

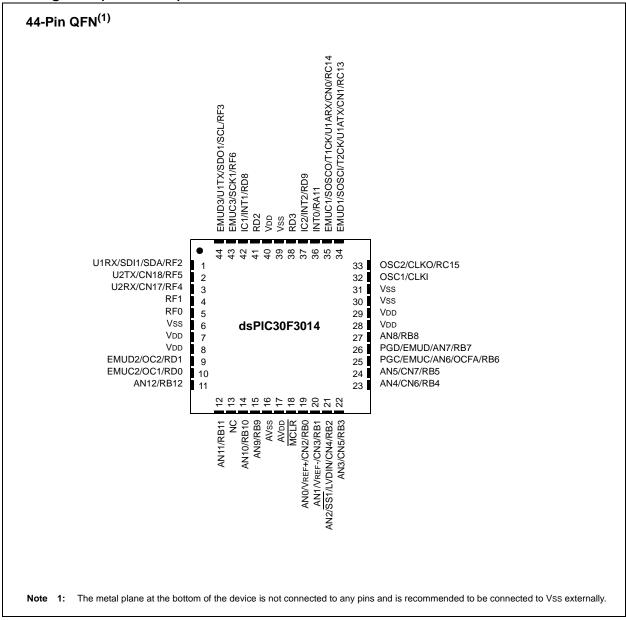
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

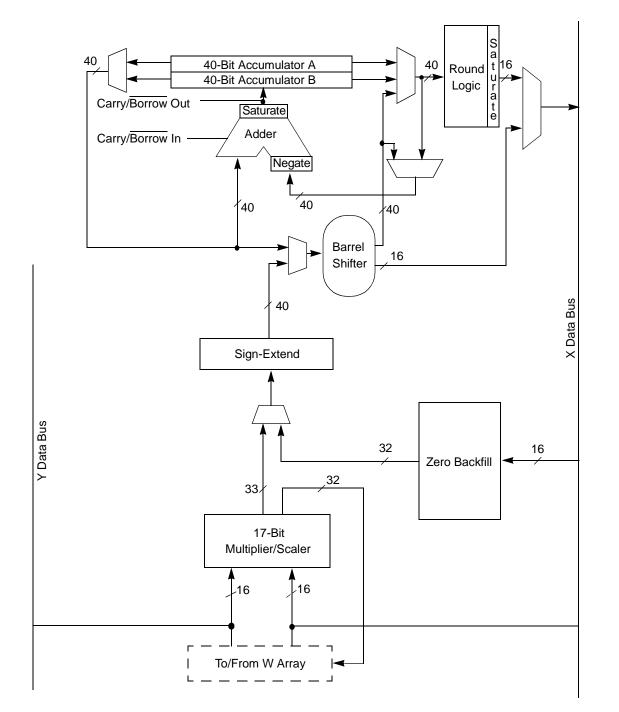
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4013-20e-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

CORE REGISTER MAP⁽¹⁾ (CONTINUED) **TABLE 3-3:**

IADEL J-	J. U																	
SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	t 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0												Reset State	
CORCON	0044	—		—	US EDT DL2 DL1 DL0 SATA SATB SATDW ACCSAT IPL3 PSV RND IF 00											0000 0000 0010 0000		
MODCON	0046	XMODEN	YMODEN	_	BWM<3:0> YWM<3:0> XWM<3:0> 0												0000 0000 0000 0000	
XMODSRT	0048		XS<15:1> 0												uuuu uuuu uuuu uuu0			
XMODEND	004A		XE<15:1> 1											uuuu uuuu uuul				
YMODSRT	004C							YS	S<15:1>								0	uuuu uuuu uuuu uuu0
YMODEND	004E		YE<15:1> 1											uuuu uuuu uuul				
XBREV	0050	BREN	BREN XB<14:0>											uuuu uuuu uuuu uuuu				
DISICNT	0052	_	— — DISICNT<13:0>											0000 0000 0000 0000				

Legend:

u = uninitialized bit; — = unimplemented bit, read as '0'
 Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

5.6 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 2 msec in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.6.1 PROGRAMMING ALGORITHM FOR PROGRAM FLASH

The user can erase or program one row of program Flash memory at a time. The general process is:

- 1. Read one row of program Flash (32 instruction words) and store into data RAM as a data "image".
- 2. Update the data image with the desired new data.
- 3. Erase program Flash row.
 - a) Set up NVMCON register for multi-word, program Flash, erase, and set WREN bit.
 - b) Write address of row to be erased into NVMADRU/NVMDR.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit. This begins erase cycle.
 - f) CPU stalls for the duration of the erase cycle.
 - g) The WR bit is cleared when erase cycle ends.

EXAMPLE 5-1: ERASING A ROW OF PROGRAM MEMORY

	-	ON for erase operation, mult		write
;	program mer	mory selected, and writes ena	abled	
	MOV	#0x4041,W0	;	
	MOV	W0,NVMCON	;	Init NVMCON SFR
;	Init pointe	er to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR),W0</pre>	;	
	MOV	W0,NVMADRU	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR),W0</pre>	;	Intialize in-page EA[15:0] pointer
	MOV	W0, NVMADR	;	Initialize NVMADR SFR
	DISI	#5	;	Block all interrupts with priority <7 for
			;	next 5 instructions
	MOV	#0x55,W0		
	MOV	W0,NVMKEY	;	Write the 0x55 key
	MOV	#0xAA,W1	;	
	MOV	W1,NVMKEY	;	Write the OxAA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

- 4. Write 32 instruction words of data from data RAM "image" into the program Flash write latches.
- 5. Program 32 instruction words into program Flash.
 - Set up NVMCON register for multi-word, program Flash, program, and set WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. This begins program cycle.
 - e) CPU stalls for duration of the program cycle.
 - f) The WR bit is cleared by the hardware when program cycle ends.
- 6. Repeat steps 1 through 5 as needed to program desired amount of program Flash memory.

5.6.2 ERASING A ROW OF PROGRAM MEMORY

Example 5-1 shows a code sequence that can be used to erase a row (32 instructions) of program memory.

NOTES:

7.0 I/O PORTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU. peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.

All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

7.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset.

Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the port pins, write the latch (LATx).

Any bit and its associated data and control registers that are not valid for a particular device are disabled, which means the corresponding LATx and TRISx registers and the port pin read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

A Parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 7-2 shows how ports are shared with other peripherals and the associated I/O cell (pad) to which they are connected. Table 7-1 shows the formats of the registers for the shared ports, PORTB through PORTF.

Note: The actual bits in use vary between devices.

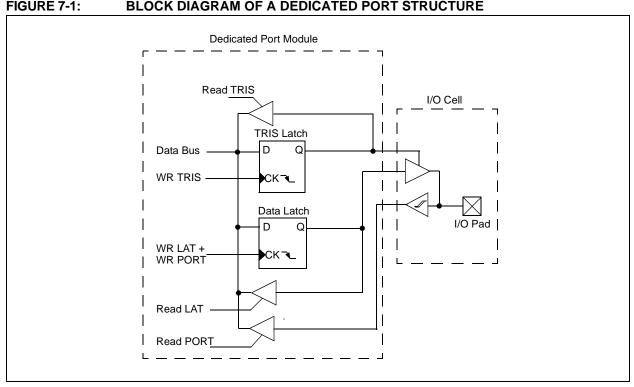


FIGURE 7-1: **BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE**

NOTES:

NOTES:

TABLE 13-1: dsPIC30F3014 OUTPUT COMPARE REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
OC1RS	0180		Output Compare 1 Secondary Register														0000 0000 0000 0000	
OC1R	0182		Output Compare 1 Main Register													0000 0000 0000 0000		
OC1CON	0184	_	_	OCSIDL	_	_	—	_	_	_		_	OCFLT	OCTSEL		OCM<2:0>	>	0000 0000 0000 0000
OC2RS	0186		Output Compare 2 Secondary Register													0000 0000 0000 0000		
OC2R	0188							Οι	utput Com	pare 2 Ma	n Registe	r						0000 0000 0000 0000
OC2CON	018A	_		OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSE		OCM<2:0>	>	0000 0000 0000 0000
Legend:	— – uni	- unimplemented bit read as '0'																

Legend: = unimplemented bit, read as '0

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 13-2: dsPIC30F4013 OUTPUT COMPARE REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
OC1RS	0180		Output Compare 1 Secondary Register													0000 0000 0000 0000		
OC1R	0182		Output Compare 1 Main Register													0000 0000 0000 0000		
OC1CON	0184	OCSIDL OCFLT OCTSEL OCM<2:0>									0000 0000 0000 0000							
OC2RS	0186		Output Compare 2 Secondary Register												0000 0000 0000 0000			
OC2R	0188		Output Compare 2 Main Register												0000 0000 0000 0000			
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSE		OCM<2:0>	•	0000 0000 0000 0000
OC3RS	018C							Outpu	ut Compar	e 3 Secon	dary Regi	ster						0000 0000 0000 0000
OC3R	018E							Ou	utput Com	pare 3 Ma	in Registe	r						0000 0000 0000 0000
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	—	—	_	OCFLT	OCTSEL		OCM<2:0>	>	0000 0000 0000 0000
OC4RS	0192							Outpu	ut Compar	e 4 Secon	dary Regi	ster		-	•			0000 0000 0000 0000
OC4R	0194							Ou	utput Com	pare 4 Ma	in Registe	r						0000 0000 0000 0000
OC4CON	0196	—		OCSIDL	_	_	_		_	_	—	_	OCFLT	OCTSEL		OCM<2:0>	`	0000 0000 0000 0000

Legend: --- = unimplemented bit, read as '0'

Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Note 1:

14.2 I²C Module Addresses

The I2CADD register contains the Slave mode addresses. The register is a 10-bit register.

If the A10M bit (I2CCON<10>) is '0', the address is interpreted by the module as a 7-bit address. When an address is received, it is compared to the 7 LSbs of the I2CADD register.

If the A10M bit is '1', the address is assumed to be a 10-bit address. When an address is received, it is compared with the binary value, '11110 A9 A8' (where A9 and A8 are two Most Significant bits of I2CADD). If that value matches, the next address is compared with the Least Significant 8 bits of I2CADD, as specified in the 10-bit addressing protocol.

TABLE 14-1: 7-BIT I²C[™] SLAVE ADDRESSES SUPPORTED BY dsPIC30F

0x00	General Call Address or Start Byte
0x01-0x03	Reserved
0x04-0x07	HS mode Master Codes
0x08-0x77	Valid 7-Bit Addresses
0x78-0x7b	Valid 10-Bit Addresses (lower 7 bits)
0x7c-0x7f	Reserved

14.3 I²C 7-Bit Slave Mode Operation

Once enabled (I2CEN = 1), the slave module waits for a Start bit to occur (i.e., the I²C module is 'Idle'). Following the detection of a Start bit, 8 bits are shifted into I2CRSR, and the address is compared against I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0> are compared against I2CRSR<7:1> and I2CRSR<0> is the R_W bit. All incoming bits are sampled on the rising edge of SCL.

If an address match occurs, an Acknowledgement is sent and the Slave Event Interrupt Flag (SI2CIF) is set on the falling edge of the ninth (ACK) bit. The address match does not affect the contents of the I2CRCV buffer or the RBF bit.

14.3.1 SLAVE TRANSMISSION

If the R_W bit received is a '1', the serial port goes into Transmit mode. It sends an ACK on the ninth bit and then holds SCL to '0' until the CPU responds by writing to I2CTRN. SCL is released by setting the SCLREL bit, and 8 bits of data are shifted out. Data bits are shifted out on the falling edge of SCL, such that SDA is valid during SCL high. The interrupt pulse is sent on the falling edge of the ninth clock pulse, regardless of the status of the ACK received from the master.

14.3.2 SLAVE RECEPTION

If the R_W bit received is a '0' during an address match, then Receive mode is initiated. Incoming bits are sampled on the rising edge of SCL. After 8 bits are received, if I2CRCV is not full or I2COV is not set, I2CRSR is transferred to I2CRCV. ACK is sent on the ninth clock.

If the RBF flag is set, indicating that I2CRCV is still holding data from a previous operation (RBF = 1), then ACK is not sent; however, the interrupt pulse is generated. In the case of an overflow, the contents of the I2CRSR are not loaded into the I2CRCV.

Note:	The I2CRCV is loaded if the I2COV bit = 1
Note:	
	and the RBF flag = 0. In this case, a read
	of the I2CRCV was performed but the
	user did not clear the state of the I2COV
	bit before the next receive occurred. The
	acknowledgement is not sent ($\overline{ACK} = 1$)
	and the I2CRCV is updated.

14.4 I²C 10-Bit Slave Mode Operation

In 10-bit mode, the basic receive and transmit operations are the same as in the 7-bit mode. However, the criteria for address match is more complex.

The I^2C specification dictates that a slave must be addressed for a write operation with two address bytes following a Start bit.

The A10M bit is a control bit that signifies that the address in I2CADD is a 10-bit address rather than a 7-bit address. The address detection protocol for the first byte of a message address is identical for 7-bit and 10-bit messages, but the bits being compared are different.

I2CADD holds the entire 10-bit address. Upon receiving an address following a Start bit, I2CRSR <7:3> is compared against a literal '11110' (the default 10-bit address) and I2CRSR<2:1> are compared against I2CADD<9:8>. If a match occurs and if $R_W = 0$, the interrupt pulse is sent. The ADD10 bit is cleared to indicate a partial address match. If a match fails or $R_W = 1$, the ADD10 bit is cleared and the module returns to the Idle state.

The low byte of the address is then received and compared with I2CADD<7:0>. If an address match occurs, the interrupt pulse is generated and the ADD10 bit is set, indicating a complete 10-bit address match. If an address match did not occur, the ADD10 bit is cleared and the module returns to the Idle state.

14.4.1 10-BIT MODE SLAVE TRANSMISSION

Once a slave is addressed in this fashion with the full 10-bit address (we refer to this state as "PRIOR_ADDR_MATCH"), the master can begin sending data bytes for a slave reception operation.

14.4.2 10-BIT MODE SLAVE RECEPTION

Once addressed, the master can generate a Repeated Start, reset the high byte of the address and set the R_W bit without generating a Stop bit, thus initiating a slave transmit operation.

14.5 Automatic Clock Stretch

In the Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.

14.5.1 TRANSMIT CLOCK STRETCHING

Both 10-Bit and 7-Bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock, if the TBF bit is cleared, indicating the buffer is empty.

In Slave Transmit modes, clock stretching is always performed irrespective of the STREN bit.

Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an ACK on the falling edge of the ninth clock and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to '0' asserts the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence.

- Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit is not be cleared and clock stretching does not occur.
 - **2:** The SCLREL bit can be set in software, regardless of the state of the TBF bit.

14.5.2 RECEIVE CLOCK STRETCHING

The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin is held low at the end of each data receive sequence.

14.5.3 CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)

When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-Bit Addressing modes.

Clock stretching takes place following the ninth clock of the receive sequence. <u>On</u> the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the I2CRCV before the master device can initiate another receive sequence. This prevents buffer overruns from occurring.

- Note 1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the falling edge of the ninth clock, the SCLREL bit is not cleared and clock stretching does not occur.
 - 2: The SCLREL bit can be set in software regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

14.5.4 CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)

Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated.

After the address phase is complete, clock stretching occurs on each data receive or transmit sequence, as described earlier.

14.6 Software Controlled Clock Stretching (STREN = 1)

When the STREN bit is '1', the SCLREL bit can be cleared by software to allow software to control the clock stretching. Program logic synchronizes writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit does not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output is asserted (held low). The SCL output remains low until the SCLREL bit is set and all other devices on the I²C bus have deasserted SCL. This ensures that a write to the SCLREL bit does not violate the minimum high time requirement for SCL.

If the STREN bit is '0', a software write to the SCLREL bit is disregarded and has no effect on the SCLREL bit.

Bit 15 Bit 13 Bit 12 Bit 10 Bit 8 SFR Name Addr. Bit 14 Bit 11 Bit 9 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State C1TX1B1 Transmit Buffer 1 Byte 1 Transmit Buffer 1 Byte 0 0356 C1TX1B2 0358 Transmit Buffer 1 Byte 3 Transmit Buffer 1 Byte 2 uuuu uuuu uuuu uuuu C1TX1B3 035A Transmit Buffer 1 Byte 5 Transmit Buffer 1 Byte 4 uuuu uuuu uuuu C1TX1B4 035C Transmit Buffer 1 Byte 7 Transmit Buffer 1 Byte 6 uuuu uuuu uuuu TXABT TXLARB TXERR C1TX1CON 035E _ _ TXREQ TXPRI<1:0> 0000 0000 0000 0000 _ _ C1TX0SID 0360 Transmit Buffer 0 Standard Identifier<10:6> _ _ _ Transmit Buffer 0 Standard Identifier <5:0> SRR TXIDE uuuu u000 uuuu uuuu C1TX0EID 0362 Transmit Buffer 0 Extended Identifier <17:14> Transmit Buffer 0 Extended Identifier<13:6> _ _ _ uuuu 0000 uuuu uuuu C1TX0DLC 0364 Transmit Buffer 0 Extended Identifier<5:0> TXRTR TXRB1 TXRB0 DLC<3:0> _ _ uuuu uuuu uuuu u000 C1TX0B1 0366 Transmit Buffer 0 Byte 0 Transmit Buffer 0 Byte 1 uuuu uuuu uuuu uuuu C1TX0B2 0368 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 uuuu uuuu uuuu C1TX0B3 036A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 uuuu uuuu uuuu C1TX0B4 036C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 uuuu uuuu uuuu uuuu TXABT TXLARB TXERR TXPRI<1:0> C1TX0CON 036E _ ____ ____ TXREQ ____ 0000 0000 0000 0000 _ _ C1RX1SID 0370 Receive Buffer 1 Standard Identifier<10:0> SRR RXIDE 000u uuuu uuuu uuuu ____ C1RX1EID 0372 Receive Buffer 1 Extended Identifier <17:6> _ _ _ _ 0000 uuuu uuuu uuuu RXRTR RXRB1 RXRB0 DLC<3:0> C1RX1DLC 0374 Receive Buffer 1 Extended Identifier<5:0> uuuu uuuu 000u uuuu C1RX1B1 0376 Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 0 1011011 101010 1010001 101000 C1RX1B2 0378 Receive Buffer 1 Byte 3 Receive Buffer 1 Byte 2 uuuu uuuu uuuu uuuu C1RX1B3 037A Receive Buffer 1 Byte 5 Receive Buffer 1 Byte 4 uuuu uuuu uuuu uuuu C1RX1B4 037C Receive Buffer 1 Byte 7 Receive Buffer 1 Byte 6 uuuu uuuu uuuu uuuu C1RX1CON 037E _ RXFUL RXRTRRO FIL HIT<2.0> 0000 0000 0000 0000 _ C1RX0SID 0380 _ Receive Buffer 0 Standard Identifier<10:0> SRR RXIDE 000u uuuu uuuu uuuu _ _ C1RX0EID 0382 Receive Buffer 0 Extended Identifier<17:6> _ 0000 uuuu uuuu uuuu RXRTR RXRB1 DLC<3:0> C1RX0DLC 0384 Receive Buffer 0 Extended Identifier<5:0> _ _ RXRB0 uuuu uuuu 000u uuuu C1RX0B1 0386 Receive Buffer 0 Byte 1 Receive Buffer 0 Byte 0 uuuu uuuu uuuu uuuu C1RX0B2 0388 Receive Buffer 0 Byte 3 Receive Buffer 0 Byte 2 uuuu uuuu uuuu uuuu C1RX0B3 038A Receive Buffer 0 Byte 5 Receive Buffer 0 Byte 4 uuuu uuuu uuuu uuuu C1RX0B4 038C Receive Buffer 0 Byte 7 Receive Buffer 0 Byte 6 uuuu uuuu uuuu RXRTRRO DBEN JTOFF FILHITO C1RX0CON 038F RXFUI _ 0000 0000 0000 0000 _ C1CTRL 0390 CANCAP _ CSIDL ABAT CANCKS REQOP<2:0> OPMODE<2:0> _ ICODE<2:0> 0000 0100 1000 0000 C1CFG1 0392 _ _ _ _ _ _ _ SJW<1:0> BRP<5:0> 0000 0000 0000 0000 C1CFG2 SEG2PHTS SEG1PH<2:0> PRSEG<2.0> 0394 _ WAKFIL _ _ _ SEG2PH<2:0> SAM 0u00 0uuu uuuu uuuu C1INTF 0396 RX00VR RX10VR тхво TXEP RXEP TXWAR RXWAR EWARN IVRIF WAKIF ERRIF TX2IF TX1IF TX0IF RX1IF RX0IF 0000 0000 0000 0000 C1INTE 0398 ERRIE TX2IE TX1IE TX0IE RX1IE RX0IE 0000 0000 0000 0000 IVRIE WAKIE _ _ _ ____ _ C1EC 039A TERRCNT<7:0> RERRCNT<7:0> 0000 0000 0000 0000

TABLE 17-1: dsPIC30F4013 CAN1 REGISTER MAP⁽¹⁾ (CONTINUED)

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

18.0 DATA CONVERTER INTERFACE (DCI) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

18.1 Module Introduction

The dsPIC30F Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), A/D converters and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (single or multichannel)
- Inter-IC Sound (I²S) Interface
- AC-Link Compliant mode

The DCI module provides the following general features:

- Programmable word size up to 16 bits
- Support for up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

18.2 Module I/O Pins

There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.

18.2.1 CSCK PIN

The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC30F. When configured as an input, the serial clock must be provided by an external device.

18.2.2 CSDO PIN

The serial data output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be transmitted. The CSDO pin is tri-stated or driven to '0' during CSCK periods when data is not transmitted, depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.

18.2.3 CSDI PIN

The serial data input (CSDI) pin is configured as an input only pin when the module is enabled.

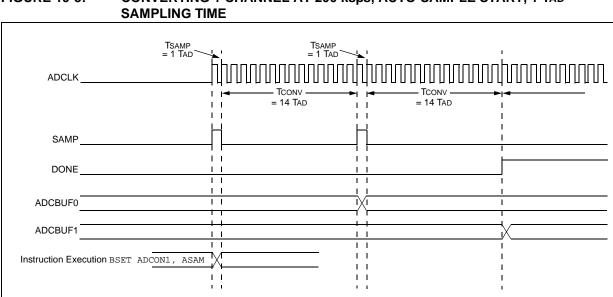
18.2.3.1 COFS PIN

The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register.

The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.

18.2.4 BUFFER DATA ALIGNMENT

Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused LSbs in the receive buffer registers are set to '0' by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the transmit buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.

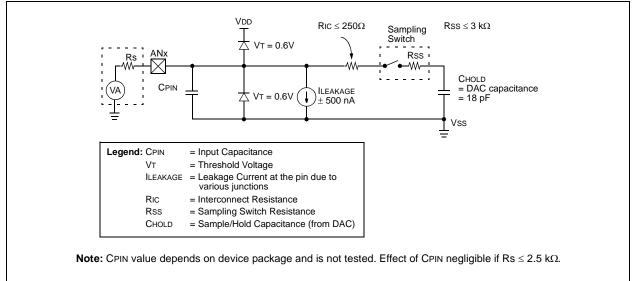

18.2.5 TRANSMIT/RECEIVE SHIFT REGISTER

The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register MSb first, since audio PCM data is transmitted in signed 2's complement format.

18.2.6 DCI BUFFER CONTROL

The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the serial shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a '0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a '1' in the MSb location.

Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.


CONVERTING 1 CHANNEL AT 200 ksps, AUTO-SAMPLE START, 1 TAD **FIGURE 19-3:**

19.8 **A/D Acquisition Requirements**

The analog input model of the 12-bit A/D converter is shown in Figure 19-4. The total sampling time for the A/D is a function of the internal amplifier settling time and the holding capacitor charge time.

For the A/D converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Source Impedance (Rs), the Interconnect Impedance (RIC) and the Internal Sampling Switch (Rss) Impedance combine to directly affect the time required to charge the capacitor, CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D converter, the maximum recommended source impedance, Rs, is 2.5 kΩ. After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

FIGURE 19-4: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

19.9 Module Power-Down Modes

The module has two internal power modes.

When the ADON bit is '1', the module is in Active mode; it is fully powered and functional.

When ADON is '0', the module is in Off mode. The digital and analog portions of the circuit are disabled for maximum current savings.

In order to return to the Active mode from Off mode, the user must wait for the ADC circuitry to stabilize. The time required to stabilize is specified in **Section 23.0** "**Electrical Characteristics**".

19.10 A/D Operation During CPU Sleep and Idle Modes

19.10.1 A/D OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shut down and stay at logic '0'.

If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter does not continue with a partially completed conversion on exit from Sleep mode.

Register contents are not affected by the device entering or leaving Sleep mode.

The A/D module can operate during Sleep mode if the A/D clock source is set to RC (ADRC = 1). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. (When the conversion sequence is complete, the DONE bit is set.)

If the A/D interrupt is enabled, the device wakes up from Sleep. If the A/D interrupt is not enabled, the A/D module is then turned off, although the ADON bit remains set.

19.10.2 A/D OPERATION DURING CPU IDLE MODE

The ADSIDL bit determines if the module stops or continues on Idle. If ADSIDL = 0, the module continues operation on assertion of Idle mode. If ADSIDL = 1, the module stops on Idle.

19.11 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion and sampling sequence is aborted. The values that are in the ADCBUF registers are not modified. The A/D Result register contains unknown data after a Power-on Reset.

19.12 Output Formats

The A/D result is 12 bits wide. The data buffer RAM is also 12 bits wide. The 12-bit data can be read in one of four different formats. The FORM<1:0> bits select the format. Each of the output formats translates to a 16-bit result on the data bus. Write data is always in right-justified (integer) format.

	FIGURE 19-5:	A/D OUTPUT DATA FORMATS
--	--------------	-------------------------

RAM Contents:					d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																
Signed Fractional	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
		1				1										
Fractional	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
	L	1				I										
Signed Integer	d11	d11	d11	d11	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
		1														
Integer	0	0	0	0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	L	1	1	1	1	1	1				1				1	

20.0 SYSTEM INTEGRATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Programmable Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- Low-Voltage Detect
- Power-Saving modes (Sleep and Idle)
- Code Protection
- Unit ID Locations
- In-Circuit Serial Programming (ICSP)

dsPIC30F devices have a Watchdog Timer which is permanently enabled via the Configuration bits or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers onchip, most applications need no external Reset circuitry.

Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active but the CPU is shut off. The RC oscillator option saves system cost while the LP crystal option saves power.

20.1 Oscillator System Overview

The dsPIC30F oscillator system has the following modules and features:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to boost internal operating frequency
- A clock switching mechanism between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- Clock Control register (OSCCON)
- Configuration bits for main oscillator selection

Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). Thereafter, the clock source can be changed between permissible clock sources. The OSCCON register controls the clock switching and reflects system clock related status bits.

Table 20-1 provides a summary of the dsPIC30F oscillator operating modes. A simplified diagram of the oscillator system is shown in Figure 20-1.

20.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

- The current oscillator group bits, COSC<2:0>.
- The LPOSCEN bit (OSCCON register).

The LP oscillator is on (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if:

- COSC<2:0> = 00 (LP selected as main osc.) and
- LPOSCEN = 1

Keeping the LP oscillator on at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator still requires a start-up time

20.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator. The PLL is selectable to have either gains of x4, x8 and x16. Input and output frequency ranges are summarized in Table 20-3.

TABLE 20-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout
4 MHz-10 MHz	x4	16 MHz-40 MHz
4 MHz-10 MHz	x8	32 MHz-80 MHz
4 MHz-7.5 MHz	x16	64 MHz-120 MHz

The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal is rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

20.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz \pm 2% nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator, or RC network. The FRC oscillator can be used with the PLL to obtain higher clock frequencies.

The dsPIC30F operates from the FRC oscillator whenever the current oscillator selection control bits in the OSCCON register (OSCCON<14:12>) are set to '001'.

The four-bit field specified by TUN<3:0> (OSCTUN<3:0>) allows the user to tune the internal fast RC oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of +10.5% (840 kHz) and -12% (960 kHz) in steps of 1.50% around the factory-calibrated setting (see Table 20-4).

Note:	OSCTUN functionality has been provided
	to help customers compensate for
	temperature effects on the FRC frequency
	over a wide range of temperatures. The
	tuning step size is an approximation and is
	neither characterized nor tested.

If OSCCON<14:12> are set to '111' and FPR<4:0> are set to '00101', '00110' or '00111', then a PLL multiplier of 4, 8 or 16 (respectively) is applied.

Note:	When a	a ′	16x	PLL	is	use	эd,	the	FR	RC			
	frequen	су	mus	st no	ot	be	tun	led	to	а			
	frequency greater than 7.5 MHz.												

TABLE 20-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	+10.5%
0110	+9.0%
0101	+7.5%
0100	+6.0%
0011	+4.5%
0010	+3.0%
0001	+1.5%
0000	Center Frequency (oscillator is
	running at calibrated frequency)
1111	-1.5%
1110	-3.0%
1101	-4.5%
1100	-6.0%
1011	-7.5%
1010	-9.0%
1001	-10.5%
1000	-12.0%

20.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock monitor circuits. It may also be used to provide a lowfrequency clock source option for applications where power consumption is critical and timing accuracy is not required.

The LPRC oscillator is always enabled at a Power-on Reset because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator remains on if one of the following is TRUE:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the COSC<2:0> control bits in the OSCCON register

If one of the above conditions is not true, the LPRC shuts off after the PWRT expires.

Note 1:	OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<4:0>).
2:	OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	_		ns	
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2	_		ns	
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter DO31
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter DO31
SP35	TscH2do, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	

TABLE 23-31: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI pins.

FIGURE 23-16: SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

Transmission93
I ² C 7-Bit Slave Mode Operation93
Reception
Transmission
I ² C Master Mode Operation
Baud Rate Generator
Clock Arbitration96
Multi-Master Communication,
Bus Collision and Bus Arbitration
Reception
Transmission
I ² C Master Mode Support
I ² C Module
Addresses
Bus Data Timing Requirements
Master Mode 201
Slave Mode204
General Call Address Support
Interrupts
IPMI Support
Operating Function Description
Operation During CPU Sleep and Idle Modes
Pin Configuration91
Programmer's Model91
Register Map97
Registers
Slope Control
•
Software Controlled Clock Stretching (STREN = 1)94
Various Modes
I ² S Mode Operation129
Data Justification129
Frame and Data Word Length Selection
Idle Current (IIDLE)
In-Circuit Serial Programming (ICSP)
Input Capture Module
Interrupts82
Register Map83
Input Capture Operation During Sleep and Idle Modes 82
CPU Idle Mode82
CPU Sleep Mode82
Input Capture Timing Requirements
Input Change Notification Module
Register Map57
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MAC Instructions
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary159
Internal Clock Timing Examples 183
Internet Address
Interrupt Controller
Register Map
Interrupt Priority
Traps62
Interrupt Sequence63
Interrupt Stack Frame63
Interrupts
•
L
Load Conditions
Load Conditions

LVDL Characteristics 179

М

Ν

NVM		
Register M	1ap	. 47

Ο

Operating Current (IDD)	4
Operating Frequency vs Voltage	_
dsPIC30FXXXX-20 (Extended) 172	2
Oscillator	
Configurations 14	
Fail-Safe Clock Monitor 14	6
Fast RC (FRC) 14	5
Initial Clock Source Selection 14	4
Low-Power RC (LPRC)14	5
LP Oscillator Control14	5
Phase Locked Loop (PLL)	
Start-up Timer (OST) 14	4
Control Registers 14	
Operating Modes (Table)142	2
System Overview14	
Oscillator Selection 14	
Oscillator Start-up Timer	
Timing Requirements	7
Output Compare Interrupts	
Output Compare Module	
Register Map dsPIC30F3014 8	
Register Map dsPIC30F4013 8	
Timing Requirements	
Output Compare Operation During CPU Idle Mode	
Output Compare Sleep Mode Operation	
	0
Р	

Packaging Information	211
Marking	211
Peripheral Module Disable (PMD) Registers	157
Pinout Descriptions	13
POR. See Power-on Reset.	
Power Saving Modes	
Sleep and Idle	141
Power-Down Current (IPD)	176
Power-Saving Modes	155
Idle	156

CAN Module I/O205 CLKOUT and I/O185 DCI Module
AC-Link Mode
External Clock
Frame Sync, AC-Link Start-Of-Frame
Frame Sync, Multichannel Mode124 I ² C Bus Data
I-C Bus Data Master Mode
Slave Mode203 I ² C Bus Start/Stop Bits
Master Mode
Slave Mode
I ² S Interface Frame Sync
Input Capture (CAPx)
Low-Voltage Detect
OCx/PWM Module
Oscillator Start-up Timer
Output Compare Module
Power-up Timer
PWM Output
Reset
SPI Module
Master Mode (CKE = 0)
Master Mode (CKE = 1)
Slave Mode (CKE = 0)
Slave Mode (CKE = 1) 199
Time-out Sequence on Power-up
(MCLR Not Tied to VDD), Case 1
Time-out Sequence on Power-up
(MCLR Not Tied to VDD), Case 2
Time-out Sequence on Power-up
(MCLR Tied to VDD)152
Type A, B and C Timer External Clock
Watchdog Timer
Timing Diagrams and Specifications DC Characteristics - Internal RC Accuracy
Timing Diagrams.See Timing Characteristics
Timing Requirements
A/D Conversion
Low-Speed
Band Gap Start-up Time
Brown-out Reset
CAN Module I/O
CLKOUT and I/O
DCI Module
AC-Link Mode
Multichannel, I ² S Modes
External Clock
l ² C Bus Data (Master Mode)
l ² C Bus Data (Slave Mode)
Input Capture
Oscillator Start-up Timer
Output Compare Module
Power-up Timer
Reset
Simple OCx/PWM Mode
SPI Module
Master Mode (CKE = 0)
Master Mode (CKE = 1)
Slave Mode (CKE = 0)
Slave Mode (CKE = 1)
Type A Timer External Clock 188
Type B Timer External Clock 189

Type C Timer External Clock	189
Watchdog Timer	
Trap Vectors	63

U

UART Module	
Address Detect Mode	107
Auto-Baud Support	108
Baud Rate Generator	107
Enabling and Setting Up	105
Framing Error (FERR)	
Idle Status	
Loopback Mode	107
Operation During CPU Sleep and Idle Modes	108
Overview	
Parity Error (PERR)	107
Receive Break	
Receive Buffer (UxRXB)	106
Receive Buffer Overrun Error (OERR Bit)	106
Receive Interrupt	106
Receiving Data	106
Receiving in 8-Bit or 9-Bit Data Mode	106
Reception Error Handling	106
Transmit Break	106
Transmit Buffer (UxTXB)	105
Transmit Interrupt	106
Transmitting Data	105
Transmitting in 8-Bit Data Mode	105
Transmitting in 9-Bit Data Mode	105
UART1 Register Map	109
UART2 Register Map	109
UART Operation	
Idle Mode	108
Sleep Mode	108
Unit ID Locations	141
Universal Asynchronous Receiver Transmitter	
(UART) Module	103
147	

W

Wake-up from Sleep	
Wake-up from Sleep and Idle	
Watchdog Timer	
Timing Requirements	187
Watchdog Timer (WDT)	141, 155
Enabling and Disabling	155
Operation	155
WWW Address	225
WWW, On-Line Support	