
Zilog - Z8F6401VN020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f6401vn020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f6401vn020ec-4426643
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

2

• Power-On Reset (POR)

• 3.0-3.6V operating voltage with 5V-tolerant inputs

• 0° to +70°C standard temperature and -40° to +105°C extended temperature operating
ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the
Z8F640x family product line.

Table 1. Z8F640x Family Part Selection Guide

Part
Number

Flash
(KB)

RAM
(KB) I/O

16-bit Timers
 with PWM

ADC
Inputs

UARTs
with IrDA I2C SPI

40/44-pin
packages

64/68-pin
packages

80-pin
package

Z8F1601 16 2 31 3 8 2 1 1 X

Z8F1602 16 2 46 4 12 2 1 1 X

Z8F2401 24 2 31 3 8 2 1 1 X

Z8F2402 24 2 46 4 12 2 1 1 X

Z8F3201 32 2 31 3 8 2 1 1 X

Z8F3202 32 2 46 4 12 2 1 1 X

Z8F4801 48 4 31 3 8 2 1 1 X

Z8F4802 48 4 46 4 12 2 1 1 X

Z8F4803 48 4 60 4 12 2 1 1 X

Z8F6401 64 4 31 3 8 2 1 1 X

Z8F6402 64 4 46 4 12 2 1 1 X

Z8F6403 64 4 60 4 12 2 1 1 X
PS017610-0404 Introduction

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

6

Signal and Pin Descriptions
Overview

The Z8F640x family products are available in a variety of packages styles and pin config-
urations. This chapter describes the signals and available pin configurations for each of the
package styles. For information regarding the physical package specifications, please refer
to the chapter Packaging on page 206.

Available Packages

Table 2 identifies the package styles that are available for each device within the Z8F640x
family product line.
Table 2. Z8F640x family Package Options

Part Number
40-pin
PDIP

44-pin
LQFP

44-pin
PLCC

64-pin
LQFP

68-pin
PLCC

80-pin
QFP

Z8F1601 X X X

Z8F1602 X X

Z8F2401 X X X

Z8F2402 X X

Z8F3201 X X X

Z8F3202 X X

Z8F4801 X X X

Z8F4802 X X

Z8F4803 X

Z8F6401 X X X

Z8F6402 X X

Z8F6403 X
PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

8

Figure 57. Z8Fxx01 in 44-Pin Plastic Leaded Chip Carrier (PLCC)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
VSS
VDD

VSS

PC7 / T2OUT
PC6 / T2IN
DBG

PA0 / T0IN
PD2

PC2 / SS
RESET

VDD
VSS

VDD

PD1
PD0

7 39

PC1 / T1OUTXOUT
PC0 / T1INXIN

P
A

1
/ T

0O
U

T
P

A
2

P
A

3
/ C

TS
0

P
C

5
/ M

IS
O

P
D

3
P

D
4

/ R
X

D
1

P
D

5
/ T

X
D

1
P

C
4

/ M
O

S
I

P
A

4
/ R

XD
0

PA
5

/ T
X

D
0

PA
6

/ S
C

L

A
V

D
D

P
B

6
/ A

N
A6

P
B

5
/ A

N
A5

P
B

0
/ A

N
A0

P
B

1
/ A

N
A1

P
B

4
/ A

N
A4

P
B

7
/ A

N
A7

V
R

E
F

P
B

2
/ A

N
A2

P
B

3
/ A

N
A3

A
V

S
S

6 401

17 29
2818

12

23

34

Note: Timer 3 is not supported.
PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

10
Figure 59. Z8Fxx02 in 64-Pin Low-Profile Quad Flat Package (LQFP)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
PD7 / RCOUT
VSS
PE5
PE6
PE7
VDD

PA0 / T0IN
PD2

PC2 / SS
RESET

VDD
PE4
PE3

VSS
PE2

49 32

PG3PE1
VDDPE0

P
A1

 /
T0

O
U

T
P

A2
P

A3
 /

C
TS

0
V

SS
V

D
D

P
F7

P
C

5
/ M

IS
O

P
D

4
/ R

X
D

1
P

D
5

/ T
X

D
1

P
C

4
/ M

O
S

I

V
S

S

P
B

1
/ A

N
A

1
P

B
0

/ A
N

A
0

AV
D

D
P

H
0

/ A
N

A
8

P
H

1
/ A

N
A

9

P
B

4
/ A

N
A

4

P
B

7
/ A

N
A

7
P

B
6

/ A
N

A
6

P
B

5
/ A

N
A

5

P
B

3
/ A

N
A

3

48

1

PC7 / T2OUT
PC6 / T2IN
DBG
PC1 / T1OUT
PC0 / T1IN17

P
B2

 /
A

N
A

2

V
R

E
F

P
H

3
/ A

N
A

11
P

H
2

/ A
N

A
10

A
V

S
S

16

VSS
PD1 / T3OUT

PD0 / T3IN
 XOUT

XIN 64

P
D

3

V
D

D

P
A4

 /
R

X
D

0
P

A5
 /

TX
D

0
P

A6
 /

S
C

L

33

V
SS

56

40

25

8

PS017610-0404 Signal and Pin Descriptions

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

23
FCE Interrupt Port Select IRQPS 00 55
FCF Interrupt Control IRQCTL 00 56
GPIO Port A
FD0 Port A Address PAADDR 00 37
FD1 Port A Control PACTL 00 38
FD2 Port A Input Data PAIN XX 42
FD3 Port A Output Data PAOUT 00 43
GPIO Port B
FD4 Port B Address PBADDR 00 37
FD5 Port B Control PBCTL 00 38
FD6 Port B Input Data PBIN XX 42
FD7 Port B Output Data PBOUT 00 43
GPIO Port C
FD8 Port C Address PCADDR 00 37
FD9 Port C Control PCCTL 00 38
FDA Port C Input Data PCIN XX 42
FDB Port C Output Data PCOUT 00 43
GPIO Port D
FDC Port D Address PDADDR 00 37
FDD Port D Control PDCTL 00 38
FDE Port D Input Data PDIN XX 42
FDF Port D Output Data PDOUT 00 43
GPIO Port E
FE0 Port E Address PEADDR 00 37
FE1 Port E Control PECTL 00 38
FE2 Port E Input Data PEIN XX 42
FE3 Port E Output Data PEOUT 00 43
GPIO Port F
FE4 Port F Address PFADDR 00 37
FE5 Port F Control PFCTL 00 38
FE6 Port F Input Data PFIN XX 42
FE7 Port F Output Data PFOUT 00 43
GPIO Port G
FE8 Port G Address PGADDR 00 37
FE9 Port G Control PGCTL 00 38
FEA Port G Input Data PGIN XX 42
FEB Port G Output Data PGOUT 00 43
GPIO Port H
FEC Port H Address PHADDR 00 37

Table 6. Register File Address Map (Continued)

Address (Hex) Register Description Mnemonic Reset (Hex) Page #

XX=Undefined
PS017610-0404 Register File Address Map

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

64
If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

The steps for configuring a timer for Compare mode and initiating the count are as fol-
lows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Compare mode.
– Set the prescale value.
– Set the initial logic level (High or Low) for the Timer Output alternate function, if

desired.

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control register to enable the timer and initiate counting.

In Compare mode, the system clock always provides the timer input. The Compare time is
given by the following equation:

Gated Mode
In Gated mode, the timer counts only when the Timer Input signal is in its active state
(asserted), as determined by the TPOL bit in the Timer Control register. When the Timer
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal
deassertion generated the interrupt, read the associated GPIO input value and compare to
the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the system clock. When reaching the Reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state
(from Low to High or from High to Low) at timer reset.

The steps for configuring a timer for Gated mode and initiating the count are as follows:

1. Write to the Timer Control register to:
– Disable the timer

Compare Mode Time (s) Compare Value Start Value–() Prescale×
System Clock Frequency (Hz)

--=
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

69
Timer 0-3 PWM High and Low Byte Registers
The Timer 0-3 PWM High and Low Byte (TxPWMH and TxPWML) registers (Tables 42
and 43) are used for Pulse-Width Modulator (PWM) operations. These registers also store
the Capture values for the Capture and Capture/Compare modes.

PWMH and PWML—Pulse-Width Modulator High and Low Bytes
These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the
current 16-bit timer count. When a match occurs, the PWM output changes state. The
PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL) register.

The TxPWMH and TxPWML registers also store the 16-bit captured timer value when
operating in Capture or Capture/Compare modes.

Table 42. Timer 0-3 PWM High Byte Register (TxPWMH)

BITS 7 6 5 4 3 2 1 0

FIELD PWMH

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F04H, F0CH, F14H, F1CH

Table 43. Timer 0-3 PWM Low Byte Register (TxPWML)

BITS 7 6 5 4 3 2 1 0

FIELD PWML

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR F05H, F0DH, F15H, F1DH
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

79

Operation

Data Format
The UART always transmits and receives data in an 8-bit data format, least-significant bit
first. An even or odd parity bit can be optionally added to the data stream. Each character
begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits.

Figure 67. UART Block Diagram

Receive Shifter

Receive Data

Transmit Data

Transmit Shift
TXD

RXD

System Bus

Parity Checker

Parity Generator

Receiver Control

Control Register

Transmitter Control

CTS

Status Register

Register

Register

Register

Baud Rate
Generator
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

82
Receiving Data using the Polled Method
Follow these steps to configure the UART for polled data reception:

1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud
rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions,
if desired.

4. Write to the UART Control 0 register to:
– Set the receive enable bit (REN) to enable the UART for data reception
– Enable parity, if desired, and select either even or odd parity.

5. Check the RDA bit in the UART Status 0 register to determine if the Receive Data
register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate
available data, continue to Step 6. If the Receive Data register is empty (indicated by a
0), continue to monitor the RDA bit awaiting reception of the valid data.

6. Read data from the UART Receive Data register. If operating in Multiprocessor (9-bit)
mode, first read the Multiprocessor Receive flag (MPRX) to determine if the data was
directed to this UART before reading the data.

7. Return to Step 6 to receive additional data.

Receiving Data using the Interrupt-Driven Method
 The UART Receiver interrupt indicates the availability of new data (as well as error con-
ditions). Follow these steps to configure the UART receiver for interrupt-driven operation:

1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud
rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set
the desired priority.

5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.

6. Write to the UART Control 1 register to enable Multiprocessor (9-bit) mode functions,
if desired.
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

97
Figure 72. Infrared Data Transmission

Receiving IrDA Data
Data received from the infrared transceiver via the IR_RXD signal through the RXD pin is
decoded by the Infrared Endec and passed to the UART. The UART’s baud rate clock is
used by the Infrared Endec to generate the demodulated signal (RXD) that drives the
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 73 illustrates data recep-
tion. When the Infrared Endec is enabled, the UART’s RXD signal is internal to the
Z8F640x family device while the IR_RXD signal is received through the RXD pin.

Baud Rate

IR_TXD

UART’s

16-clock
period

Start Bit = 0 Data Bit 0 = 1 Data Bit 1 = 0 Data Bit 2 = 1 Data Bit 3 = 1

7-clock
delay

3-clock
pulse

TXD

Clock
PS017610-0404 Infrared Encoder/Decoder

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

100
Figure 75. SPI Configured as a Master in a Single Master, Multiple Slave System

Figure 76. SPI Configured as a Slave

Operation

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire
interface (serial clock, transmit, receive and Slave select). The SPI block consists of trans-

SPI Master

8-bit Shift Register
Bit 7 Bit 0MISO

MOSI

SCK

GPIOTo Slave #2’s SS Pin

From Slave

To Slave

To Slave

SS

Baud Rate
Generator

VCC

GPIOTo Slave #1’s SS Pin

SPI Slave

8-bit Shift Register
Bit 7 Bit 0

MISO

MOSI

SCK

SSFrom Master

To Master

From Master

From Master
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

108
SPIEN—SPI Enable
0 = SPI disabled.
1 = SPI enabled.

SPI Status Register
The SPI Status register indicates the current state of the SPI.

IRQ—Interrupt Request
0 = No SPI interrupt request pending.
1 = SPI interrupt request is pending.

OVR—Overrun
0 = An overrun error has not occurred.
1 = An overrun error has been detected.

COL—Collision
0 = A multi-master collision (mode fault) has not occurred.
1 = A multi-master collision (mode fault) has been detected.

Reserved
These bits are reserved and must be 0.

TXST—Transmit Status
0 = No data transmission currently in progress.
1 = Data transmission currently in progress.

SLAS—Slave Select
If SPI enabled as a Slave,
0 = SS input pin is asserted (Low)
1 = SS input is not asserted (High).
If SPI enabled as a Master, this bit is not applicable.

Table 62. SPI Status Register (SPISTAT)

BITS 7 6 5 4 3 2 1 0

FIELD IRQ OVR COL Reserved TXST SLAS

RESET 0 0 0 0 0 1

R/W R/W* R/W* R/W* R R R

ADDR F62H

R/W* = Read access. Write a 1 to clear the bit to 0.
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

113
2. The I2C Controller waits for the slave to send an Acknowledge (by pulling the SDA
signal Low). If the slave pulls the SDA signal High (Not-Acknowledge), the I2C
Controller sends a Stop signal.

3. If the slave needs to service an interrupt, it pulls the SCL signal Low, which halts I2C
operation.

4. If there is no other data in the I2C Data register or the STOP bit in the I2C Control
register is set by software, then the Stop signal is sent.

Figure 79 illustrates the data transfer format for a 7-bit addressed slave. Shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 79. 7-Bit Addressed Slave Data Transfer Format

The data transfer format for a transmit operation on a 7-bit addressed slave is as follows:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts, because the I2C Data register is empty

4. Software responds to the TDRE bit by writing a 7-bit slave address followed by a 0
(write) to the I2C Data register.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address has been shifted out by the SDA signal, the Transmit interrupt
is asserted.

9. Software responds by writing the contents of the data into the I2C Data register.

10. The I2C Controller shifts the rest of the address and write bit out by the SDA signal.

11. The I2C slave sends an acknowledge (by pulling the SDA signal low) during the next
high period of SCL. The I2C Controller sets the ACK bit in the I2C Status register.

12. The I2C Controller loads the contents of the I2C Shift register with the contents of the
I2C Data register.

13. The I2C Controller shifts the data out of via the SDA signal. After the first bit is sent,
the Transmit interrupt is asserted.

A A Data A Data PS A/ASlave Address W=0 Data
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

117
4. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

5. After the first bit has been shifted out, a Transmit interrupt is asserted.

6. Software responds by writing eight bits of address to the I2C Data register.

7. The I2C Controller completes shifting of the two address bits and a 0 (write).

8. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next
high period of SCL.

9. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

10. The I2C Controller shifts out the next eight bits of address. After the first bits are
shifted, the I2C Controller generates a Transmit interrupt.

11. Software responds by setting the START bit of the I2C Control register to generate a
repeated START.

12. Software responds by writing 11110B followed by the 2-bit slave address and a 1
(read).

13. Software responds by setting the NAK bit of the I2C Control register, so that a Not
Acknowledge is sent after the first byte of data has been read. If you want to read only
one byte, software responds by setting the NAK bit of the I2C Control register.

14. After the I2C Controller shifts out the address bits mentioned in step 9, the I2C slave
sends an acknowledge by pulling the SDA signal Low during the next high period of
SCL.

15. The I2C Controller sends the repeated START condition.

16. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

17. The I2C Controller sends 11110B followed by the 2-bit slave read and a 1 (read).

18. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next
high period of SCL.

19. The I2C slave sends a byte of data.

20. A Receive interrupt is generated.

21. Software responds by reading the I2C Data register.

22. Software responds by setting the STOP bit of the I2C Control register.

23. A NAK condition is sent to the I2C slave.

24. A STOP condition is sent to the I2C slave.
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

136
this bit to 0 when a conversion has been completed.
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already
in progress, the conversion restarts. This bit remains 1 until the conversion is complete.

Reserved
This bit is reserved and must be 0.

VREF
0 = Internal voltage reference generator enabled. The VREF pin should be left uncon-
nected (or capacitively coupled to analog ground).
1 = Internal voltage reference generator disabled. An external voltage reference must be
provided through the VREF pin.

CONT
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system
clock cycles.
1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN—Analog Input Select
These bits select the analog input for conversion. Not all Port pins in this list are available
in all packages for the Z8F640x family of products. Refer to the Signal and Pin Descrip-
tions chapter for information regarding the Port pins available with each package style.
Do not enable unavailable analog inputs.
0000 = ANA0
0001 = ANA1
0010 = ANA2
0011 = ANA3
0100 = ANA4
0101 = ANA5
0110 = ANA6
0111 = ANA7
1000 = ANA8
1001 = ANA9
1010 = ANA10
1011 = ANA11
11XX = Reserved.
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

137
ADC Data High Byte Register
The ADC Data High Byte register contains the upper eight bits of the 10-bit ADC output.
During a conversion, this value is invalid. Access to the ADC Data High Byte register is
read-only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_H—ADC Data High Byte
This byte contains the upper eight bits of the 10-bit ADC output. These bits are not valid
during a conversion. These bits are undefined after a Reset.

ADC Data Low Bits Register
The ADC Data Low Bits register contains the lower two bits of the conversion value. Dur-
ing a conversion this value is invalid. Access to the ADC Data Low Bits register is read-
only. The full 10-bit ADC result is given by {ADCD_H[7:0], ADCD_L[7:6]}.

ADCD_L—ADC Data Low Bits
These are the least significant two bits of the 10-bit ADC output. During a conversion, this
value is invalid. These bits are undefined after a Reset.

Reserved
These bits are reserved and are always undefined.

Table 81. ADC Data High Byte Register (ADCD_H)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_H

RESET X

R/W R

ADDR F72H

Table 82. ADC Data Low Bits Register (ADCD_L)

BITS 7 6 5 4 3 2 1 0

FIELD ADCD_L Reserved

RESET X X

R/W R R

ADDR F73H
PS017610-0404 Analog-to-Digital Converter

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

142
Flash Code Protection Using the Option Bits
The FHSWP and FWP Option Bits combine to provide three levels of Flash Program Mem-
ory protection as listed in Table 84. Refer to the Option Bits chapter for more informa-
tion.

Flash Code Protection Using the Flash Controller
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash
memory. To program or erase the Flash memory, unlock the Flash Controller by making
two consecutive writes to the Flash Control register with the values 73H and 8CH, sequen-
tially. After unlocking the Flash Controller, the Flash can be programmed or erased. When
the Flash Controller is unlocked, any value written to the Flash Control register locks the
Flash Controller. Writing the Mass Erase or Page Erase commands executes the function
before locking the Flash Controller.

Byte Programming
When the Flash Controller is unlocked, all writes to Program Memory program a byte into
the Flash. An erased Flash byte contains all 1’s (FFH). The programming operation can
only be used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1
requires execution of either the Page Erase or Mass Erase commands.

Byte Programming can be accomplished using the On-Chip Debugger's Write Memory
command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the eZ8 CPU
User Manual for a description of the LDC and LDCI instructions. While the Flash Con-
troller programs the Flash memory, the eZ8 CPU idles but the system clock and on-chip
peripherals continue to operate. To exit programming mode and lock the Flash, write any
value to the Flash Control register, except the Mass Erase or Page Erase commands.

Table 84. Flash Code Protection Using the Option Bits

FHSWP FWP Flash Code Protection Description

0 0 Programming and erasure disabled for all of Flash Program Memory. In
user code programming, Page Erase, and Mass Erase are all disabled. Mass
Erase is available through the On-Chip Debugger.

1 0 Programming and Page Erase are enabled for the High Sector of the Flash
Program Memory only. The High Sector on the Z8F640x family device
contains 1KB to 4KB of Flash with addresses at the top of the available
Flash memory. Programming and Page Erase are disabled for the other
portions of the Flash Program Memory. Mass erase through user code is
disabled. Mass Erase is available through the On-Chip Debugger.

0 or 1 1 Programming, Page Erase, and Mass Erase are enabled for all of Flash
Program Memory.
PS017610-0404 Flash Memory

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

144
Flash Control Register Definitions

Flash Control Register
The Flash Controller must be unlocked via the Flash Control register before programming
or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash
Control register unlocks the Flash Controller. When the Flash Controller is unlocked, writ-
ing to the Flash Control register can initiate either Page Erase or Mass Erase of the Flash
memory. Writing an invalid value or an invalid sequence returns the Flash Controller to its
locked state. The Write-only Flash Control Register shares its Register File address with
the Read-only Flash Status Register.

FCMD—Flash Command
73H = First unlock command.
8CH = Second unlock command.
95H = Page erase command (must be third command in sequence to initiate Page Erase).
63H = Mass erase command (must be third command in sequence to initiate Mass Erase).

Table 85. Flash Control Register (FCTL)

BITS 7 6 5 4 3 2 1 0

FIELD FCMD

RESET 0 0 0 0 0 0 0 0

R/W W W W W W W W W

ADDR FF8H
PS017610-0404 Flash Memory

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

202
Opcode Maps
Figures 101 and 102 provide information on each of the eZ8 CPU instructions. A descrip-
tion of the opcode map data and the abbreviations are provided in Figure 100 and
Table 127.

Figure 100. Opcode Map Cell Description

CP

3.3

R2,R1

A

4

Opcode
Lower Nibble

Second Operand
After Assembly

First Operand
After Assembly

Opcode
Upper Nibble

Instruction CyclesFetch Cycles
PS017610-0404 Opcode Maps

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

205
Figure 102. Second Opcode Map after 1FH

CPC
4.3

R2,R1
CPC

4.4

IR2,R1
CPC

3.3

r1,r2
CPC

3.4

r1,Ir2
CPCX

5.3

ER2,ER1
CPCX

5.3

IM,ER1
CPC

4.3

R1,IM
CPC

4.4

IR1,IM

SRL
3.2

R1
SRL

3.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
pp

er
 N

ib
bl

e
(H

ex
)

PS017610-0404 Opcode Maps

