

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	60
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f4803ft020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timer Operating Modes
Reading the Timer Count Values
Timer Output Signal Operation
Timer Control Register Definitions
Timer 0-3 High and Low Byte Registers
Timer Reload High and Low Byte Registers
Timer 0-3 PWM High and Low Byte Registers
Timer 0-3 Control Registers
Watch-Dog Timer
Overview
Operation
Watch-Dog Timer Refresh
Watch-Dog Timer Time-Out Response
Watch-Dog Timer Reload Unlock Sequence
Watch-Dog Timer Control Register Definitions
Watch-Dog Timer Control Register
Watch-Dog Timer Reload Upper, High and Low Byte Registers . 76
UART
Overview
Architecture
Operation
Data Format
Transmitting Data using the Polled Method
Transmitting Data using the Interrupt-Driven Method
Receiving Data using the Polled Method
Receiving Data using the Interrupt-Driven Method
Receiving Data using the Direct Memory Access
Controller (DMA)
Multiprocessor (9-bit) Mode
UART Interrupts
UART Baud Rate Generator
UART Control Register Definitions
UARTx Transmit Data Register
UARTx Receive Data Register
UARTx Status 0 and Status 1 Registers
UARTx Control 0 and Control 1 Registers
UARTx Baud Rate High and Low Byte Registers
Infrared Encoder/Decoder
Overview
Architecture
Operation

Braces

The curly braces, { }, indicate a single register or bus created by concatenating some combination of smaller registers, buses, or individual bits.

• Example: the 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer (RP) and Working Register R1. 0H is the most significant nibble (4-bit value) of the 12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses

The parentheses, (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address contained in the Working Register R1.

Parentheses/Bracket Combinations

The parentheses, (), indicate an indirect register address lookup and the square brackets, [], indicate a register or bus.

• *Example:* assume PC[15:0] contains the value 1234h. (PC[15:0]) then refers to the contents of the memory location at address 1234h.

Use of the Words Set, Reset and Clear

The word *set* implies that a register bit or a condition contains a logical 1. The words re*set* or *clear* imply that a register bit or a condition contains a logical 0. When either of these terms is followed by a number, the word *logical* may not be included; however, it is implied.

Notation for Bits and Similar Registers

A field of bits within a register is designated as: Register[*n*:*n*].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.

Use of the Terms LSB, MSB, Isb, and msb

In this document, the terms *LSB* and *MSB*, when appearing in upper case, mean *least significant byte* and *most significant byte*, respectively. The lowercase forms, *lsb* and *msb*, mean *least significant bit* and *most significant bit*, respectively.

Use of Initial Uppercase Letters

Initial uppercase letters designate settings, modes, and conditions in general text.

- Example 1: Stop mode.
- Example 2: The receiver forces the SCL line to Low.
- The Master can generate a Stop condition to abort the transfer.

9

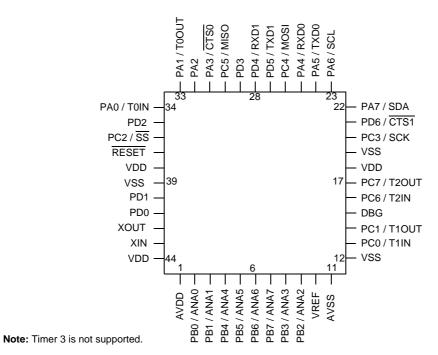


Figure 58. Z8Fxx01 in 44-Pin Low-Profile Quad Flat Package (LQFP)

External Pin Reset

The $\overline{\text{RESET}}$ pin has a Schmitt-triggered input and an internal pull-up. Once the $\overline{\text{RESET}}$ pin is asserted, the device progresses through the Short Reset sequence. While the $\overline{\text{RESET}}$ input pin is asserted Low, the Z8F640x family device continues to be held in the Reset state. If the $\overline{\text{RESET}}$ pin is held Low beyond the Short Reset time-out, the device exits the Reset state immediately following $\overline{\text{RESET}}$ pin deassertion. Following a Short Reset initiated by the external $\overline{\text{RESET}}$ pin, the EXT status bit in the Watch-Dog Timer Control (WDTCTL) register is set to 1.

Stop Mode Recovery

Stop mode is entered by execution of a STOP instruction by the eZ8 CPU. Refer to the **Low-Power Modes** chapter for detailed Stop mode information. During Stop Mode Recovery, the Z8F640x family device is held in reset for 514 cycles of the Watch-Dog Timer oscillator followed by 16 cycles of the system clock (crystal oscillator). Stop Mode Recovery does not affect any values in the Register File, including the Stack Pointer, Register Pointer, Flags and general-purpose RAM.

The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address. Following Stop Mode Recovery, the STOP bit in the Watch-Dog Timer Control Register is set to 1. Table 9 lists the Stop Mode Recovery sources and resulting actions. The text following provides more detailed information on each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action		
Stop mode	Watch-Dog Timer time-out when configured for Reset	Stop Mode Recovery		
	Watch-Dog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (in interrupts are enabled)		
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery		

Stop Mode Recovery Using Watch-Dog Timer Time-Out

If the Watch-Dog Timer times out during Stop mode, the Z8F640x family device undergoes a STOP Mode Recovery sequence. In the Watch-Dog Timer Control register, the WDT and STOP bits are set to 1. If the Watch-Dog Timer is configured to generate an interrupt upon time-out and the device is configured to respond to interrupts, the Z8F640x family device services the Watch-Dog Timer interrupt request following the normal Stop Mode Recovery sequence.

of the port pin direction (input/output) is passed from the Port A-H Data Direction registers to the alternate function assigned to this pin. Table 11 lists the alternate functions associated with each port pin.

Port	Pin	Mnemonic	Alternate Function Description
Port A	PA0	TOIN	Timer 0 Input
	PA1	TOOUT	Timer 0 Output
	PA2	N/A	No alternate function
	PA3	CTS0	UART 0 Clear to Send
	PA4	RXD0 / IRRX0	UART 0 / IrDA 0 Receive Data
	PA5	TXD0 / IRTX0	UART 0 / IrDA 0 Transmit Data
	PA6	SCL	I ² C Clock (automatically open-drain)
	PA7	SDA	I ² C Data (automatically open-drain)
Port B	PB0	ANA0	ADC Analog Input 0
	PB1	ANA1	ADC Analog Input 1
	PB2	ANA2	ADC Analog Input 2
	PB3	ANA3	ADC Analog Input 3
	PB4	ANA4	ADC Analog Input 4
	PB5	ANA5	ADC Analog Input 5
	PB6	ANA6	ADC Analog Input 6
	PB7	ANA7	ADC Analog Input 7
Port C	PC0	T1IN	Timer 1 Input
	PC1	T1OUT	Timer 1 Output
	PC2	SS	SPI Slave Select
	PC3	SCK	SPI Serial Clock
	PC4	MOSI	SPI Master Out Slave In
	PC5	MISO	SPI Master In Slave Out
	PC6	T2IN	Timer 2 In
	PC7	T2OUT	Timer 2 Out (not available in 40-pin packages)

Table 11	. Port	Alternate	Function	Mapping
----------	--------	-----------	----------	---------

BITS	7	6	5	4	3	2	1	0		
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		If 05H in Port A-H Address Register, accessible via Port A-H Control Register								

Table 19. Port A-H STOP Mode Recovery Source Enable Sub-Registers

PSMRE[7:0]—Port STOP Mode Recovery Source Enabled

0 = The Port pin is not configured as a STOP Mode Recovery source. Transitions on this pin during Stop mode do not initiate STOP Mode Recovery.

1 = The Port pin is configured as a STOP Mode Recovery source. Any logic transition on this pin during Stop mode initiates STOP Mode Recovery.

Port A-H Input Data Registers

Reading from the Port A-H Input Data registers (Table 20) returns the sampled values from the corresponding port pins. The Port A-H Input Data registers are Read-only.

BITS	7	6	5	4	3	2	1	0		
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0		
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR		FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH								

Table 20. Port A-H Input Data Registers (PxIN)

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low).

1 = Input data is logical 1 (High).

- Configure the timer for Gated mode.
- Set the prescale value.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in Gated mode. After the first timer reset in Gated mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

Capture/Compare Mode

In Capture/Compare mode, the timer begins counting on the *first* external Timer Input transition. The desired transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent desired transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

The steps for configuring a timer for Capture/Compare mode and initiating the count are as follows:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Capture/Compare mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

BITS 7 6 5 4 3 2 1 0 TH FIELD 0 0 0 0 0 0 0 0 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W F00H, F08H, F10H, F18H ADDR

Table 38. Timer 0-3 High Byte Register (TxH)

Table 39>. Timer 0-3 Low Byte Register (TxL)

BITS	7	6	5	4	3	2	1	0		
FIELD		TL								
RESET	0	0	0	0	0	0	0	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F01H, F09H, F11H, F19H								

TH and TL—Timer High and Low Bytes

These 2 bytes, {TMRH[7:0], TMRL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers

The Timer 0-3 Reload High and Low Byte (TxRH and TxRL) registers (Tables 40 and 41) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer Reload value.

In Compare mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

In single-byte DMA transactions to the Timer Reload High Byte register, the temporary holding register is bypassed and the value is written directly to the register. If the DMA is

set to 2-byte transfers, the temporary holding register for the Timer Reload High Byte is not bypassed.

BITS 7 6 5 4 3 2 1 0 TRH FIELD 1 1 1 1 1 1 1 1 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W F02H, F0AH, F12H, F1AH ADDR

Table 40. Timer 0-3 Reload High Byte Register (TxRH)

Table 41. Timer 0-3 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0		
FIELD		TRL								
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F03H, F0BH, F13H, F1BH								

TRH and TRL-Timer Reload Register High and Low

These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value is used to set the maximum count value which initiates a timer reload to 0001H. In Compare mode, these two byte form the 16-bit Compare value.

Timer 0-3 Control Registers

The Timer 0-3 Control (TxCTL) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode.

BITS 7 4 3 2 1 0 6 5 TEN TPOL PRES TMODE FIELD 0 0 0 0 0 0 0 0 RESET R/W R/W R/W R/W R/W R/W R/W R/W R/W F07H, F0FH, F17H, F1FH ADDR

Table 44. Timer 0-3 Control Register (TxCTL)

TEN-Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL-Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

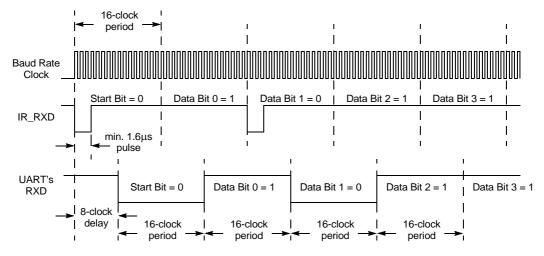
One-Shot mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Continuous mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

Counter mode


When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

PWM mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

Figure 73. Infrared Data Reception

Jitter

Because of the inherent sampling of the received IR_RXD signal by the bit rate clock, some jitter can be expected on the first bit in any sequence of data. All subsequent bits in the received data stream are a fixed 16-clock periods wide.

Infrared Encoder/Decoder Control Register Definitions

All Infrared Endec configuration and status information is set by the UART control registers as defined beginning on page 86.

Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART*x* Control 1 register to 1 to enable the Infrared Encoder/ Decoder *before* enabling the GPIO Port alternate function for the corresponding pin.

128

BITS	7	6	5	4	3	2	1	0	
FIELD	DMA_START								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		FB3H, FHBH							

Table 74. DMAx Start/Current Address Low Byte Register (DMAxSTART)

DMA_START—DMAx Start/Current Address Low

These bits, with the four lower bits of the DMA*x*_H register, form the 12-bit Start/Current address. The full 12-bit address is given by {DMA_START_H[3:0], DMA_START[7:0]}.

DMAx End Address Low Byte Register

The DMAx End Address Low Byte register, in conjunction with the DMAx_H register, forms a 12-bit End Address.

BITS	7	6	5	4	3	2	1	0		
FIELD		DMA_END								
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FB4H, FBCH								

Table 75. DMAx End Address Low Byte Register (DMAxEND)

DMA_END—DMAx End Address Low

These bits, with the four upper bits of the DMAx_H register, form a 12-bit address. This address is the ending location of the DMAx transfer. The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.

DMA_ADC Address Register

The DMA_ADC Address register points to a block of the Register File to store ADC conversion values as illustrated in Table 76. This register contains the seven most-significant bits of the 12-bit Register File addresses. The five least-significant bits are calculated from the ADC Analog Input number (5-bit base address is equal to twice the ADC Analog Input number). The 10-bit ADC conversion data is stored as two bytes with the most significant byte of the ADC data stored at the even numbered Register File address.

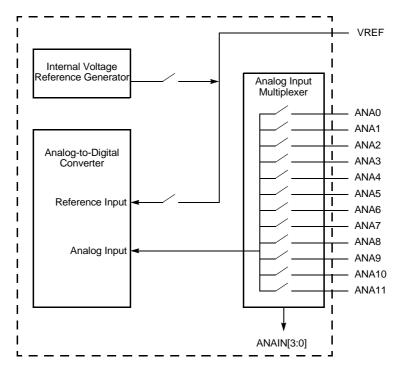


Figure 83. Analog-to-Digital Converter Block Diagram

Operation

Automatic Power-Down

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered-down. From this power-down state, the ADC requires 40 system clock cycles to power-up. The ADC powers up when a conversion is requested using the ADC Control register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. The steps for setting up the ADC and initiating a single-shot conversion are as follows:

Flash Control Register Definitions

Flash Control Register

The Flash Controller must be unlocked via the Flash Control register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, writing to the Flash Control register can initiate either Page Erase or Mass Erase of the Flash memory. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the Read-only Flash Status Register.

Table 85. Flash Control Register (FCTL)

BITS	7	6	5	4	3	2	1	0
FIELD		FCMD						
RESET	0	0	0	0	0	0	0	0
R/W	W	W	W	W	W	W	W	W
ADDR	FF8H							

FCMD—Flash Command

73H = First unlock command.

8CH = Second unlock command.

95H = Page erase command (must be third command in sequence to initiate Page Erase).

63H = Mass erase command (must be third command in sequence to initiate Mass Erase).

zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, this command returns FFH for all the data values.

```
DEG <-- 09H
DEG <-- {4'h0,Register Address[11:8]
DEG <-- Register Address[7:0]
DEG <-- Size[7:0]
DEG --> 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, the data is discarded.

```
DBG <-- 0AH

DBG <-- Program Memory Address[15:8]

DBG <-- Program Memory Address[7:0]

DBG <-- Size[15:8]

DBG <-- Size[7:0]

DBG <-- 1-65536 data bytes
```

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, this command returns FFH for the data.

```
DEG <-- 0BH
DEG <-- Program Memory Address[15:8]
DEG <-- Program Memory Address[7:0]
DEG <-- Size[15:8]
DEG <-- Size[7:0]
DEG --> 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). If the Z8F640x family device is not in Debug mode or if the Read Protect Option Bit is enabled, the data is discarded.

```
DBG <-- 0CH
DBG <-- Data Memory Address[15:8]
DBG <-- Data Memory Address[7:0]
DBG <-- Size[15:8]
DBG <-- Size[7:0]
DBG <-- 1-65536 data bytes
```


 Read Data Memory (0DH)—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the Z8F640x family device is not in Debug mode, this command returns FFH for the data.

```
DBG <-- ODH

DBG <-- Data Memory Address[15:8]

DBG <-- Data Memory Address[7:0]

DBG <-- Size[15:8]

DBG <-- Size[7:0]

DBG --> 1-65536 data bytes
```

• **Read Program Memory CRC (0EH)**—The Read Program Memory CRC command computes and returns the CRC (cyclic redundancy check) of Program Memory using the 16-bit CRC-CCITT polynomial. If the Z8F640x family device is not in Debug mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value, and returns the result. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

```
DBG <-- 0EH
DBG --> CRC[15:8]
DBG --> CRC[7:0]
```

• **Step Instruction (10H)**—The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the Z8F640x family device is not in Debug mode or the Read Protect Option Bit is enabled, the OCD ignores this command.

DBG <-- 10H

• **Stuff Instruction (11H)**—The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a Breakpoint. If the Z8F640x family device is not in Debug mode or the Read Protect Option Bit is enabled, the OCD ignores this command.

```
DBG <-- 11H
DBG <-- opcode[7:0]
```

• Execute Instruction (12H)—The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints. The number of bytes to send for the instruction depends on the opcode. If the Z8F640x family device is not in Debug mode or the Read Protect Option Bit is enabled, this command reads and discards one byte.

```
DBG <-- 12H
DBG <-- 1-5 byte opcode
```


	V _I T _A =	$_{\rm DD} = 3.0 - 3.0$ - 40 ⁰ C to 1	.6V 05 ⁰ C			
Parameter	Minimum	Typical	Maximum	Units	Notes	
Writes to Single Address Before Next Erase	-	-	2			
Flash Row Program Time	_	_	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.	
Data Retention	100	_	-	years	25 ⁰ C	
Endurance	10,000	_	-	cycles	Program / erase cycles	

Table 104. Flash Memory Electrical Characteristics and Timing (Continued)

Table 105. Watch-Dog Timer Electrical Characteristics and Timing

		$V_{DD} = 3.0 - 3.6V$ $T_A = -40^{0}$ C to 105^{0} C				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency	25	50	100	kHz	

Table 106. Analog-to-Digital Converter Electrical Characteristics and Timing

		$V_{DD} = 3.0 - 3.6V$ $T_A = -40^{0}$ C to 105^{0} C				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
	Resolution	-	10	-	bits	External $V_{REF} = 3.0V$; $R_S \ll 3.0 k\Omega$
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB	External $V_{REF} = 3.0V$; $R_S \ll 3.0 k\Omega$
	Integral Nonlinearity (INL)	-3.0	_	3.0	LSB	External $V_{REF} = 3.0V$; $R_S \le 3.0 k\Omega$
	DC Offset Error	-35	-	25	mV	80-pin QFP and 64-pin LQFP packages.
¹ Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.						

; value 01H, is the source. The value 01H is written into the

; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

 Table 113. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0 - 255 or, using Escaped Mode Addressing, a Working Register R0 - R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

 Table 114. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 115

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x Z8 Encore!®

205

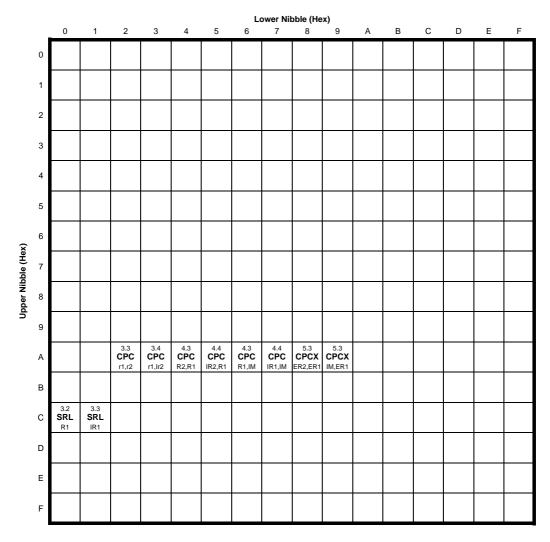


Figure 102. Second Opcode Map after 1FH

For valuable information about hardware and software development tools, visit the ZiLOG web site at <u>www.zilog.com</u>. The latest released version of ZDS can be downloaded from this site.

Part Number Description

ZiLOG part numbers consist of a number of components, as indicated in the following examples:

ZiLOG Base Products				
Z8	ZiLOG 8-bit microcontroller product			
F6	Flash Memory			
64	Program Memory Size			
01	Device Number			
А	Package			
Ν	Pin Count			
020	Speed			
S	Temperature Range			
С	Environmental Flow			

Packages	A = LQFP
0	S = SOIC
	H = SSOP
	P = PDIP
	V = PLCC
	$\mathbf{F} = \mathbf{Q}\mathbf{F}\mathbf{P}$
Pin Count	H = 20 pins
	J = 28 pins
	M = 40 pins
	N = 44 pins
	R = 64 pins
	S = 68 pins
	T = 80 pins
Speed	020 = 20MHz
Temperature	$S = 0^{\circ}C$ to $+70^{\circ}C$
•	$E = -40^{\circ}C$ to $+105^{\circ}C$
Environmental Flow	C = Plastic-Standard

Example: Part number Z8F06401AN020SC is an 8-bit microcontroller product in an LQFP package, using 44 pins, operating with a maximum 20MHz external clock frequency over a 0°C to +70°C temperature range and built using the Plastic-Standard environmental flow.