
Zilog - Z8F6401VN020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f6401vn020ec00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f6401vn020ec00tr-4426978
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

xv
Figure 31. Flash Controller Operation Flow Chart 140
Figure 32. On-Chip Debugger Block Diagram 151
Figure 33. Interfacing the On-Chip Debugger’s DBG Pin with an

RS-232 Interface (1) . 152
Figure 34. Interfacing the On-Chip Debugger’s DBG Pin with an

RS-232 Interface (2) . 153
Figure 35. OCD Data Format . 154
Figure 36. Recommended Crystal Oscillator Configuration

(20MHz operation) . 166
Figure 37. Nominal ICC Versus System Clock Frequency 170
Figure 38. Nominal Halt Mode ICC Versus System

Clock Frequency . 171
Figure 39. Port Input Sample Timing . 176
Figure 40. GPIO Port Output Timing . 177
Figure 41. On-Chip Debugger Timing . 178
Figure 42. SPI Master Mode Timing . 179
Figure 43. SPI Slave Mode Timing . 180
Figure 44. I2C Timing . 181
Figure 45. Flags Register . 201
Figure 46. Opcode Map Cell Description . 202
Figure 47. First Opcode Map . 204
Figure 48. Second Opcode Map after 1FH . 205
Figure 49. 40-Lead Plastic Dual-Inline Package (PDIP) 206
Figure 50. 44-Lead Low-Profile Quad Flat Package (LQFP) 207
Figure 51. 44-Lead Plastic Lead Chip Carrier Package (PLCC) . . . 207
Figure 52. 64-Lead Low-Profile Quad Flat Package (LQFP) 208
Figure 53. 68-Lead Plastic Lead Chip Carrier Package (PLCC) . . . 209
Figure 54. 80-Lead Quad-Flat Package (QFP) 210
PS017610-0404 List of Figures

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

xi
Table 32. IRQ2 Enable and Priority Encoding 53
Table 33. IRQ1 Enable High Bit Register (IRQ1ENH) 53
Table 34. IRQ2 Enable Low Bit Register (IRQ2ENL) 54
Table 35. IRQ2 Enable High Bit Register (IRQ2ENH) 54
Table 36. Interrupt Edge Select Register (IRQES) 55
Table 37. Interrupt Port Select Register (IRQPS) 55
Table 38. Interrupt Control Register (IRQCTL) 56
Table 39. Timer 0-3 High Byte Register (TxH) 67
Table 40. Timer 0-3 Low Byte Register (TxL) 67
Table 41. Timer 0-3 Reload High Byte Register (TxRH) 68
Table 42. Timer 0-3 Reload Low Byte Register (TxRL) 68
Table 43. Timer 0-3 PWM High Byte Register (TxPWMH) 69
Table 44. Timer 0-3 PWM Low Byte Register (TxPWML) 69
Table 45. Timer 0-3 Control Register (TxCTL) 70
Table 46. Watch-Dog Timer Approximate Time-Out Delays 73
Table 47. Watch-Dog Timer Control Register (WDTCTL) 75
Table 48. Watch-Dog Timer Reload Upper Byte Register (WDTU) 76
Table 49. Watch-Dog Timer Reload High Byte Register (WDTH) . 76
Table 50. Watch-Dog Timer Reload Low Byte Register (WDTL) . . 77
Table 51. UARTx Transmit Data Register (UxTXD) 86
Table 52. UARTx Receive Data Register (UxRXD) 87
Table 53. UARTx Status 0 Register (UxSTAT0) 87
Table 54. UARTx Control 0 Register (UxCTL0) 89
Table 55. UARTx Status 1 Register (UxSTAT1) 89
Table 56. UARTx Control 1 Register (UxCTL1) 90
Table 57. UARTx Baud Rate High Byte Register (UxBRH) 91
Table 58. UARTx Baud Rate Low Byte Register (UxBRL) 92
Table 59. UART Baud Rates . 93
Table 60. SPI Clock Phase (PHASE) and Clock Polarity

(CLKPOL) Operation . 102
Table 61. SPI Data Register (SPIDATA) . 106
Table 62. SPI Control Register (SPICTL) . 107
Table 63. SPI Status Register (SPISTAT) . 108
Table 64. SPI Mode Register (SPIMODE) 109
Table 65. SPI Baud Rate High Byte Register (SPIBRH) 110
Table 66. SPI Baud Rate Low Byte Register (SPIBRL) 110
PS017610-0404 List of Tables

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

46
Architecture

Figure 65 illustrates a block diagram of the interrupt controller.

Figure 65. Interrupt Controller Block Diagram

Operation

Master Interrupt Enable
The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables
and disables interrupts.

Interrupts are globally enabled by any of the following actions:
• Execution of an EI (Enable Interrupt) instruction
• Execution of an IRET (Return from Interrupt) instruction
• Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:
• Execution of a DI (Disable Interrupt) instruction
• eZ8 CPU acknowledgement of an interrupt service request from the interrupt

controller
• Writing a 0 to the IRQE bit in the Interrupt Control register
• Reset

Vector

IRQ Request

High
Priority

Medium
Priority

Low
Priority

Priority
Mux

In
te

rr
up

t R
eq

ue
st

 L
at

ch
es

 a
nd

 C
on

tro
lPort Interrupts

Internal Interrupts
PS017610-0404 Interrupt Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

59
out, first set the TPOL bit in the Timer Control Register to the start value before beginning
One-Shot mode. Then, after starting the timer, set TPOL to the opposite bit value.

The steps for configuring a timer for One-Shot mode and initiating the count are as fol-
lows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for One-Shot mode.
– Set the prescale value.
– If using the Timer Output alternate function, set the initial output level (High or

Low).

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control register to enable the timer and initiate counting.

In One-Shot mode, the system clock always provides the timer input. The timer period is
given by the following equation:

Continuous Mode
In Continuous mode, the timer counts up to the 16-bit Reload value stored in the Timer
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching
the Reload value, the timer generates an interrupt, the count value in the Timer High and
Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output
alternate function is enabled, the Timer Output pin changes state (from Low to High or
from High to Low) upon timer Reload.

The steps for configuring a timer for Continuous mode and initiating the count are as fol-
lows:

1. Write to the Timer Control register to:
– Disable the timer
– Configure the timer for Continuous mode.
– Set the prescale value.

One-Shot Mode Time-Out Period (s) Reload Value Start Value–() Prescale×
System Clock Frequency (Hz)

--=
PS017610-0404 Timers

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

79

Operation

Data Format
The UART always transmits and receives data in an 8-bit data format, least-significant bit
first. An even or odd parity bit can be optionally added to the data stream. Each character
begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits.

Figure 67. UART Block Diagram

Receive Shifter

Receive Data

Transmit Data

Transmit Shift
TXD

RXD

System Bus

Parity Checker

Parity Generator

Receiver Control

Control Register

Transmitter Control

CTS

Status Register

Register

Register

Register

Baud Rate
Generator
PS017610-0404 UART

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

105
Error Detection
The SPI contains error detection logic to support SPI communication protocols and recog-
nize when communication errors have occurred. The SPI Status register indicates when a
data transmission error has been detected.

Overrun (Write Collision)
An overrun error (write collision) indicates a write to the SPI Data register was attempted
while a data transfer is in progress. An overrun sets the OVR bit in the SPI Status register
to 1. Writing a 1 to OVR clears this error flag.

Mode Fault (Multi-Master Collision)
A mode fault indicates when more than one Master is trying to communicate at the same
time (a multi-master collision). The mode fault is detected when the enabled Master’s SS
pin is asserted. A mode fault sets the COL bit in the SPI Status register to 1. Writing a 1 to
COL clears this error flag.

SPI Interrupts
When SPI interrupts are enabled, the SPI generates an interrupt after data transmission.
The SPI in Master mode generates an interrupt after a character has been sent. A character
can be defined to be 1 through 8 bits by the NUMBITS field in the SPI Mode register. The
SPI in Slave mode generates an interrupt when the SS signal deasserts to indicate comple-
tion of the data transfer. Writing a 1 to the IRQ bit in the SPI Status Register clears the
pending interrupt request. If the SPI is disabled, an SPI interrupt can be generated by a
Baud Rate Generator time-out.

SPI Baud Rate Generator
In SPI Master mode, the Baud Rate Generator creates a lower frequency serial clock
(SCK) for data transmission synchronization between the Master and the external Slave.
The input to the Baud Rate Generator is the system clock. The SPI Baud Rate High and
Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud
Rate Generator. The reload value must be greater than or equal to 0002H for SPI operation
(maximum baud rate is system clock frequency divided by 4). The SPI baud rate is calcu-
lated using the following equation:

When the SPI is disabled, the Baud Rate Generator can function as a basic 16-bit timer
with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt
on time-out, complete the following procedure:

SPI Baud Rate (bits/s) System Clock Frequency (Hz)
2 BRG[15:0]×

--=
PS017610-0404 Serial Peripheral Interface

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

113
2. The I2C Controller waits for the slave to send an Acknowledge (by pulling the SDA
signal Low). If the slave pulls the SDA signal High (Not-Acknowledge), the I2C
Controller sends a Stop signal.

3. If the slave needs to service an interrupt, it pulls the SCL signal Low, which halts I2C
operation.

4. If there is no other data in the I2C Data register or the STOP bit in the I2C Control
register is set by software, then the Stop signal is sent.

Figure 79 illustrates the data transfer format for a 7-bit addressed slave. Shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 79. 7-Bit Addressed Slave Data Transfer Format

The data transfer format for a transmit operation on a 7-bit addressed slave is as follows:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts, because the I2C Data register is empty

4. Software responds to the TDRE bit by writing a 7-bit slave address followed by a 0
(write) to the I2C Data register.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address has been shifted out by the SDA signal, the Transmit interrupt
is asserted.

9. Software responds by writing the contents of the data into the I2C Data register.

10. The I2C Controller shifts the rest of the address and write bit out by the SDA signal.

11. The I2C slave sends an acknowledge (by pulling the SDA signal low) during the next
high period of SCL. The I2C Controller sets the ACK bit in the I2C Status register.

12. The I2C Controller loads the contents of the I2C Shift register with the contents of the
I2C Data register.

13. The I2C Controller shifts the data out of via the SDA signal. After the first bit is sent,
the Transmit interrupt is asserted.

A A Data A Data PS A/ASlave Address W=0 Data
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

114
14. Software responds by setting the STOP bit of the I2C Control register.

15. If no new data is to be sent or address is to be sent, software responds by clearing the
TXI bit of the I2C Control register.

16. The I2C Controller completes transmission of the data on the SDA signal.

17. The I2C Controller sends the STOP condition to the I2C bus.

Writing a Transaction with a 10-Bit Address
1. The I2C Controller shifts the I2C Shift register out onto SDA signal.

2. The I2C Controller waits for the slave to send an Acknowledge (by pulling the SDA
signal Low). If the slave pulls the SDA signal High (Not-Acknowledge), the I2C
Controller sends a Stop signal.

3. If the slave needs to service an interrupt, it pulls the SCL signal low, which halts I2C
operation.

4. If there is no other data in the I2C Data register or the STOP bit in the I2C Control
register is set by software, then the Stop signal is sent.

The data transfer format for a 10-bit addressed slave is illustrated in the figure below.
Shaded regions indicate data transferred from the I2C Controller to slaves and unshaded
regions indicate data transferred from the slaves to the I2C Controller.

Figure 80. 10-Bit Addressed Slave Data Transfer Format

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal. The transmit operation is carried out in the same manner as 7-bit addressing.

The data transfer format for a transmit operation on a 10-bit addressed slave is as follows:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE bit by writing the first slave address byte. The least-
significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

A A Data A Data P
Slave Address

2nd ByteS A/ASlave Address
 1st 7 bits W=0
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

116
1. Software writes the I2C Data register with a 7-bit slave address followed by a 1 (read).

2. Software asserts the START bit of the I2C Control register.

3. Software asserts the NAK bit of the I2C Control register so that after the first byte of
data has been read by the I2C Controller, a Not Acknowledge is sent to the I2C slave.

4. The I2C Controller sends the START condition.

5. The I2C Controller sends the address and read bit by the SDA signal.

6. The I2C slave sends an Acknowledge by pulling the SDA signal Low during the next
high period of SCL.

7. The I2C Controller reads the first byte of data from the I2C slave.

8. The I2C Controller asserts the Receive interrupt.

9. Software responds by reading the I2C Data register.

10. The I2C Controller sends a NAK to the I2C slave.

11. A NAK interrupt is generated by the I2C Controller.

12. Software responds by setting the STOP bit of the I2C Control register.

13. A STOP condition is sent to the I2C slave.

Reading a Transaction with a 10-Bit Address
Figure 82 illustrates the receive format for a 10-bit addressed slave. The shaded regions
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate
data transferred from the slaves to the I2C Controller.

Figure 82. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write signal.

The data transfer format for a receive operation on a 10-bit addressed slave is as follows:

1. Software writes an address 11110B followed by the two address bits and a 0 (write).

2. Software asserts the START bit of the I2C Control register.

3. The I2C Controller sends the Start condition.

S Slave Address
1st 7 bits

W=0 A Slave address
2nd Byte

A S Slave Address
1st 7 bits

R=1 A Data A Data A P
PS017609-0803 I2C Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

125
1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the trigger
source.

DLE—DMAx Loop Enable
0 = DMAx reloads the original Start Address and is then disabled after the End Address
data is transferred.
1 = DMAx, after the End Address data is transferred, reloads the original Start Address
and continues operating.

DDIR—DMAx Data Transfer Direction
0 = Register File → on-chip peripheral control register.
1 = on-chip peripheral control register → Register File.

IRQEN—DMAx Interrupt Enable
0 = DMAx does not generate any interrupts.
1 = DMAx generates an interrupt when the End Address data is transferred.

WSEL—Word Select
0 = DMAx transfers a single byte per request.
1 = DMAx transfers a two-byte word per request. The address for the on-chip peripheral
control register must be an even address.

RSS—Request Trigger Source Select
The Request Trigger Source Select field determines the peripheral that can initiate a DMA
request transfer. The corresponding interrupts do not need to be enabled within the Inter-
rupt Controller to initiate a DMA transfer. However, if the Request Trigger Source can
enable or disable the interrupt request sent to the Interrupt Controller, the interrupt request
must be enabled within the Request Trigger Source block.
000 = Timer 0.
001 = Timer 1.
010 = Timer 2.
011 = Timer 3.
100 = DMA0 Control register: UART0 Received Data register contains valid data. DMA1
Control register: UART0 Transmit Data register empty.
101 = DMA0 Control register: UART1 Received Data register contains valid data. DMA1
Control register: UART1 Transmit Data register empty.
110 = DMA0 Control register: I2C Receiver Interrupt. DMA1 Control register: I2C Trans-
mitter Interrupt register empty.
111 = Reserved.

DMAx I/O Address Register
The DMAx I/O Address register contains the low byte of the on-chip peripheral address
for data transfer. The full 12-bit Register File address is given by {FH, DMAx_IO[7:0]}.
PS017610-0404 Direct Memory Access Controller

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

138
Flash Memory
Overview

The Z8F640x family features up to 64KB (65,536 bytes) of non-volatile Flash memory
with read/write/erase capability. The Flash Memory can be programmed and erased in-cir-
cuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64
bytes. The Flash memory also contains a High Sector that can be enabled for writes and
erase separately from the rest of the Flash array. The first 2 bytes of the Flash Program
memory are used as Option Bits. Refer to the Option Bits chapter for more information on
their operation.

Table 83 describes the Flash memory configuration for each device in the Z8F640x fam-
ily. Figure 84 illustrates the Flash memory arrangement.

Table 83. Z8F640x family Flash Memory Configurations

Part Number
Flash Size
KB (Bytes)

Flash
Pages

Program Memory
Addresses

 Flash High Sector Size
KB (Bytes)

High Sector
Addresses

Z8F160x 16 (16,384) 32 0000H - 3FFFH 1 (1024) 3C00H - 3FFFH

Z8F240x 24 (24,576) 48 0000H - 5FFFH 2 (2048) 5800H - 5FFFH

Z8F320x 32 (32,768) 64 0000H - 7FFFH 2 (2048) 7800H - 7FFFH

Z8F480x 48 (49,152) 96 0000H - BFFFH 4 (4096) B000H - BFFFH

Z8F640x 64 (65,536) 128 0000H - FFFFH 8 (8192) E000H - FFFFH
PS017610-0404 Flash Memory

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

154
• Power-on reset

• Voltage Brownout reset

• Asserting the RESET pin Low to initiate a Reset.

• Driving the DBG pin Low while the Z8F640x family device is in Stop mode initiates a
System Reset.

OCD Data Format
The OCD interface uses the asynchronous data format defined for RS-232. Each character
is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits
(Figure 89)

Figure 89. OCD Data Format

OCD Auto-Baud Detector/Generator
To run over a range of baud rates (data bits per second) with various system clock frequen-
cies, the On-Chip Debugger has an Auto-Baud Detector/Generator. After a reset, the OCD
is idle until it receives data. The OCD requires that the first character sent from the host is
the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7
data bits). The Auto-Baud Detector measures this period and sets the OCD Baud Rate
Generator accordingly.

The Auto-Baud Detector/Generator is clocked by the Z8F640x family device system
clock. The minimum baud rate is the system clock frequency divided by 512. For optimal
operation, the maximum recommended baud rate is the system clock frequency divided by
8. The theoretical maximum baud rate is the system clock frequency divided by 4. This
theoretical maximum is possible for low noise designs with clean signals. Table 92 lists
minimum and recommended maximum baud rates for sample crystal frequencies.

Table 92. OCD Baud-Rate Limits

System Clock Frequency
(MHz)

Recommended Maximum Baud Rate
(kbits/s)

Minimum Baud Rate
(kbits/s)

20.0 2500 39.1

1.0 125.0 1.96

 0.032768 (32KHz) 4.096 0.064

START D0 D1 D2 D3 D4 D5 D6 D7 STOP
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

158
DBG <-- 03H
DBG --> RuntimeCounter[15:8]
DBG --> RuntimeCounter[7:0]

• Write OCD Control Register (04H)—The Write OCD Control Register command
writes the data that follows to the OCDCTL register. When the Read Protect Option
Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be
cleared to 0 and the only method of putting the Z8F640x family device back into
normal operating mode is to reset the device.

DBG <-- 04H
DBG <-- OCDCTL[7:0]

• Read OCD Control Register (05H)—The Read OCD Control Register command
reads the value of the OCDCTL register.

DBG <-- 05H
DBG --> OCDCTL[7:0]

• Write Program Counter (06H)—The Write Program Counter command writes the
data that follows to the eZ8 CPU’s Program Counter (PC). If the Z8F640x family
device is not in Debug mode or if the Read Protect Option Bit is enabled, the Program
Counter (PC) values are discarded.

DBG <-- 06H
DBG <-- ProgramCounter[15:8]
DBG <-- ProgramCounter[7:0]

• Read Program Counter (07H)—The Read Program Counter command reads the
value in the eZ8 CPU’s Program Counter (PC). If the Z8F640x family device is not in
Debug mode or if the Read Protect Option Bit is enabled, this command returns
FFFFH.

DBG <-- 07H
DBG --> ProgramCounter[15:8]
DBG --> ProgramCounter[7:0]

• Write Register (08H)—The Write Register command writes data to the Register File.
Data can be written 1-256 bytes at a time (256 bytes can be written by setting size to
zero). If the Z8F640x family device is not in Debug mode, the address and data values
are discarded. If the Read Protect Option Bit is enabled, then only writes to the Flash
Control Registers are allowed and all other register write data values are discarded.

DBG <-- 08H
DBG <-- {4’h0,Register Address[11:8]}
DBG <-- Register Address[7:0]
DBG <-- Size[7:0]
DBG <-- 1-256 data bytes

• Read Register (09H)—The Read Register command reads data from the Register
File. Data can be read 1-256 bytes at a time (256 bytes can be read by setting size to
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

164
OCD Watchpoint Address Register
The OCD Watchpoint Address register specifies the lower 8 bits of the Register File
address bus to match when generating Watchpoint Debug Breaks. The full 12-bit Register
File address is given by {WPTCTL3:0], WPTADDR[7:0]}.

WPTADDR[7:0]—Watchpoint Register File Address
These bits specify the lower eight bits of the register address to match when generating a
Watchpoint Debug Break.

OCD Watchpoint Data Register
The OCD Watchpoint Data register specifies the data to match if Watchpoint data match is
enabled.

WPTDATA[7:0]—Watchpoint Register File Data
These bits specify the Register File data to match when generating Watchpoint Debug
Breaks with the WPDM bit (WPTCTL[5]) is set to 1.

—————

Table 97. OCD Watchpoint Address (WPTADDR)

BITS 7 6 5 4 3 2 1 0

FIELD WPTADDR[7:0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Table 98. OCD Watchpoint Data (WPTDATA)

BITS 7 6 5 4 3 2 1 0

FIELD WPTDATA[7:0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W
PS017610-0404 On-Chip Debugger

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

183
; value 01H, is the source. The value 01H is written into the
; Register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the
operands be written as ‘destination, source’. After assembly, the object code usually has
the operands in the order ’source, destination’, but ordering is opcode-dependent. The fol-
lowing instruction examples illustrate the format of some basic assembly instructions and
the resulting object code produced by the assembler. This binary format must be followed
by users that prefer manual program coding or intend to implement their own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in
43H, the assembly syntax and resulting object code is:

Example 2: In general, when an instruction format requires an 8-bit register address, that
address can specify any register location in the range 0 - 255 or, using Escaped Mode
Addressing, a Working Register R0 - R15. If the contents of Register 43H and Working
Register R8 are added and the result is stored in 43H, the assembly syntax and resulting
object code is:

See the device-specific Product Specification to determine the exact register file range
available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition
codes, status flags, and address modes are represented by a notational shorthand that is
described in Table 115

Table 113. Assembly Language Syntax Example 1

Assembly Language Code ADD 43H, 08H (ADD dst, src)

Object Code 04 08 43 (OPC src, dst)

Table 114. Assembly Language Syntax Example 2

Assembly Language Code ADD 43H, R8 (ADD dst, src)

Object Code 04 E8 43 (OPC src, dst)
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

195
LD dst, rc dst ← src r IM 0C-FC - - - - - - 2 2

r X(r) C7 3 3

X(r) r D7 3 4

r Ir E3 2 3

R R E4 3 2

R IR E5 3 3

R IM E6 3 3

IR IM E7 3 3

Ir r F3 2 3

IR R F5 3 3

LDC dst, src dst ← src r Irr C2 - - - - - - 2 5

Ir Irr C5 2 9

Irr r D2 2 5

LDCI dst, src dst ← src
r ← r + 1
rr ← rr + 1

Ir Irr C3 - - - - - - 2 9

Irr Ir D3 2 9

LDE dst, src dst ← src r Irr 82 - - - - - - 2 5

Irr r 92 2 5

LDEI dst, src dst ← src
r ← r + 1
rr ← rr + 1

Ir Irr 83 - - - - - - 2 9

Irr Ir 93 2 9

Table 126. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address Mode
Opcode(s)

(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

Flags Notation: * = Value is a function of the result of the operation.
- = Unaffected
X = Undefined

0 = Reset to 0
1 = Set to 1
PS017610-0404 eZ8 CPU Instruction Set

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

208
Figure 105 illustrates the 64-pin LQFP (low-profile quad flat package) available for the
Z8F1602, Z8F2402, Z8F3202, Z8F4802, and Z8F6402 devices.

Figure 106. 64-Lead Low-Profile Quad Flat Package (LQFP)

c

A1

A2

A

LE

E HE

e

0-7°

L

b

HD

D

DETAIL A
PS017610-0404 Packaging

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

218
Index

Symbols
185
% 185
@ 185

Numerics
10-bit ADC 4
40-lead plastic dual-inline package 206
44-lead low-profile quad flat package 207
44-lead plastic lead chip carrier package 207
64-lead low-profile quad flat package 208
68-lead plastic lead chip carrier package 209
80-lead quad flat package 210

A
absolute maximum ratings 167
AC characteristics 172
ADC 187

architecture 132
automatic power-down 133
block diagram 133
continuous conversion 134
control register 135
control register definitions 135
data high byte register 137
data low bits register 137
DMA control 135
electrical characteristics and timing 174
operation 133
single-shot conversion 133

ADCCTL register 135
ADCDH register 137
ADCDL register 137
ADCX 187
ADD 187
add - extended addressing 187
add with carry 187
add with carry - extended addressing 187

additional symbols 185
address space 17
ADDX 187
analog signals 14
analog-to-digital converter (ADC) 132
AND 190
ANDX 190
arithmetic instructions 187
assembly language programming 182
assembly language syntax 183

B
B 185
b 184
baud rate generator, UART 85
BCLR 188
binary number suffix 185
BIT 188
bit 184

clear 188
manipulation instructions 188
set 188
set or clear 188
swap 188
test and jump 190
test and jump if non-zero 190
test and jump if zero 190

bit jump and test if non-zero 190
bit swap 191
block diagram 3
block transfer instructions 188
BRK 190
BSET 188
BSWAP 188, 191
BTJ 190
BTJNZ 190
BTJZ 190

C
CALL procedure 190
capture mode 71
capture/compare mode 71
PS017610-0404 P r e l i m i n a r y Index

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

226
SDA and SCL (IrDA) signals 111
second opcode map after 1FH 205
serial clock 101
serial peripheral interface (SPI) 99
set carry flag 188, 189
set register pointer 189
shift right arithmetic 191
shift right logical 191
signal descriptions 13
single assertion (pulse) interrupt sources 47
single-shot conversion (ADC) 133
SIO 5
slave data transfer formats (I2C) 114
slave select 102
software trap 190
source operand 185
SP 185
SPI

architecture 99
baud rate generator 105
baud rate high and low byte register 110
clock phase 102
configured as slave 100
control register 107
control register definitions 106
data register 106
error detection 105
interrupts 105
mode fault error 105
mode register 109
multi-master operation 104
operation 100
overrun error 105
signals 101
single master, multiple slave system 100
single master, single slave system 99
status register 108
timing, PHASE = 0 103
timing, PHASE=1 104

SPI controller signals 13
SPI mode (SPIMODE) 109
SPIBRH register 110
SPIBRL register 110
SPICTL register 107

SPIDATA register 106
SPIMODE register 109
SPISTAT register 108
SRA 191
src 185
SRL 191
SRP 189
SS, SPI signal 101
stack pointer 185
status register, I2C 118
STOP 189
stop mode 31, 189
stop mode recovery

sources 29
using a GPIO port pin transition 30
using watch-dog timer time-out 29

SUB 188
subtract 188
subtract - extended addressing 188
subtract with carry 188
subtract with carry - extended addressing 188
SUBX 188
SWAP 191
swap nibbles 191
symbols, additional 185
system and short resets 26

T
TCM 188
TCMX 188
technical support 213
test complement under mask 188
test under mask 188
timer signals 14
timers 5, 57

architecture 57
block diagram 58
capture mode 62, 71
capture/compare mode 65, 71
compare mode 63, 71
continuous mode 59, 70
counter mode 60
counter modes 70
PS017610-0404 P r e l i m i n a r y Index

Z8F640x/Z8F480x/Z8F320x/Z8F240x/Z8F160x
Z8 Encore!®

227
gated mode 64, 71
one-shot mode 58, 70
operating mode 58
PWM mode 61, 70
reading the timer count values 66
reload high and low byte registers 67
timer control register definitions 66
timer output signal operation 66

timers 0-3
control registers 70
high and low byte registers 66, 69

TM, TMX 188
tools, hardware and software 214
transmit

IrDA data 96
transmit interrupt 112
transmitting UART data-polled method 80
transmitting UART data-interrupt-driven method
81
TRAP 190

U
UART 4

architecture 78
asynchronous data format without/with parity
80
baud rate generator 85
baud rates table 93
control register definitions 86
controller signals 14
data format 79
interrupts 85
multiprocessor mode 84
receiving data using DMA controller 83
receiving data using interrupt-driven method 82
receiving data using the polled method 82
transmitting data using the interrupt-driven
method 81
transmitting data using the polled method 80
x baud rate high and low registers 91
x control 0 and control 1 registers 89
x status 0 and status 1 registers 87

UxBRH register 91

UxBRL register 92
UxCTL0 register 89
UxCTL1 register 90
UxRXD register 87
UxSTAT0 register 87
UxSTAT1 register 89
UxTXD register 86

V
vector 184
voltage brown-out reset (VBR) 27

W
watch-dog timer

approximate time-out delays 72, 73
CNTL 28
control register 75
electrical characteristics and timing 174
interrupt in normal operation 73
interrupt in stop mode 73
operation 72
refresh 73, 189
reload unlock sequence 74
reload upper, high and low registers 76
reset 28
reset in normal operation 74
reset in stop mode 74
time-out response 73

WDTCTL register 75
WDTH register 76
WDTL register 77
working register 184
working register pair 184
WTDU register 76

X
X 184
XOR 190
XORX 190
PS017610-0404 P r e l i m i n a r y Index

