0001H are reserved for
the user Option Bits. The byte at Program Memory address 0000H is used to configure
user options. The byte at Program Memory address 0001H is reserved for future use and
must be left in its unprogrammed state.
PS017610-0404 Option Bits

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

150
FHSWP—Flash High Sector Write Protect
FWP—Flash Write Protect
These two Option Bits combine to provide 3 levels of Program Memory protection:

Program Memory Address 0001H

Reserved
These Option Bits are reserved for future use and must always be 1. This setting is the
default for unprogrammed (erased) Flash.

FHSWP FWP Description
0 0 Programming and erasure disabled for all of Program Memory.

Programming, Page Erase, and Mass Erase via User Code is disabled. Mass
Erase is available through the On-Chip Debugger.

1 0 Programming and Page Erase are enabled for the High Sector of the
Program Memory only. The High Sector on the Z8F640x family device
contains 1KB to 4KB of Flash with addresses at the top of the available
Flash memory. Programming and Page Erase are disabled for the other
portions of the Program Memory. Mass erase through user code is disabled.
Mass Erase is available through the On-Chip Debugger.

0 or 1 1 Programming, Page Erase, and Mass Erase are enabled for all of Program
Memory.

Table 91. Options Bits at Program Memory Address 0001H

BITS 7 6 5 4 3 2 1 0

FIELD Reserved

RESET U U U U U U U U

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR Program Memory 0001H

Note: U = Unchanged by Reset. R/W = Read/Write.
PS017610-0404 Option Bits

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

155
If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud
Detector/Generator resets. The Auto-Baud Detector/Generator can then be reconfigured
by sending 80H.

OCD Serial Errors
The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

• Serial Break (a minimum of nine continuous bits Low)

• Framing Error (received Stop bit is Low)

• Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress,
transmits a four character long Serial Break back to the host, and resets the Auto-Baud
Detector/Generator. A Framing Error or Transmit Collision may be caused by the host
sending a Serial Break to the OCD. Because of the open-drain nature of the interface,
returning a Serial Break break back to the host only extends the length of the Serial Break
if the host releases the Serial Break early.

The host should transmit a Serial Break on the DBG pin when first connecting to the
Z8F640x family device or when recovering from an error. A Serial Break from the host
resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A
Serial Break leaves the Z8F640x family device in Debug mode if that is the current mode.
The OCD is held in Reset until the end of the Serial Break when the DBG pin returns
High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to
the OCD even if the OCD is transmitting a character.

Breakpoints
Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the
eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are
enabled, the OCD enters Debug mode and idles the eZ8 CPU. If Breakpoints are not
enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP.

Breakpoints in Flash Memory
The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a
byte in Flash memory. To implement a Breakpoint, write 00H to the desired address, over-
writing the current instruction. To remove a Breakpoint, the corresponding page of Flash
memory must be erased and reprogrammed with the original data.

Watchpoints
The On-Chip Debugger can set one Watchpoint to cause a Debug Break. The Watchpoint
identifies a single Register File address. The Watchpoint can be set to break on reads and/
or writes of the selected Register File address. Additionally, the Watchpoint can be config-
ured to break only when a specific data value is read and/or written from the specified reg-
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

165
On-Chip Oscillator
The Z8F640x family devices feature an on-chip oscillator for use with an external 1-
20MHz crystal. This oscillator generates the primary system clock for the internal eZ8
CPU and the majority of the on-chip peripherals. Alternatively, the XIN input pin can also
accept a CMOS-level clock input signal (32kHz-20MHz). If an external clock generator is
used, the XOUT pin must be left unconnected. The Z8F640x family device does not con-
tain in internal clock divider. The frequency of the signal on the XIN input pin determines
the frequency of the system clock. The Z8F640x family device on-chip oscillator does not
support external RC networks or ceramic resonators.

20MHz Crystal Oscillator Operation

Figure 90 illustrates a recommended configuration for connection with an external
20MHz, fundamental-mode, parallel-resonant crystal. Recommended crystal specifica-
tions are provided in Table 99. Resistor R1 limits total power dissipation by the crystal.
Printed circuit board layout should add no more than 4pF of stray capacitance to either the
XIN or XOUT pins. If oscillation does not occur, reduce the values of capacitors C1 and C2
to decrease loading.
PS017610-0404 On-Chip Oscillator

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

182
eZ8 CPU Instruction Set
Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program
without having to be concerned with actual memory addresses or machine instruction for-
mats. A program written in assembly language is called a source program. Assembly lan-
guage allows the use of symbolic addresses to identify memory locations. It also allows
mnemonic codes (opcodes and operands) to represent the instructions themselves. The
opcodes identify the instruction while the operands represent memory locations, registers,
or immediate data values.

Each assembly language program consists of a series of symbolic commands called state-
ments. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label iden-
tifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine
instruction. The assembler directives, or pseudo-ops, are not translated into a machine
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the
assembly process.

The source program is processed (assembled) by the assembler to obtain a machine lan-
guage program called the object code. The object code is executed by the eZ8 CPU. An
example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example
JP START ; Everything after the semicolon is a comment.

START: ; A label called “START”. The first instruction (JP START) in this
; example causes program execution to jump to the point within the
; program where the START label occurs.

LD R4, R7 ; A Load (LD) instruction with two operands. The first operand,
; Working Register R4, is the destination. The second operand,
; Working Register R7, is the source. The contents of R7 is
; written into R4.

LD 234H, #%01 ; Another Load (LD) instruction with two operands.
; The first operand, Extended Mode Register Address 234H,
; identifies the destination. The second operand, Immediate Data
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

184
.

Table 116 contains additional symbols that are used throughout the Instruction Summary
and Instruction Set Description sections.

Table 115. Notational Shorthand

Notation Description Operand Range

b Bit b b represents a value from 0 to 7 (000B to 111B).

cc Condition Code — See Condition Codes overview in the eZ8 CPU User
Manual.

DA Direct Address Addrs Addrs. represents a number in the range of 0000H to
FFFFH

ER Extended Addressing Register Reg Reg. represents a number in the range of 000H to
FFFH

IM Immediate Data #Data Data is a number between 00H to FFH

Ir Indirect Working Register @Rn n = 0 –15

IR Indirect Register @Reg Reg. represents a number in the range of 00H to FFH

Irr Indirect Working Register Pair @RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

IRR Indirect Register Pair @Reg Reg. represents an even number in the range 00H to
FEH

p Polarity p Polarity is a single bit binary value of either 0B or 1B.

r Working Register Rn n = 0 – 15

R Register Reg Reg. represents a number in the range of 00H to FFH

RA Relative Address X X represents an index in the range of +127 to –128
which is an offset relative to the address of the next
instruction

rr Working Register Pair RRp p = 0, 2, 4, 6, 8, 10, 12, or 14

RR Register Pair Reg Reg. represents an even number in the range of 00H to
FEH

Vector Vector Address Vector Vector represents a number in the range of 00H to FFH

X Indexed #Index The register or register pair to be indexed is offset by
the signed Index value (#Index) in a +127 to -128
range.
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

203
Table 127. Opcode Map Abbreviations

Abbreviation Description Abbreviation Description

b Bit position IRR Indirect Register Pair

cc Condition code p Polarity (0 or 1)

X 8-bit signed index or displacement r 4-bit Working Register

DA Destination address R 8-bit register

ER Extended Addressing register r1, R1, Ir1, Irr1, IR1, rr1,
RR1, IRR1, ER1

Destination address

IM Immediate data value r2, R2, Ir2, Irr2, IR2, rr2,
RR2, IRR2, ER2

Source address

Ir Indirect Working Register RA Relative

IR Indirect register rr Working Register Pair

Irr Indirect Working Register Pair RR Register Pair
PS017610-0404 Opcode Maps

